[PATCH 1/2] misc: add CARMA DATA-FPGA Access Driver
Ira W. Snyder
iws at ovro.caltech.edu
Wed Feb 9 04:20:46 EST 2011
On Mon, Feb 07, 2011 at 11:33:10PM -0800, Dmitry Torokhov wrote:
> Hi Ira,
>
> On Mon, Feb 07, 2011 at 03:23:40PM -0800, Ira W. Snyder wrote:
> > This driver allows userspace to access the data processing FPGAs on the
> > OVRO CARMA board. It has two modes of operation:
> >
> > 1) random access
> >
> > This allows users to poke any DATA-FPGA registers by using mmap to map
> > the address region directly into their memory map.
> >
> > 2) correlation dumping
> >
> > When correlating, the DATA-FPGA's have special requirements for getting
> > the data out of their memory before the next correlation. This nominally
> > happens at 64Hz (every 15.625ms). If the data is not dumped before the
> > next correlation, data is lost.
> >
> > The data dumping driver handles buffering up to 1 second worth of
> > correlation data from the FPGAs. This lowers the realtime scheduling
> > requirements for the userspace process reading the device.
>
> Kind of a fly-by review but it looks like the locking in the driver
> needs work.
>
Hi Dmitry,
Thanks for the review. I have a few comments inline below.
> >
> > Signed-off-by: Ira W. Snyder <iws at ovro.caltech.edu>
> > ---
> > drivers/misc/Kconfig | 1 +
> > drivers/misc/Makefile | 1 +
> > drivers/misc/carma/Kconfig | 9 +
> > drivers/misc/carma/Makefile | 1 +
> > drivers/misc/carma/carma-fpga.c | 1446 +++++++++++++++++++++++++++++++++++++++
> > 5 files changed, 1458 insertions(+), 0 deletions(-)
> > create mode 100644 drivers/misc/carma/Kconfig
> > create mode 100644 drivers/misc/carma/Makefile
> > create mode 100644 drivers/misc/carma/carma-fpga.c
> >
> > diff --git a/drivers/misc/Kconfig b/drivers/misc/Kconfig
> > index 4d073f1..f457f14 100644
> > --- a/drivers/misc/Kconfig
> > +++ b/drivers/misc/Kconfig
> > @@ -457,5 +457,6 @@ source "drivers/misc/eeprom/Kconfig"
> > source "drivers/misc/cb710/Kconfig"
> > source "drivers/misc/iwmc3200top/Kconfig"
> > source "drivers/misc/ti-st/Kconfig"
> > +source "drivers/misc/carma/Kconfig"
> >
> > endif # MISC_DEVICES
> > diff --git a/drivers/misc/Makefile b/drivers/misc/Makefile
> > index 98009cc..2c1610e 100644
> > --- a/drivers/misc/Makefile
> > +++ b/drivers/misc/Makefile
> > @@ -42,3 +42,4 @@ obj-$(CONFIG_ARM_CHARLCD) += arm-charlcd.o
> > obj-$(CONFIG_PCH_PHUB) += pch_phub.o
> > obj-y += ti-st/
> > obj-$(CONFIG_AB8500_PWM) += ab8500-pwm.o
> > +obj-y += carma/
> > diff --git a/drivers/misc/carma/Kconfig b/drivers/misc/carma/Kconfig
> > new file mode 100644
> > index 0000000..4be183f
> > --- /dev/null
> > +++ b/drivers/misc/carma/Kconfig
> > @@ -0,0 +1,9 @@
> > +config CARMA_FPGA
> > + tristate "CARMA DATA-FPGA Access Driver"
> > + depends on FSL_SOC && PPC_83xx && MEDIA_SUPPORT && HAS_DMA && FSL_DMA
> > + select VIDEOBUF_DMA_SG
> > + default n
> > + help
> > + Say Y here to include support for communicating with the data
> > + processing FPGAs on the OVRO CARMA board.
> > +
> > diff --git a/drivers/misc/carma/Makefile b/drivers/misc/carma/Makefile
> > new file mode 100644
> > index 0000000..0b69fa7
> > --- /dev/null
> > +++ b/drivers/misc/carma/Makefile
> > @@ -0,0 +1 @@
> > +obj-$(CONFIG_CARMA_FPGA) += carma-fpga.o
> > diff --git a/drivers/misc/carma/carma-fpga.c b/drivers/misc/carma/carma-fpga.c
> > new file mode 100644
> > index 0000000..52620b3
> > --- /dev/null
> > +++ b/drivers/misc/carma/carma-fpga.c
> > @@ -0,0 +1,1446 @@
> > +/*
> > + * CARMA DATA-FPGA Access Driver
> > + *
> > + * Copyright (c) 2009-2010 Ira W. Snyder <iws at ovro.caltech.edu>
> > + *
> > + * This program is free software; you can redistribute it and/or modify it
> > + * under the terms of the GNU General Public License as published by the
> > + * Free Software Foundation; either version 2 of the License, or (at your
> > + * option) any later version.
> > + */
> > +
> > +/*
> > + * FPGA Memory Dump Format
> > + *
> > + * FPGA #0 control registers (32 x 32-bit words)
> > + * FPGA #1 control registers (32 x 32-bit words)
> > + * FPGA #2 control registers (32 x 32-bit words)
> > + * FPGA #3 control registers (32 x 32-bit words)
> > + * SYSFPGA control registers (32 x 32-bit words)
> > + * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
> > + * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
> > + * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
> > + * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
> > + *
> > + * Each correlation array consists of:
> > + *
> > + * Correlation Data (2 x NUM_LAGSn x 32-bit words)
> > + * Pipeline Metadata (2 x NUM_METAn x 32-bit words)
> > + * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
> > + *
> > + * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
> > + * the FPGA configuration registers. They do not change once the FPGA's
> > + * have been programmed, they only change on re-programming.
> > + */
> > +
> > +/*
> > + * Basic Description:
> > + *
> > + * This driver is used to capture correlation spectra off of the four data
> > + * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
> > + * this driver supports dynamic enable/disable of capture while the device
> > + * remains open.
> > + *
> > + * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
> > + * capture rate, all buffers are pre-allocated to avoid any potentially long
> > + * running memory allocations while capturing.
> > + *
> > + * There are three lists which are used to keep track of the different states
> > + * of data buffers.
> > + *
> > + * 1) free list
> > + * This list holds all empty data buffers which are ready to receive data.
> > + *
> > + * 2) inflight list
> > + * This list holds data buffers which are currently waiting for a DMA operation
> > + * to complete.
> > + *
> > + * 3) used list
> > + * This list holds data buffers which have been filled, and are waiting to be
> > + * read by userspace.
> > + *
> > + * All buffers start life on the free list, then move successively to the
> > + * inflight list, and then to the used list. After they have been read by
> > + * userspace, they are moved back to the free list. The cycle repeats as long
> > + * as necessary.
> > + */
> > +
> > +/*
> > + * Notes on the IRQ masking scheme:
> > + *
> > + * The IRQ masking scheme here is different than most other hardware. The only
> > + * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
> > + * the data is if the status registers are not cleared before the next
> > + * correlation data dump is ready.
> > + *
> > + * The interrupt line is connected to the status registers, such that when they
> > + * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
> > + * to schedule a long-running DMA operation and return from the interrupt
> > + * handler quickly, but we cannot clear the status registers.
> > + *
> > + * To handle this, the system controller FPGA has the capability to connect the
> > + * interrupt line to a user-controlled GPIO pin. This pin is driven high
> > + * (unasserted) and left that way. To mask the interrupt, we change the
> > + * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
> > + */
> > +
> > +#include <linux/of_platform.h>
> > +#include <linux/dma-mapping.h>
> > +#include <linux/miscdevice.h>
> > +#include <linux/interrupt.h>
> > +#include <linux/dmaengine.h>
> > +#include <linux/highmem.h>
> > +#include <linux/kernel.h>
> > +#include <linux/module.h>
> > +#include <linux/poll.h>
> > +#include <linux/init.h>
> > +#include <linux/slab.h>
> > +#include <linux/io.h>
> > +
> > +#include <media/videobuf-dma-sg.h>
> > +
> > +/* system controller registers */
> > +#define SYS_IRQ_SOURCE_CTL 0x24
> > +#define SYS_IRQ_OUTPUT_EN 0x28
> > +#define SYS_IRQ_OUTPUT_DATA 0x2C
> > +#define SYS_IRQ_INPUT_DATA 0x30
> > +
> > +/* GPIO IRQ line assignment */
> > +#define IRQ_CORL_DONE 0x10
> > +
> > +/* FPGA registers */
> > +#define MMAP_REG_VERSION 0x00
> > +#define MMAP_REG_CORL_CONF1 0x08
> > +#define MMAP_REG_CORL_CONF2 0x0C
> > +#define MMAP_REG_STATUS 0x48
> > +
> > +#define SYS_FPGA_BLOCK 0xF0000000
> > +
> > +static const char drv_name[] = "carma-fpga";
> > +
> > +#define NUM_FPGA 4
> > +
> > +#define MIN_DATA_BUFS 8
> > +#define MAX_DATA_BUFS 64
> > +
> > +struct fpga_info {
> > + unsigned int num_lag_ram;
> > + unsigned int blk_size;
> > +};
> > +
> > +struct data_buf {
> > + struct list_head entry;
> > + struct videobuf_dmabuf vb;
> > + bool mapped;
> > + size_t size;
> > +};
> > +
> > +struct fpga_device {
> > + struct miscdevice miscdev;
> > + struct device *dev;
> > + struct mutex mutex;
> > +
> > + /* FPGA registers and information */
> > + struct fpga_info info[NUM_FPGA];
> > + void __iomem *regs;
> > + int irq;
> > +
> > + /* FPGA Physical Address/Size Information */
> > + resource_size_t phys_addr;
> > + size_t phys_size;
> > +
> > + /* DMA structures */
> > + struct sg_table corl_table;
> > + unsigned int corl_nents;
> > + struct dma_chan *chan;
> > +
> > + /* Protection for all members below */
> > + spinlock_t lock;
> > +
> > + /* Device enable/disable flag */
> > + bool enabled;
> > +
> > + /* Correlation data buffers */
> > + wait_queue_head_t wait;
> > + struct list_head free;
> > + struct list_head used;
> > + struct list_head inflight;
> > +
> > + /* Information about data buffers */
> > + unsigned int num_dropped;
> > + unsigned int num_buffers;
> > + size_t bufsize;
> > +};
> > +
> > +struct fpga_reader {
> > + struct fpga_device *priv;
> > + struct data_buf *buf;
> > + off_t buf_start;
> > +};
> > +
> > +#define inode_to_dev(inode) container_of(inode->i_cdev, struct fpga_device, cdev)
> > +
> > +/*
> > + * Data Buffer Allocation Helpers
> > + */
> > +
> > +static int data_map_buffer(struct device *dev, struct data_buf *buf)
> > +{
> > + int ret;
> > +
> > + /* if the buffer is already mapped, we're done */
> > + if (buf->mapped)
> > + return 0;
> > +
>
> This is a local function, not library. Can't we keep track whether a
> buffer is mapped or not?
>
Sure. I'll review the driver so I don't need this variable anymore.
> > + ret = videobuf_dma_map(dev, &buf->vb);
> > + if (ret)
> > + return ret;
> > +
> > + buf->mapped = true;
> > + return 0;
> > +}
> > +
> > +static void data_unmap_buffer(struct device *dev, struct data_buf *buf)
> > +{
> > + /* the buffer is already unmapped, we're done */
> > + if (!buf->mapped)
> > + return;
> > +
> > + videobuf_dma_unmap(dev, &buf->vb);
> > + buf->mapped = false;
> > +}
> > +
> > +/**
> > + * data_free_buffer() - free a single data buffer and all allocated memory
> > + * @dev: the DMA device to map for
> > + * @buf: the buffer to free
> > + *
> > + * This will free all of the pages allocated to the given data buffer, and
> > + * then free the structure itself
> > + */
> > +static void data_free_buffer(struct device *dev, struct data_buf *buf)
> > +{
> > + /* It is ok to free a NULL buffer */
> > + if (!buf)
> > + return;
> > +
> > + /* Make sure the buffer is not on any list */
> > + list_del_init(&buf->entry);
>
> And what happens if it is? Should it be WARN_ON(!list_empty()) instead?
>
This was only defensive programming. Everywhere this function is called,
the buffer has already been removed from the list.
> > +
> > + /* unmap it for DMA */
> > + data_unmap_buffer(dev, buf);
> > +
> > + /* free all memory */
> > + videobuf_dma_free(&buf->vb);
> > + kfree(buf);
> > +}
> > +
> > +/**
> > + * data_alloc_buffer() - allocate and fill a data buffer with pages
> > + * @dev: the DMA device to map for
> > + * @bytes: the number of bytes required
> > + *
> > + * This allocates all space needed for a data buffer, and gets it ready to be
> > + * used in a DMA transaction. It only needs to be used, never mapped before
> > + * use. This avoids calling vmalloc in hardirq context.
> > + *
> > + * Returns NULL on failure
> > + */
> > +static struct data_buf *data_alloc_buffer(struct device *dev, const size_t bytes)
> > +{
> > + unsigned int nr_pages;
> > + struct data_buf *buf;
> > + int ret;
> > +
> > + /* calculate the number of pages necessary */
> > + nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
> > +
> > + /* allocate the buffer structure */
> > + buf = kzalloc(sizeof(*buf), GFP_KERNEL);
> > + if (!buf)
> > + goto out_return;
> > +
> > + /* initialize internal fields */
> > + INIT_LIST_HEAD(&buf->entry);
> > + buf->size = bytes;
> > +
> > + /* allocate the videobuf */
> > + videobuf_dma_init(&buf->vb);
> > + ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
> > + if (ret)
> > + goto out_free_buf;
> > +
> > + /* map it for DMA */
> > + ret = data_map_buffer(dev, buf);
> > + if (ret)
> > + goto out_free_videobuf;
> > +
> > + return buf;
> > +
> > +out_free_videobuf:
> > + videobuf_dma_free(&buf->vb);
> > +out_free_buf:
> > + kfree(buf);
> > +out_return:
> > + return NULL;
> > +}
> > +
> > +/**
> > + * data_free_buffers() - free all allocated buffers
> > + * @priv: the driver's private data structure
> > + *
> > + * Free all buffers allocated by the driver (except those currently in the
> > + * process of being read by userspace).
> > + *
> > + * LOCKING: must hold dev->mutex
> > + * CONTEXT: user
> > + */
> > +static void data_free_buffers(struct fpga_device *priv)
> > +{
> > + struct data_buf *buf, *tmp;
> > +
> > + spin_lock_irq(&priv->lock);
> > + BUG_ON(!list_empty(&priv->inflight));
> > +
> > + list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
> > + list_del_init(&buf->entry);
> > + spin_unlock_irq(&priv->lock);
> > + data_free_buffer(priv->dev, buf);
> > + spin_lock_irq(&priv->lock);
> > + }
>
> This is messed up. If there is concurrent access to the free list then
> it is not safe to continue iterating list after releasing the lock, you
> need to do:
>
> spin_lock_irq(&priv->lock);
> while (!list_empty(&priv->free)) {
> buf = list_first_entry(&priv->free, struct data_buf, entry);
> list_del_init(&buf->entry);
> spin_unlock_irq(&priv->lock);
> data_free_buffer(priv->dev, buf);
> spin_lock_irq(&priv->lock);
> }
>
> BUT, the function is only called when you disable (or fail to enable) device
> which, at this point, should be quiesced, thus all this locking is not
> really needed.
>
Correct.
I thought it would be clearer to reviewers if I always used the lock to
protect a data structure, even when it isn't technically needed.
> > +
> > + list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
> > + list_del_init(&buf->entry);
> > + spin_unlock_irq(&priv->lock);
> > + data_free_buffer(priv->dev, buf);
> > + spin_lock_irq(&priv->lock);
> > + }
> > +
> > + priv->num_buffers = 0;
> > + priv->bufsize = 0;
> > +
> > + spin_unlock_irq(&priv->lock);
> > +}
> > +
> > +/**
> > + * data_alloc_buffers() - allocate 1 seconds worth of data buffers
> > + * @priv: the driver's private data structure
> > + *
> > + * Allocate enough buffers for a whole second worth of data
> > + *
> > + * This routine will attempt to degrade nicely by succeeding even if a full
> > + * second worth of data buffers could not be allocated, as long as a minimum
> > + * number were allocated. In this case, it will print a message to the kernel
> > + * log.
> > + *
> > + * CONTEXT: user
> > + * LOCKING: must hold dev->mutex
> > + *
> > + * Returns 0 on success, -ERRNO otherwise
> > + */
> > +static int data_alloc_buffers(struct fpga_device *priv)
> > +{
> > + struct data_buf *buf;
> > + int i;
> > +
> > + for (i = 0; i < MAX_DATA_BUFS; i++) {
> > + buf = data_alloc_buffer(priv->dev, priv->bufsize);
> > + if (!buf)
> > + break;
> > +
> > + spin_lock_irq(&priv->lock);
> > + list_add_tail(&buf->entry, &priv->free);
> > + spin_unlock_irq(&priv->lock);
>
> Again, can someone be accessing this list aleady?
>
Nope. The list needs to be protected from concurrent access when the
device is running, but not when it is stopped. Same as above.
> > + }
> > +
> > + /* Make sure we allocated the minimum required number of buffers */
> > + if (i < MIN_DATA_BUFS) {
> > + dev_err(priv->dev, "Unable to allocate enough data buffers\n");
> > + data_free_buffers(priv);
> > + return -ENOMEM;
> > + }
> > +
> > + /* Warn if we are running in a degraded state, but do not fail */
> > + if (i < MAX_DATA_BUFS) {
> > + dev_warn(priv->dev, "Unable to allocate one second worth of "
> > + "buffers, using %d buffers instead\n", i);
> > + }
> > +
> > + priv->num_buffers = i;
> > + return 0;
> > +}
> > +
> > +/*
> > + * DMA Operations Helpers
> > + */
> > +
> > +/**
> > + * fpga_start_addr() - get the physical address a DATA-FPGA
> > + * @priv: the driver's private data structure
> > + * @fpga: the DATA-FPGA number (zero based)
> > + */
> > +static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
> > +{
> > + return priv->phys_addr + 0x400000 + (0x80000 * fpga);
> > +}
> > +
> > +/**
> > + * fpga_block_addr() - get the physical address of a correlation data block
> > + * @priv: the driver's private data structure
> > + * @fpga: the DATA-FPGA number (zero based)
> > + * @blknum: the correlation block number (zero based)
> > + */
> > +static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
> > + unsigned int blknum)
> > +{
> > + return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
> > +}
> > +
> > +#define REG_BLOCK_SIZE (32 * 4)
> > +
> > +/**
> > + * data_setup_corl_table() - create the scatterlist for correlation dumps
> > + * @priv: the driver's private data structure
> > + *
> > + * Create the scatterlist for transferring a correlation dump from the
> > + * DATA FPGAs. This structure will be reused for each buffer than needs
> > + * to be filled with correlation data.
> > + *
> > + * Returns 0 on success, -ERRNO otherwise
> > + */
> > +static int data_setup_corl_table(struct fpga_device *priv)
> > +{
> > + struct sg_table *table = &priv->corl_table;
> > + struct scatterlist *sg;
> > + struct fpga_info *info;
> > + int i, j, ret;
> > +
> > + /* Calculate the number of entries needed */
> > + priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
> > + for (i = 0; i < NUM_FPGA; i++)
> > + priv->corl_nents += priv->info[i].num_lag_ram;
> > +
> > + /* Allocate the scatterlist table */
> > + ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
> > + if (ret) {
> > + dev_err(priv->dev, "unable to allocate DMA table\n");
> > + return ret;
> > + }
> > +
> > + /* Add the DATA FPGA registers to the scatterlist */
> > + sg = table->sgl;
> > + for (i = 0; i < NUM_FPGA; i++) {
> > + sg_dma_address(sg) = fpga_start_addr(priv, i);
> > + sg_dma_len(sg) = REG_BLOCK_SIZE;
> > + sg = sg_next(sg);
> > + }
> > +
> > + /* Add the SYS-FPGA registers to the scatterlist */
> > + sg_dma_address(sg) = SYS_FPGA_BLOCK;
> > + sg_dma_len(sg) = REG_BLOCK_SIZE;
> > + sg = sg_next(sg);
> > +
> > + /* Add the FPGA correlation data blocks to the scatterlist */
> > + for (i = 0; i < NUM_FPGA; i++) {
> > + info = &priv->info[i];
> > + for (j = 0; j < info->num_lag_ram; j++) {
> > + sg_dma_address(sg) = fpga_block_addr(priv, i, j);
> > + sg_dma_len(sg) = info->blk_size;
> > + sg = sg_next(sg);
> > + }
> > + }
> > +
> > + /*
> > + * All physical addresses and lengths are present in the structure
> > + * now. It can be reused for every FPGA DATA interrupt
> > + */
> > + return 0;
> > +}
> > +
> > +/*
> > + * FPGA Register Access Helpers
> > + */
> > +
> > +static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
> > + unsigned int reg, u32 val)
> > +{
> > + iowrite32be(val, priv->regs + 0x400000 + (fpga * 0x80000) + reg);
> > +}
> > +
> > +static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
> > + unsigned int reg)
> > +{
> > + return ioread32be(priv->regs + 0x400000 + (fpga * 0x80000) + reg);
> > +}
> > +
> > +/**
> > + * data_calculate_bufsize() - calculate the data buffer size required
> > + * @priv: the driver's private data structure
> > + *
> > + * Calculate the total buffer size needed to hold a single block
> > + * of correlation data
> > + *
> > + * CONTEXT: user
> > + *
> > + * Returns 0 on success, -ERRNO otherwise
> > + */
> > +static int data_calculate_bufsize(struct fpga_device *priv)
> > +{
> > + u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
> > + u32 conf1, conf2, version;
> > + u32 num_lag_ram, blk_size;
> > + int i;
> > +
> > + /* Each buffer starts with the 5 FPGA register areas */
> > + priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
> > +
> > + /* Read and store the configuration data for each FPGA */
> > + for (i = 0; i < NUM_FPGA; i++) {
> > + version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
> > + conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
> > + conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
> > +
> > + /* minor version 2 and later */
> > + if ((version & 0x000000FF) >= 2) {
> > + num_corl = (conf1 & 0x000000F0) >> 4;
> > + num_pack = (conf1 & 0x00000F00) >> 8;
> > + num_lags = (conf1 & 0x00FFF000) >> 12;
> > + num_meta = (conf1 & 0x7F000000) >> 24;
> > + num_qcnt = (conf2 & 0x00000FFF) >> 0;
> > + } else {
> > + num_corl = (conf1 & 0x000000F0) >> 4;
> > + num_pack = 1; /* implied */
> > + num_lags = (conf1 & 0x000FFF00) >> 8;
> > + num_meta = (conf1 & 0x7FF00000) >> 20;
> > + num_qcnt = (conf2 & 0x00000FFF) >> 0;
> > + }
> > +
> > + num_lag_ram = (num_corl + num_pack - 1) / num_pack;
> > + blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
> > +
> > + priv->info[i].num_lag_ram = num_lag_ram;
> > + priv->info[i].blk_size = blk_size;
> > + priv->bufsize += num_lag_ram * blk_size;
> > +
> > + dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
> > + dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
> > + dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
> > + dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
> > + dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
> > + dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
> > + }
> > +
> > + dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
> > + return 0;
> > +}
> > +
> > +/*
> > + * Interrupt Handling
> > + */
> > +
> > +/**
> > + * data_disable_interrupts() - stop the device from generating interrupts
> > + * @priv: the driver's private data structure
> > + *
> > + * Hide interrupts by switching to GPIO interrupt source
> > + *
> > + * LOCKING: must hold dev->lock
> > + */
> > +static void data_disable_interrupts(struct fpga_device *priv)
> > +{
> > + /* hide the interrupt by switching the IRQ driver to GPIO */
> > + iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
> > +}
> > +
> > +/**
> > + * data_enable_interrupts() - allow the device to generate interrupts
> > + * @priv: the driver's private data structure
> > + *
> > + * Unhide interrupts by switching to the FPGA interrupt source. At the
> > + * same time, clear the DATA-FPGA status registers.
> > + *
> > + * LOCKING: must hold dev->lock
> > + */
> > +static void data_enable_interrupts(struct fpga_device *priv)
> > +{
> > + /* clear the actual FPGA corl_done interrupt */
> > + fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
> > + fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
> > + fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
> > + fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
> > +
> > + /* flush the writes */
> > + fpga_read_reg(priv, 0, MMAP_REG_STATUS);
> > +
> > + /* switch back to the external interrupt source */
> > + iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
> > +}
> > +
> > +/**
> > + * data_dma_cb() - DMAEngine callback for DMA completion
> > + * @data: the driver's private data structure
> > + *
> > + * Complete a DMA transfer from the DATA-FPGA's
> > + *
> > + * This is called via the DMA callback mechanism, and will handle moving the
> > + * completed DMA transaction to the used list, and then wake any processes
> > + * waiting for new data
> > + *
> > + * CONTEXT: any, softirq expected
> > + */
> > +static void data_dma_cb(void *data)
> > +{
> > + struct fpga_device *priv = data;
> > + struct data_buf *buf;
> > + unsigned long flags;
> > +
> > + spin_lock_irqsave(&priv->lock, flags);
> > +
> > + /* clear the FPGA status and re-enable interrupts */
> > + data_enable_interrupts(priv);
> > +
> > + /* If the inflight list is empty, we've got a bug */
> > + BUG_ON(list_empty(&priv->inflight));
> > +
> > + /* Grab the first buffer from the inflight list */
> > + buf = list_first_entry(&priv->inflight, struct data_buf, entry);
> > + list_del_init(&buf->entry);
> > +
> > + /* Add it to the used list */
> > + list_add_tail(&buf->entry, &priv->used);
> > +
> > + spin_unlock_irqrestore(&priv->lock, flags);
> > +
> > + /* We've changed both the inflight and used lists, so we need
> > + * to wake up any processes that are blocking for those events */
> > + wake_up(&priv->wait);
> > +}
> > +
> > +/**
> > + * data_submit_dma() - prepare and submit the required DMA to fill a buffer
> > + * @priv: the driver's private data structure
> > + * @buf: the data buffer
> > + *
> > + * Prepare and submit the necessary DMA transactions to fill a correlation
> > + * data buffer.
> > + *
> > + * LOCKING: must hold dev->lock
> > + * CONTEXT: hardirq only
> > + *
> > + * Returns 0 on success, -ERRNO otherwise
> > + */
> > +static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
> > +{
> > + struct scatterlist *dst_sg, *src_sg;
> > + unsigned int dst_nents, src_nents;
> > + struct dma_chan *chan = priv->chan;
> > + struct dma_async_tx_descriptor *tx;
> > + dma_cookie_t cookie;
> > + dma_addr_t dst, src;
> > +
> > + dst_sg = buf->vb.sglist;
> > + dst_nents = buf->vb.sglen;
> > +
> > + src_sg = priv->corl_table.sgl;
> > + src_nents = priv->corl_nents;
> > +
> > + /*
> > + * All buffers passed to this function should be ready and mapped
> > + * for DMA already. Therefore, we don't need to do anything except
> > + * submit it to the Freescale DMA Engine for processing
> > + */
> > +
> > + /* setup the scatterlist to scatterlist transfer */
> > + tx = chan->device->device_prep_dma_sg(chan,
> > + dst_sg, dst_nents,
> > + src_sg, src_nents,
> > + 0);
> > + if (!tx) {
> > + dev_err(priv->dev, "unable to prep scatterlist DMA\n");
> > + return -ENOMEM;
> > + }
> > +
> > + /* submit the transaction to the DMA controller */
> > + cookie = tx->tx_submit(tx);
> > + if (dma_submit_error(cookie)) {
> > + dev_err(priv->dev, "unable to submit scatterlist DMA\n");
> > + return -ENOMEM;
> > + }
> > +
> > + /* Prepare the re-read of the SYS-FPGA block */
> > + dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
> > + src = SYS_FPGA_BLOCK;
> > + tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
> > + REG_BLOCK_SIZE,
> > + DMA_PREP_INTERRUPT);
> > + if (!tx) {
> > + dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
> > + return -ENOMEM;
> > + }
> > +
> > + /* Setup the callback */
> > + tx->callback = data_dma_cb;
> > + tx->callback_param = priv;
> > +
> > + /* submit the transaction to the DMA controller */
> > + cookie = tx->tx_submit(tx);
> > + if (dma_submit_error(cookie)) {
> > + dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
> > + return -ENOMEM;
> > + }
> > +
> > + return 0;
> > +}
> > +
> > +#define CORL_DONE 0x1
> > +#define CORL_ERR 0x2
> > +
> > +static irqreturn_t data_irq(int irq, void *dev_id)
> > +{
> > + struct fpga_device *priv = dev_id;
> > + struct data_buf *buf;
> > + u32 status;
> > + int i;
> > +
> > + /* detect spurious interrupts via FPGA status */
> > + for (i = 0; i < 4; i++) {
> > + status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
> > + if (!(status & (CORL_DONE | CORL_ERR))) {
> > + dev_err(priv->dev, "spurious irq detected (FPGA)\n");
> > + return IRQ_NONE;
> > + }
> > + }
> > +
> > + /* detect spurious interrupts via raw IRQ pin readback */
> > + status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
> > + if (status & IRQ_CORL_DONE) {
> > + dev_err(priv->dev, "spurious irq detected (IRQ)\n");
> > + return IRQ_NONE;
> > + }
> > +
> > + spin_lock(&priv->lock);
> > +
> > + /* hide the interrupt by switching the IRQ driver to GPIO */
> > + data_disable_interrupts(priv);
> > +
> > + /* Check that we actually have a free buffer */
> > + if (list_empty(&priv->free)) {
> > + priv->num_dropped++;
> > + data_enable_interrupts(priv);
> > + goto out_unlock;
> > + }
> > +
> > + buf = list_first_entry(&priv->free, struct data_buf, entry);
> > + list_del_init(&buf->entry);
> > +
> > + /* Check the buffer size */
> > + BUG_ON(buf->size != priv->bufsize);
> > +
> > + /* Submit a DMA transfer to get the correlation data */
> > + if (data_submit_dma(priv, buf)) {
> > + dev_err(priv->dev, "Unable to setup DMA transfer\n");
> > + list_add_tail(&buf->entry, &priv->free);
> > + data_enable_interrupts(priv);
> > + goto out_unlock;
> > + }
> > +
> > + /* DMA setup succeeded, GO!!! */
> > + list_add_tail(&buf->entry, &priv->inflight);
> > + dma_async_memcpy_issue_pending(priv->chan);
> > +
> > +out_unlock:
> > + spin_unlock(&priv->lock);
> > + return IRQ_HANDLED;
> > +}
> > +
> > +/*
> > + * Realtime Device Enable Helpers
> > + */
> > +
> > +/**
> > + * data_device_enable() - enable the device for buffered dumping
> > + * @priv: the driver's private data structure
> > + *
> > + * Enable the device for buffered dumping. Allocates buffers and hooks up
> > + * the interrupt handler. When this finishes, data will come pouring in.
> > + *
> > + * LOCKING: must hold dev->mutex
> > + * CONTEXT: user context only
> > + *
> > + * Returns 0 on success, -ERRNO otherwise
> > + */
> > +static int data_device_enable(struct fpga_device *priv)
> > +{
> > + u32 val;
> > + int ret;
> > +
> > + /* multiple enables are safe: they do nothing */
> > + if (priv->enabled)
> > + return 0;
> > +
> > + /* check that the FPGAs are programmed */
> > + val = ioread32be(priv->regs + 0x44);
> > + if (!(val & (1 << 18))) {
> > + dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
> > + return -ENODATA;
> > + }
> > +
> > + /* read the FPGAs to calculate the buffer size */
> > + ret = data_calculate_bufsize(priv);
> > + if (ret) {
> > + dev_err(priv->dev, "unable to calculate buffer size\n");
> > + goto out_error;
> > + }
> > +
> > + /* allocate the correlation data buffers */
> > + ret = data_alloc_buffers(priv);
> > + if (ret) {
> > + dev_err(priv->dev, "unable to allocate buffers\n");
> > + goto out_error;
> > + }
> > +
> > + /* setup the source scatterlist for dumping correlation data */
> > + ret = data_setup_corl_table(priv);
> > + if (ret) {
> > + dev_err(priv->dev, "unable to setup correlation DMA table\n");
> > + goto out_error;
> > + }
> > +
> > + /* switch to the external FPGA IRQ line */
> > + data_enable_interrupts(priv);
> > +
> > + /* hookup the irq handler */
> > + ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
> > + if (ret) {
> > + dev_err(priv->dev, "unable to request IRQ handler\n");
> > + goto out_error;
> > + }
> > +
> > + /* success, we're enabled */
> > + priv->enabled = true;
> > + return 0;
> > +
> > +out_error:
> > + sg_free_table(&priv->corl_table);
> > + priv->corl_nents = 0;
> > +
> > + data_free_buffers(priv);
> > + return ret;
> > +}
> > +
> > +/**
> > + * data_device_disable() - disable the device for buffered dumping
> > + * @priv: the driver's private data structure
> > + *
> > + * Disable the device for buffered dumping. Stops new DMA transactions from
> > + * being generated, waits for all outstanding DMA to complete, and then frees
> > + * all buffers.
> > + *
> > + * LOCKING: must hold dev->mutex
> > + * CONTEXT: user only
> > + *
> > + * Returns 0 on success, -ERRNO otherwise
> > + */
> > +static int data_device_disable(struct fpga_device *priv)
> > +{
> > + struct list_head *list;
> > + int ret;
> > +
> > + /* allow multiple disable */
> > + if (!priv->enabled)
> > + return 0;
> > +
> > + /* switch to the internal GPIO IRQ line */
> > + data_disable_interrupts(priv);
> > +
> > + /* unhook the irq handler */
> > + free_irq(priv->irq, priv);
> > +
> > + /* wait for all outstanding DMA to complete */
> > + list = &priv->inflight;
> > +
> > + spin_lock_irq(&priv->lock);
> > + while (!list_empty(list)) {
> > + spin_unlock_irq(&priv->lock);
> > +
> > + ret = wait_event_interruptible(priv->wait, list_empty(list));
> > + if (ret)
> > + return -ERESTARTSYS;
> > +
> > + spin_lock_irq(&priv->lock);
> > + }
> > + spin_unlock_irq(&priv->lock);
>
> Locking is not needed - if you disable interrupyts what would put more
> stuff on the list?
>
The locking is definitely needed.
You've missed a critical piece of information. There are *two* devices
we are interacting with here, and BOTH generate interrupts.
1) DATA-FPGA (generates interrupts for dumping)
2) Freescale DMA Engine (generates interrupts at DMA completion)
The data_disable_interrupts() routine disables DATA-FPGA interrupts.
This loop waits until the DMA engine has completed.
The driver goes like this:
- several buffers on the free list
- DATA-FPGA interrupt occurs data_irq()
- disable DATA-FPGA interrupts
- take a buffer from the free list
- setup DMA data_submit_dma()
- put buffer on the inflight list back in data_irq()
- start DMA in data_irq()
- DMA finishes, DMA interrupt occurs data_dma_cb()
- re-enable DATA-FPGA interrupts
- take first buffer off the inflight list
- put buffer on the used list
> > +
> > + /* free the correlation table */
> > + sg_free_table(&priv->corl_table);
> > + priv->corl_nents = 0;
> > +
> > + /* free all of the buffers */
> > + data_free_buffers(priv);
> > + priv->enabled = false;
> > + return 0;
> > +}
> > +
> > +/*
> > + * SYSFS Attributes
> > + */
> > +
> > +/*
> > + * Count the number of entries in the given list
> > + */
> > +static unsigned int list_num_entries(struct list_head *list)
> > +{
> > + struct list_head *entry;
> > + unsigned int ret = 0;
> > +
> > + list_for_each(entry, list)
> > + ret++;
> > +
> > + return ret;
> > +}
> > +
> > +static ssize_t data_num_buffers_show(struct device *dev,
> > + struct device_attribute *attr, char *buf)
> > +{
> > + struct fpga_device *priv = dev_get_drvdata(dev);
> > + unsigned int num;
> > +
> > + spin_lock_irq(&priv->lock);
> > + num = priv->num_buffers;
> > + spin_unlock_irq(&priv->lock);
>
> This spin lock is pointless, priv->num_buffers might be already changed
> here, you can't guarantee that you show accurate data.
>
Correct, I know this. I just wanted to protect the data structure at all
points of use in the driver. Would an atomic_t be better for this, or
should I just remove the locking completely?
Personally, it seems very confusing to me when a data structure is
protected by a lock in some places, and not in others.
> > +
> > + return snprintf(buf, PAGE_SIZE, "%u\n", num);
> > +}
> > +
> > +static ssize_t data_bufsize_show(struct device *dev,
> > + struct device_attribute *attr, char *buf)
> > +{
> > + struct fpga_device *priv = dev_get_drvdata(dev);
> > + size_t num;
> > +
> > + spin_lock_irq(&priv->lock);
> > + num = priv->bufsize;
> > + spin_unlock_irq(&priv->lock);
>
> Same here.
>
> > +
> > + return snprintf(buf, PAGE_SIZE, "%zu\n", num);
> > +}
> > +
> > +static ssize_t data_inflight_show(struct device *dev,
> > + struct device_attribute *attr, char *buf)
> > +{
> > + struct fpga_device *priv = dev_get_drvdata(dev);
> > + unsigned int num;
> > +
> > + spin_lock_irq(&priv->lock);
> > + num = list_num_entries(&priv->inflight);
> > + spin_unlock_irq(&priv->lock);
>
> And here.
>
> > +
> > + return snprintf(buf, PAGE_SIZE, "%u\n", num);
> > +}
> > +
> > +static ssize_t data_free_show(struct device *dev,
> > + struct device_attribute *attr, char *buf)
> > +{
> > + struct fpga_device *priv = dev_get_drvdata(dev);
> > + unsigned int num;
> > +
> > + spin_lock_irq(&priv->lock);
> > + num = list_num_entries(&priv->free);
> > + spin_unlock_irq(&priv->lock);
> > +
>
> And here.
>
> > + return snprintf(buf, PAGE_SIZE, "%u\n", num);
> > +}
> > +
> > +static ssize_t data_used_show(struct device *dev,
> > + struct device_attribute *attr, char *buf)
> > +{
> > + struct fpga_device *priv = dev_get_drvdata(dev);
> > + unsigned int num;
> > +
> > + spin_lock_irq(&priv->lock);
> > + num = list_num_entries(&priv->used);
> > + spin_unlock_irq(&priv->lock);
> > +
>
> Ditto.
>
> > + return snprintf(buf, PAGE_SIZE, "%u\n", num);
> > +}
> > +
> > +static ssize_t data_num_dropped_show(struct device *dev,
> > + struct device_attribute *attr, char *buf)
> > +{
> > + struct fpga_device *priv = dev_get_drvdata(dev);
> > + unsigned int num;
> > +
> > + spin_lock_irq(&priv->lock);
> > + num = priv->num_dropped;
> > + spin_unlock_irq(&priv->lock);
> > +
>
> Yep..
>
> > + return snprintf(buf, PAGE_SIZE, "%u\n", num);
> > +}
> > +
> > +static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
> > + char *buf)
> > +{
> > + struct fpga_device *priv = dev_get_drvdata(dev);
> > + ssize_t count;
> > +
> > + if (mutex_lock_interruptible(&priv->mutex))
> > + return -ERESTARTSYS;
> > +
> > + count = snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
> > + mutex_unlock(&priv->mutex);
>
> By the time buf gets all the way to userspace, yep you guessed it...
>
> > + return count;
> > +}
> > +
> > +static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
> > + const char *buf, size_t count)
> > +{
> > + struct fpga_device *priv = dev_get_drvdata(dev);
> > + unsigned long enable;
> > + int ret;
> > +
> > + ret = strict_strtoul(buf, 0, &enable);
> > + if (ret) {
> > + dev_err(priv->dev, "unable to parse enable input\n");
> > + return -EINVAL;
> > + }
> > +
> > + if (mutex_lock_interruptible(&priv->mutex))
> > + return -ERESTARTSYS;
>
> Why don't
>
> error = mutex_lock_interruptible(&priv->mutex);
> if (error)
> return error;
>
> - do not clobber perfectly valid error codes.
>
That's what the Linux Device Drivers 3rd Edition book does. See page
112. I will change it to fix the return code.
> > +
> > + if (enable)
> > + ret = data_device_enable(priv);
> > + else
> > + ret = data_device_disable(priv);
> > +
> > + if (ret) {
> > + dev_err(priv->dev, "device %s failed\n",
> > + enable ? "enable" : "disable");
> > + count = ret;
> > + goto out_unlock;
> > + }
> > +
> > +out_unlock:
> > + mutex_unlock(&priv->mutex);
> > + return count;
> > +}
> > +
> > +static DEVICE_ATTR(num_buffers, S_IRUGO, data_num_buffers_show, NULL);
> > +static DEVICE_ATTR(buffer_size, S_IRUGO, data_bufsize_show, NULL);
> > +static DEVICE_ATTR(num_inflight, S_IRUGO, data_inflight_show, NULL);
> > +static DEVICE_ATTR(num_free, S_IRUGO, data_free_show, NULL);
> > +static DEVICE_ATTR(num_used, S_IRUGO, data_used_show, NULL);
> > +static DEVICE_ATTR(num_dropped, S_IRUGO, data_num_dropped_show, NULL);
> > +static DEVICE_ATTR(enable, S_IWUGO | S_IRUGO, data_en_show, data_en_set);
> > +
> > +static struct attribute *data_sysfs_attrs[] = {
> > + &dev_attr_num_buffers.attr,
> > + &dev_attr_buffer_size.attr,
> > + &dev_attr_num_inflight.attr,
> > + &dev_attr_num_free.attr,
> > + &dev_attr_num_used.attr,
> > + &dev_attr_num_dropped.attr,
> > + &dev_attr_enable.attr,
> > + NULL,
> > +};
>
> Are all of these really needed or most of them are for debug?
>
Most are for debugging. They have proved useful a few times in
production to track down bugs.
> > +
> > +static const struct attribute_group rt_sysfs_attr_group = {
> > + .attrs = data_sysfs_attrs,
> > +};
> > +
> > +/*
> > + * FPGA Realtime Data Character Device
> > + */
> > +
> > +static int data_open(struct inode *inode, struct file *filp)
> > +{
> > + /*
> > + * The miscdevice layer puts our struct miscdevice into the
> > + * filp->private_data field. We use this to find our private
> > + * data and then overwrite it with our own private structure.
> > + */
> > + struct fpga_device *priv = container_of(filp->private_data,
> > + struct fpga_device, miscdev);
> > + struct fpga_reader *reader;
> > + int ret;
> > +
> > + /* allocate private data */
> > + reader = kzalloc(sizeof(*reader), GFP_KERNEL);
> > + if (!reader)
> > + return -ENOMEM;
> > +
> > + reader->priv = priv;
> > + reader->buf = NULL;
> > +
> > + filp->private_data = reader;
> > + ret = nonseekable_open(inode, filp);
> > + if (ret) {
> > + dev_err(priv->dev, "nonseekable-open failed\n");
> > + kfree(reader);
> > + return ret;
> > + }
> > +
> > + return 0;
> > +}
> > +
> > +static int data_release(struct inode *inode, struct file *filp)
> > +{
> > + struct fpga_reader *reader = filp->private_data;
> > + struct fpga_device *priv = reader->priv;
> > +
> > + /* free the per-reader structure */
> > + data_free_buffer(priv->dev, reader->buf);
> > + kfree(reader);
> > + filp->private_data = NULL;
> > + return 0;
> > +}
> > +
> > +static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
> > + loff_t *f_pos)
> > +{
> > + struct fpga_reader *reader = filp->private_data;
> > + struct fpga_device *priv = reader->priv;
> > + struct list_head *used = &priv->used;
> > + struct data_buf *dbuf;
> > + size_t avail;
> > + void *data;
> > + int ret;
> > +
> > + /* check if we already have a partial buffer */
> > + if (reader->buf) {
> > + dbuf = reader->buf;
> > + goto have_buffer;
> > + }
> > +
> > + spin_lock_irq(&priv->lock);
> > +
> > + /* Block until there is at least one buffer on the used list */
> > + while (list_empty(used)) {
> > + spin_unlock_irq(&priv->lock);
> > +
> > + if (filp->f_flags & O_NONBLOCK)
> > + return -EAGAIN;
> > +
> > + if (wait_event_interruptible(priv->wait, !list_empty(used)))
> > + return -ERESTARTSYS;
> > +
>
> And somebody grabs that entry here...
>
> > + spin_lock_irq(&priv->lock);
> > + }
> > +
> > + /* Grab the first buffer off of the used list */
> > + dbuf = list_first_entry(used, struct data_buf, entry);
>
> And list is empty so you grabgarbage.
>
> > + list_del_init(&dbuf->entry);
> > +
> > + spin_unlock_irq(&priv->lock);
>
> Shoudl be:
>
> struct data_buf *dbuf = NULL;
> ...
>
> if (list_empty(&priv->used) && (filp->f_flags & O_NONBLOCK))
> return -EAGAIN;
>
> error = wait_event_interruptible(priv->wait, !list_empty(&priv->used);
> if (error)
> return error;
>
> spin_lock_irq(&priv->lock);
> if (!list_empty(&priv->used)) {
> buf = list_first_entry(&priv->used, struct data_buf, entry);
> list_del_init(&dbuf->entry);
> }
> spin_unlock_irq(&priv->lock);
>
> if (dbuf) {
> .. deal with the buffer
> }
>
I'm pretty sure you're wrong. Go back and re-think my loop. This is a
common idiom straight of out LDD3 pages 153-154.
You should note that it is only possible to exit the loop with the lock
held AND !list_empty(used). The lock protects the used list, and
therefore, there must be a buffer on the list.
> > +
> > + /* Buffers are always mapped: unmap it */
> > + data_unmap_buffer(priv->dev, dbuf);
> > +
> > + /* save the buffer for later */
> > + reader->buf = dbuf;
> > + reader->buf_start = 0;
> > +
> > + /* we removed a buffer from the used list: wake any waiters */
> > + wake_up(&priv->wait);
> > +
> > +have_buffer:
> > + /* Get the number of bytes available */
> > + avail = dbuf->size - reader->buf_start;
> > + data = dbuf->vb.vaddr + reader->buf_start;
> > +
> > + /* Get the number of bytes we can transfer */
> > + count = min(count, avail);
> > +
> > + /* Copy the data to the userspace buffer */
> > + if (copy_to_user(ubuf, data, count))
> > + return -EFAULT;
> > +
> > + /* Update the amount of available space */
> > + avail -= count;
> > +
> > + /* Lock against concurrent enable/disable */
> > + if (mutex_lock_interruptible(&priv->mutex))
> > + return -ERESTARTSYS;
> > +
> > + /* Still some space available: save the buffer for later */
> > + if (avail != 0) {
> > + reader->buf_start += count;
> > + reader->buf = dbuf;
> > + goto out_unlock;
> > + }
> > +
> > + /*
> > + * No space is available in this buffer
> > + *
> > + * This is a complicated decision:
> > + * - if the device is not enabled: free the buffer
> > + * - if the buffer is too small: free the buffer
> > + */
> > + if (!priv->enabled || dbuf->size != priv->bufsize) {
> > + data_free_buffer(priv->dev, dbuf);
> > + reader->buf = NULL;
> > + goto out_unlock;
> > + }
> > +
> > + /*
> > + * The buffer is safe to recycle: remap it and finish
> > + *
> > + * If this fails, we pretend that the read never happened, and return
> > + * -EFAULT to userspace. They'll retry the read again.
> > + */
> > + ret = data_map_buffer(priv->dev, dbuf);
> > + if (ret) {
> > + dev_err(priv->dev, "unable to remap buffer for DMA\n");
> > + count = -EFAULT;
> > + goto out_unlock;
> > + }
> > +
> > + /* Add the buffer back to the free list */
> > + reader->buf = NULL;
> > + spin_lock_irq(&priv->lock);
> > + list_add_tail(&dbuf->entry, &priv->free);
> > + spin_unlock_irq(&priv->lock);
> > +
> > +out_unlock:
> > + mutex_unlock(&priv->mutex);
> > + return count;
> > +}
> > +
> > +static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
> > +{
> > + struct fpga_reader *reader = filp->private_data;
> > + struct fpga_device *priv = reader->priv;
> > + unsigned int mask = 0;
> > +
> > + poll_wait(filp, &priv->wait, tbl);
> > +
> > + spin_lock_irq(&priv->lock);
> > +
> > + if (!list_empty(&priv->used))
> > + mask |= POLLIN | POLLRDNORM;
> > +
> > + spin_unlock_irq(&priv->lock);
>
> No lock is needed.
>
Why not? For example, there are two readers:
1) blocked in poll()
2) blocked in poll()
A single buffer gets added to the used list. I should only unblock one
of them with (POLLIN | POLLRDNORM), correct? Otherwise one of them must
have a spurious wakeup. I think that's incorrect (or undesirable)
behavior.
Again, it seems very inconsistent and confusing to me to protect the
used list with a spinlock in some places and not in others.
> > + return mask;
> > +}
> > +
> > +static int data_mmap(struct file *filp, struct vm_area_struct *vma)
> > +{
> > + struct fpga_reader *reader = filp->private_data;
> > + struct fpga_device *priv = reader->priv;
> > + unsigned long offset, vsize, psize, addr;
> > +
> > + /* VMA properties */
> > + offset = vma->vm_pgoff << PAGE_SHIFT;
> > + vsize = vma->vm_end - vma->vm_start;
> > + psize = priv->phys_size - offset;
> > + addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
> > +
> > + /* Check against the FPGA region's physical memory size */
> > + if (vsize > psize) {
> > + dev_err(priv->dev, "requested mmap mapping too large\n");
> > + return -EINVAL;
> > + }
> > +
> > + /* IO memory (stop cacheing) */
> > + vma->vm_flags |= VM_IO | VM_RESERVED;
> > + vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
> > +
> > + return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
> > + vma->vm_page_prot);
> > +}
> > +
> > +static const struct file_operations data_fops = {
> > + .owner = THIS_MODULE,
> > + .open = data_open,
> > + .release = data_release,
> > + .read = data_read,
> > + .poll = data_poll,
> > + .mmap = data_mmap,
> > + .llseek = no_llseek,
> > +};
> > +
> > +/*
> > + * OpenFirmware Device Subsystem
> > + */
> > +
> > +static bool dma_filter(struct dma_chan *chan, void *data)
> > +{
> > + /*
> > + * DMA Channel #0 is used for the FPGA Programmer, so ignore it
> > + *
> > + * This probably won't survive an unload/load cycle of the Freescale
> > + * DMAEngine driver, but that won't be a problem
> > + */
> > + if (chan->chan_id == 0 && chan->device->dev_id == 0)
> > + return false;
> > +
> > + return true;
> > +}
> > +
> > +static int data_of_probe(struct platform_device *op,
> > + const struct of_device_id *match)
> > +{
> > + struct device_node *of_node = op->dev.of_node;
> > + struct device *this_device;
> > + struct fpga_device *priv;
> > + struct resource res;
> > + dma_cap_mask_t mask;
> > + int ret;
> > +
> > + /* Allocate private data */
> > + priv = kzalloc(sizeof(*priv), GFP_KERNEL);
> > + if (!priv) {
> > + dev_err(&op->dev, "Unable to allocate device private data\n");
> > + ret = -ENOMEM;
> > + goto out_return;
> > + }
> > +
> > + dev_set_drvdata(&op->dev, priv);
> > + priv->dev = &op->dev;
> > +
> > + /* Setup the misc device */
> > + priv->miscdev.minor = MISC_DYNAMIC_MINOR;
> > + priv->miscdev.name = drv_name;
> > + priv->miscdev.fops = &data_fops;
> > +
> > + /* Get the physical address of the FPGA registers */
> > + ret = of_address_to_resource(of_node, 0, &res);
> > + if (ret) {
> > + dev_err(&op->dev, "Unable to find FPGA physical address\n");
> > + ret = -ENODEV;
> > + goto out_free_priv;
> > + }
> > +
> > + priv->phys_addr = res.start;
> > + priv->phys_size = resource_size(&res);
> > +
> > + /* ioremap the registers for use */
> > + priv->regs = of_iomap(of_node, 0);
> > + if (!priv->regs) {
> > + dev_err(&op->dev, "Unable to ioremap registers\n");
> > + ret = -ENOMEM;
> > + goto out_free_priv;
> > + }
> > +
> > + dma_cap_zero(mask);
> > + dma_cap_set(DMA_MEMCPY, mask);
> > + dma_cap_set(DMA_INTERRUPT, mask);
> > + dma_cap_set(DMA_SLAVE, mask);
> > + dma_cap_set(DMA_SG, mask);
> > +
> > + /* Request a DMA channel */
> > + priv->chan = dma_request_channel(mask, dma_filter, NULL);
> > + if (!priv->chan) {
> > + dev_err(&op->dev, "Unable to request DMA channel\n");
> > + ret = -ENODEV;
> > + goto out_unmap_regs;
> > + }
> > +
> > + /* Find the correct IRQ number */
> > + priv->irq = irq_of_parse_and_map(of_node, 0);
> > + if (priv->irq == NO_IRQ) {
> > + dev_err(&op->dev, "Unable to find IRQ line\n");
> > + ret = -ENODEV;
> > + goto out_release_dma;
> > + }
> > +
> > + dev_set_drvdata(priv->dev, priv);
> > + mutex_init(&priv->mutex);
> > + spin_lock_init(&priv->lock);
> > + INIT_LIST_HEAD(&priv->free);
> > + INIT_LIST_HEAD(&priv->used);
> > + INIT_LIST_HEAD(&priv->inflight);
> > + init_waitqueue_head(&priv->wait);
> > +
> > + /* Drive the GPIO for FPGA IRQ high (no interrupt) */
> > + iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
> > +
> > + /* Register the miscdevice */
> > + ret = misc_register(&priv->miscdev);
> > + if (ret) {
> > + dev_err(&op->dev, "Unable to register miscdevice\n");
> > + goto out_irq_dispose_mapping;
> > + }
> > +
> > + /* Create the sysfs files */
> > + this_device = priv->miscdev.this_device;
> > + dev_set_drvdata(this_device, priv);
> > + ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
> > + if (ret) {
> > + dev_err(&op->dev, "Unable to create sysfs files\n");
> > + goto out_misc_deregister;
> > + }
> > +
> > + dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
> > + return 0;
> > +
> > +out_misc_deregister:
> > + misc_deregister(&priv->miscdev);
> > +out_irq_dispose_mapping:
> > + irq_dispose_mapping(priv->irq);
> > +out_release_dma:
> > + dma_release_channel(priv->chan);
> > +out_unmap_regs:
> > + iounmap(priv->regs);
> > +out_free_priv:
> > + mutex_destroy(&priv->mutex);
> > + kfree(priv);
> > +out_return:
> > + return ret;
> > +}
> > +
> > +static int data_of_remove(struct platform_device *op)
> > +{
> > + struct fpga_device *priv = dev_get_drvdata(&op->dev);
> > + struct device *this_device = priv->miscdev.this_device;
> > +
> > + /* make sure the IRQ line is disabled */
> > + mutex_lock(&priv->mutex);
> > + data_device_disable(priv);
> > + mutex_unlock(&priv->mutex);
>
> Remove attributes first and lose the mutex.
>
Ok.
> > +
> > + sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
> > + misc_deregister(&priv->miscdev);
> > + irq_dispose_mapping(priv->irq);
> > + dma_release_channel(priv->chan);
> > + iounmap(priv->regs);
> > + mutex_destroy(&priv->mutex);
> > + kfree(priv);
> > +
> > + return 0;
> > +}
> > +
> > +static struct of_device_id data_of_match[] = {
> > + { .compatible = "carma,carma-fpga", },
> > + {},
> > +};
> > +
> > +static struct of_platform_driver data_of_driver = {
> > + .probe = data_of_probe,
> > + .remove = data_of_remove,
> > + .driver = {
> > + .name = drv_name,
> > + .of_match_table = data_of_match,
> > + .owner = THIS_MODULE,
> > + },
> > +};
> > +
> > +/*
> > + * Module Init / Exit
> > + */
> > +
> > +static int __init data_init(void)
> > +{
> > + return of_register_platform_driver(&data_of_driver);
> > +}
> > +
> > +static void __exit data_exit(void)
> > +{
> > + of_unregister_platform_driver(&data_of_driver);
> > +}
> > +
> > +MODULE_AUTHOR("Ira W. Snyder <iws at ovro.caltech.edu>");
> > +MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
> > +MODULE_LICENSE("GPL");
> > +
> > +module_init(data_init);
> > +module_exit(data_exit);
>
> Thanks.
>
Thanks again for the review. I'd love to read your replies to some of my
comments. :)
Ira
More information about the Linuxppc-dev
mailing list