[PATCH 1/2] misc: add CARMA DATA-FPGA Access Driver

Dmitry Torokhov dmitry.torokhov at gmail.com
Tue Feb 8 18:33:10 EST 2011


Hi Ira,

On Mon, Feb 07, 2011 at 03:23:40PM -0800, Ira W. Snyder wrote:
> This driver allows userspace to access the data processing FPGAs on the
> OVRO CARMA board. It has two modes of operation:
> 
> 1) random access
> 
> This allows users to poke any DATA-FPGA registers by using mmap to map
> the address region directly into their memory map.
> 
> 2) correlation dumping
> 
> When correlating, the DATA-FPGA's have special requirements for getting
> the data out of their memory before the next correlation. This nominally
> happens at 64Hz (every 15.625ms). If the data is not dumped before the
> next correlation, data is lost.
> 
> The data dumping driver handles buffering up to 1 second worth of
> correlation data from the FPGAs. This lowers the realtime scheduling
> requirements for the userspace process reading the device.

Kind of a fly-by review but it looks like the locking in the driver
needs work.

> 
> Signed-off-by: Ira W. Snyder <iws at ovro.caltech.edu>
> ---
>  drivers/misc/Kconfig            |    1 +
>  drivers/misc/Makefile           |    1 +
>  drivers/misc/carma/Kconfig      |    9 +
>  drivers/misc/carma/Makefile     |    1 +
>  drivers/misc/carma/carma-fpga.c | 1446 +++++++++++++++++++++++++++++++++++++++
>  5 files changed, 1458 insertions(+), 0 deletions(-)
>  create mode 100644 drivers/misc/carma/Kconfig
>  create mode 100644 drivers/misc/carma/Makefile
>  create mode 100644 drivers/misc/carma/carma-fpga.c
> 
> diff --git a/drivers/misc/Kconfig b/drivers/misc/Kconfig
> index 4d073f1..f457f14 100644
> --- a/drivers/misc/Kconfig
> +++ b/drivers/misc/Kconfig
> @@ -457,5 +457,6 @@ source "drivers/misc/eeprom/Kconfig"
>  source "drivers/misc/cb710/Kconfig"
>  source "drivers/misc/iwmc3200top/Kconfig"
>  source "drivers/misc/ti-st/Kconfig"
> +source "drivers/misc/carma/Kconfig"
>  
>  endif # MISC_DEVICES
> diff --git a/drivers/misc/Makefile b/drivers/misc/Makefile
> index 98009cc..2c1610e 100644
> --- a/drivers/misc/Makefile
> +++ b/drivers/misc/Makefile
> @@ -42,3 +42,4 @@ obj-$(CONFIG_ARM_CHARLCD)	+= arm-charlcd.o
>  obj-$(CONFIG_PCH_PHUB)		+= pch_phub.o
>  obj-y				+= ti-st/
>  obj-$(CONFIG_AB8500_PWM)	+= ab8500-pwm.o
> +obj-y				+= carma/
> diff --git a/drivers/misc/carma/Kconfig b/drivers/misc/carma/Kconfig
> new file mode 100644
> index 0000000..4be183f
> --- /dev/null
> +++ b/drivers/misc/carma/Kconfig
> @@ -0,0 +1,9 @@
> +config CARMA_FPGA
> +	tristate "CARMA DATA-FPGA Access Driver"
> +	depends on FSL_SOC && PPC_83xx && MEDIA_SUPPORT && HAS_DMA && FSL_DMA
> +	select VIDEOBUF_DMA_SG
> +	default n
> +	help
> +	  Say Y here to include support for communicating with the data
> +	  processing FPGAs on the OVRO CARMA board.
> +
> diff --git a/drivers/misc/carma/Makefile b/drivers/misc/carma/Makefile
> new file mode 100644
> index 0000000..0b69fa7
> --- /dev/null
> +++ b/drivers/misc/carma/Makefile
> @@ -0,0 +1 @@
> +obj-$(CONFIG_CARMA_FPGA)		+= carma-fpga.o
> diff --git a/drivers/misc/carma/carma-fpga.c b/drivers/misc/carma/carma-fpga.c
> new file mode 100644
> index 0000000..52620b3
> --- /dev/null
> +++ b/drivers/misc/carma/carma-fpga.c
> @@ -0,0 +1,1446 @@
> +/*
> + * CARMA DATA-FPGA Access Driver
> + *
> + * Copyright (c) 2009-2010 Ira W. Snyder <iws at ovro.caltech.edu>
> + *
> + * This program is free software; you can redistribute it and/or modify it
> + * under the terms of the GNU General Public License as published by the
> + * Free Software Foundation; either version 2 of the License, or (at your
> + * option) any later version.
> + */
> +
> +/*
> + * FPGA Memory Dump Format
> + *
> + * FPGA #0 control registers (32 x 32-bit words)
> + * FPGA #1 control registers (32 x 32-bit words)
> + * FPGA #2 control registers (32 x 32-bit words)
> + * FPGA #3 control registers (32 x 32-bit words)
> + * SYSFPGA control registers (32 x 32-bit words)
> + * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
> + * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
> + * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
> + * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
> + *
> + * Each correlation array consists of:
> + *
> + * Correlation Data      (2 x NUM_LAGSn x 32-bit words)
> + * Pipeline Metadata     (2 x NUM_METAn x 32-bit words)
> + * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
> + *
> + * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
> + * the FPGA configuration registers. They do not change once the FPGA's
> + * have been programmed, they only change on re-programming.
> + */
> +
> +/*
> + * Basic Description:
> + *
> + * This driver is used to capture correlation spectra off of the four data
> + * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
> + * this driver supports dynamic enable/disable of capture while the device
> + * remains open.
> + *
> + * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
> + * capture rate, all buffers are pre-allocated to avoid any potentially long
> + * running memory allocations while capturing.
> + *
> + * There are three lists which are used to keep track of the different states
> + * of data buffers.
> + *
> + * 1) free list
> + * This list holds all empty data buffers which are ready to receive data.
> + *
> + * 2) inflight list
> + * This list holds data buffers which are currently waiting for a DMA operation
> + * to complete.
> + *
> + * 3) used list
> + * This list holds data buffers which have been filled, and are waiting to be
> + * read by userspace.
> + *
> + * All buffers start life on the free list, then move successively to the
> + * inflight list, and then to the used list. After they have been read by
> + * userspace, they are moved back to the free list. The cycle repeats as long
> + * as necessary.
> + */
> +
> +/*
> + * Notes on the IRQ masking scheme:
> + *
> + * The IRQ masking scheme here is different than most other hardware. The only
> + * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
> + * the data is if the status registers are not cleared before the next
> + * correlation data dump is ready.
> + *
> + * The interrupt line is connected to the status registers, such that when they
> + * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
> + * to schedule a long-running DMA operation and return from the interrupt
> + * handler quickly, but we cannot clear the status registers.
> + *
> + * To handle this, the system controller FPGA has the capability to connect the
> + * interrupt line to a user-controlled GPIO pin. This pin is driven high
> + * (unasserted) and left that way. To mask the interrupt, we change the
> + * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
> + */
> +
> +#include <linux/of_platform.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/miscdevice.h>
> +#include <linux/interrupt.h>
> +#include <linux/dmaengine.h>
> +#include <linux/highmem.h>
> +#include <linux/kernel.h>
> +#include <linux/module.h>
> +#include <linux/poll.h>
> +#include <linux/init.h>
> +#include <linux/slab.h>
> +#include <linux/io.h>
> +
> +#include <media/videobuf-dma-sg.h>
> +
> +/* system controller registers */
> +#define SYS_IRQ_SOURCE_CTL	0x24
> +#define SYS_IRQ_OUTPUT_EN	0x28
> +#define SYS_IRQ_OUTPUT_DATA	0x2C
> +#define SYS_IRQ_INPUT_DATA	0x30
> +
> +/* GPIO IRQ line assignment */
> +#define IRQ_CORL_DONE		0x10
> +
> +/* FPGA registers */
> +#define MMAP_REG_VERSION	0x00
> +#define MMAP_REG_CORL_CONF1	0x08
> +#define MMAP_REG_CORL_CONF2	0x0C
> +#define MMAP_REG_STATUS		0x48
> +
> +#define SYS_FPGA_BLOCK		0xF0000000
> +
> +static const char drv_name[] = "carma-fpga";
> +
> +#define NUM_FPGA	4
> +
> +#define MIN_DATA_BUFS	8
> +#define MAX_DATA_BUFS	64
> +
> +struct fpga_info {
> +	unsigned int num_lag_ram;
> +	unsigned int blk_size;
> +};
> +
> +struct data_buf {
> +	struct list_head entry;
> +	struct videobuf_dmabuf vb;
> +	bool mapped;
> +	size_t size;
> +};
> +
> +struct fpga_device {
> +	struct miscdevice miscdev;
> +	struct device *dev;
> +	struct mutex mutex;
> +
> +	/* FPGA registers and information */
> +	struct fpga_info info[NUM_FPGA];
> +	void __iomem *regs;
> +	int irq;
> +
> +	/* FPGA Physical Address/Size Information */
> +	resource_size_t phys_addr;
> +	size_t phys_size;
> +
> +	/* DMA structures */
> +	struct sg_table corl_table;
> +	unsigned int corl_nents;
> +	struct dma_chan *chan;
> +
> +	/* Protection for all members below */
> +	spinlock_t lock;
> +
> +	/* Device enable/disable flag */
> +	bool enabled;
> +
> +	/* Correlation data buffers */
> +	wait_queue_head_t wait;
> +	struct list_head free;
> +	struct list_head used;
> +	struct list_head inflight;
> +
> +	/* Information about data buffers */
> +	unsigned int num_dropped;
> +	unsigned int num_buffers;
> +	size_t bufsize;
> +};
> +
> +struct fpga_reader {
> +	struct fpga_device *priv;
> +	struct data_buf *buf;
> +	off_t buf_start;
> +};
> +
> +#define inode_to_dev(inode) container_of(inode->i_cdev, struct fpga_device, cdev)
> +
> +/*
> + * Data Buffer Allocation Helpers
> + */
> +
> +static int data_map_buffer(struct device *dev, struct data_buf *buf)
> +{
> +	int ret;
> +
> +	/* if the buffer is already mapped, we're done */
> +	if (buf->mapped)
> +		return 0;
> +

This is a local function, not library. Can't we keep track whether a
buffer is mapped or not?

> +	ret = videobuf_dma_map(dev, &buf->vb);
> +	if (ret)
> +		return ret;
> +
> +	buf->mapped = true;
> +	return 0;
> +}
> +
> +static void data_unmap_buffer(struct device *dev, struct data_buf *buf)
> +{
> +	/* the buffer is already unmapped, we're done */
> +	if (!buf->mapped)
> +		return;
> +
> +	videobuf_dma_unmap(dev, &buf->vb);
> +	buf->mapped = false;
> +}
> +
> +/**
> + * data_free_buffer() - free a single data buffer and all allocated memory
> + * @dev: the DMA device to map for
> + * @buf: the buffer to free
> + *
> + * This will free all of the pages allocated to the given data buffer, and
> + * then free the structure itself
> + */
> +static void data_free_buffer(struct device *dev, struct data_buf *buf)
> +{
> +	/* It is ok to free a NULL buffer */
> +	if (!buf)
> +		return;
> +
> +	/* Make sure the buffer is not on any list */
> +	list_del_init(&buf->entry);

And what happens if it is? Should it be WARN_ON(!list_empty()) instead?

> +
> +	/* unmap it for DMA */
> +	data_unmap_buffer(dev, buf);
> +
> +	/* free all memory */
> +	videobuf_dma_free(&buf->vb);
> +	kfree(buf);
> +}
> +
> +/**
> + * data_alloc_buffer() - allocate and fill a data buffer with pages
> + * @dev: the DMA device to map for
> + * @bytes: the number of bytes required
> + *
> + * This allocates all space needed for a data buffer, and gets it ready to be
> + * used in a DMA transaction. It only needs to be used, never mapped before
> + * use. This avoids calling vmalloc in hardirq context.
> + *
> + * Returns NULL on failure
> + */
> +static struct data_buf *data_alloc_buffer(struct device *dev, const size_t bytes)
> +{
> +	unsigned int nr_pages;
> +	struct data_buf *buf;
> +	int ret;
> +
> +	/* calculate the number of pages necessary */
> +	nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
> +
> +	/* allocate the buffer structure */
> +	buf = kzalloc(sizeof(*buf), GFP_KERNEL);
> +	if (!buf)
> +		goto out_return;
> +
> +	/* initialize internal fields */
> +	INIT_LIST_HEAD(&buf->entry);
> +	buf->size = bytes;
> +
> +	/* allocate the videobuf */
> +	videobuf_dma_init(&buf->vb);
> +	ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
> +	if (ret)
> +		goto out_free_buf;
> +
> +	/* map it for DMA */
> +	ret = data_map_buffer(dev, buf);
> +	if (ret)
> +		goto out_free_videobuf;
> +
> +	return buf;
> +
> +out_free_videobuf:
> +	videobuf_dma_free(&buf->vb);
> +out_free_buf:
> +	kfree(buf);
> +out_return:
> +	return NULL;
> +}
> +
> +/**
> + * data_free_buffers() - free all allocated buffers
> + * @priv: the driver's private data structure
> + *
> + * Free all buffers allocated by the driver (except those currently in the
> + * process of being read by userspace).
> + *
> + * LOCKING: must hold dev->mutex
> + * CONTEXT: user
> + */
> +static void data_free_buffers(struct fpga_device *priv)
> +{
> +	struct data_buf *buf, *tmp;
> +
> +	spin_lock_irq(&priv->lock);
> +	BUG_ON(!list_empty(&priv->inflight));
> +
> +	list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
> +		list_del_init(&buf->entry);
> +		spin_unlock_irq(&priv->lock);
> +		data_free_buffer(priv->dev, buf);
> +		spin_lock_irq(&priv->lock);
> +	}

This is messed up. If there is concurrent access to the free list then
it is not safe to continue iterating list after releasing the lock, you
need to do:

	spin_lock_irq(&priv->lock);
	while (!list_empty(&priv->free)) {
		buf = list_first_entry(&priv->free, struct data_buf, entry);
		list_del_init(&buf->entry);
		spin_unlock_irq(&priv->lock);
		data_free_buffer(priv->dev, buf);
		spin_lock_irq(&priv->lock);
	}

BUT, the function is only called when you disable (or fail to enable) device
which, at this point, should be quiesced, thus all this locking is not
really needed.

> +
> +	list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
> +		list_del_init(&buf->entry);
> +		spin_unlock_irq(&priv->lock);
> +		data_free_buffer(priv->dev, buf);
> +		spin_lock_irq(&priv->lock);
> +	}
> +
> +	priv->num_buffers = 0;
> +	priv->bufsize = 0;
> +
> +	spin_unlock_irq(&priv->lock);
> +}
> +
> +/**
> + * data_alloc_buffers() - allocate 1 seconds worth of data buffers
> + * @priv: the driver's private data structure
> + *
> + * Allocate enough buffers for a whole second worth of data
> + *
> + * This routine will attempt to degrade nicely by succeeding even if a full
> + * second worth of data buffers could not be allocated, as long as a minimum
> + * number were allocated. In this case, it will print a message to the kernel
> + * log.
> + *
> + * CONTEXT: user
> + * LOCKING: must hold dev->mutex
> + *
> + * Returns 0 on success, -ERRNO otherwise
> + */
> +static int data_alloc_buffers(struct fpga_device *priv)
> +{
> +	struct data_buf *buf;
> +	int i;
> +
> +	for (i = 0; i < MAX_DATA_BUFS; i++) {
> +		buf = data_alloc_buffer(priv->dev, priv->bufsize);
> +		if (!buf)
> +			break;
> +
> +		spin_lock_irq(&priv->lock);
> +		list_add_tail(&buf->entry, &priv->free);
> +		spin_unlock_irq(&priv->lock);

Again, can someone be accessing this list aleady?

> +	}
> +
> +	/* Make sure we allocated the minimum required number of buffers */
> +	if (i < MIN_DATA_BUFS) {
> +		dev_err(priv->dev, "Unable to allocate enough data buffers\n");
> +		data_free_buffers(priv);
> +		return -ENOMEM;
> +	}
> +
> +	/* Warn if we are running in a degraded state, but do not fail */
> +	if (i < MAX_DATA_BUFS) {
> +		dev_warn(priv->dev, "Unable to allocate one second worth of "
> +				   "buffers, using %d buffers instead\n", i);
> +	}
> +
> +	priv->num_buffers = i;
> +	return 0;
> +}
> +
> +/*
> + * DMA Operations Helpers
> + */
> +
> +/**
> + * fpga_start_addr() - get the physical address a DATA-FPGA
> + * @priv: the driver's private data structure
> + * @fpga: the DATA-FPGA number (zero based)
> + */
> +static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
> +{
> +	return priv->phys_addr + 0x400000 + (0x80000 * fpga);
> +}
> +
> +/**
> + * fpga_block_addr() - get the physical address of a correlation data block
> + * @priv: the driver's private data structure
> + * @fpga: the DATA-FPGA number (zero based)
> + * @blknum: the correlation block number (zero based)
> + */
> +static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
> +				  unsigned int blknum)
> +{
> +	return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
> +}
> +
> +#define REG_BLOCK_SIZE	(32 * 4)
> +
> +/**
> + * data_setup_corl_table() - create the scatterlist for correlation dumps
> + * @priv: the driver's private data structure
> + *
> + * Create the scatterlist for transferring a correlation dump from the
> + * DATA FPGAs. This structure will be reused for each buffer than needs
> + * to be filled with correlation data.
> + *
> + * Returns 0 on success, -ERRNO otherwise
> + */
> +static int data_setup_corl_table(struct fpga_device *priv)
> +{
> +	struct sg_table *table = &priv->corl_table;
> +	struct scatterlist *sg;
> +	struct fpga_info *info;
> +	int i, j, ret;
> +
> +	/* Calculate the number of entries needed */
> +	priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
> +	for (i = 0; i < NUM_FPGA; i++)
> +		priv->corl_nents += priv->info[i].num_lag_ram;
> +
> +	/* Allocate the scatterlist table */
> +	ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
> +	if (ret) {
> +		dev_err(priv->dev, "unable to allocate DMA table\n");
> +		return ret;
> +	}
> +
> +	/* Add the DATA FPGA registers to the scatterlist */
> +	sg = table->sgl;
> +	for (i = 0; i < NUM_FPGA; i++) {
> +		sg_dma_address(sg) = fpga_start_addr(priv, i);
> +		sg_dma_len(sg) = REG_BLOCK_SIZE;
> +		sg = sg_next(sg);
> +	}
> +
> +	/* Add the SYS-FPGA registers to the scatterlist */
> +	sg_dma_address(sg) = SYS_FPGA_BLOCK;
> +	sg_dma_len(sg) = REG_BLOCK_SIZE;
> +	sg = sg_next(sg);
> +
> +	/* Add the FPGA correlation data blocks to the scatterlist */
> +	for (i = 0; i < NUM_FPGA; i++) {
> +		info = &priv->info[i];
> +		for (j = 0; j < info->num_lag_ram; j++) {
> +			sg_dma_address(sg) = fpga_block_addr(priv, i, j);
> +			sg_dma_len(sg) = info->blk_size;
> +			sg = sg_next(sg);
> +		}
> +	}
> +
> +	/*
> +	 * All physical addresses and lengths are present in the structure
> +	 * now. It can be reused for every FPGA DATA interrupt
> +	 */
> +	return 0;
> +}
> +
> +/*
> + * FPGA Register Access Helpers
> + */
> +
> +static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
> +			   unsigned int reg, u32 val)
> +{
> +	iowrite32be(val, priv->regs + 0x400000 + (fpga * 0x80000) + reg);
> +}
> +
> +static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
> +			 unsigned int reg)
> +{
> +	return ioread32be(priv->regs + 0x400000 + (fpga * 0x80000) + reg);
> +}
> +
> +/**
> + * data_calculate_bufsize() - calculate the data buffer size required
> + * @priv: the driver's private data structure
> + *
> + * Calculate the total buffer size needed to hold a single block
> + * of correlation data
> + *
> + * CONTEXT: user
> + *
> + * Returns 0 on success, -ERRNO otherwise
> + */
> +static int data_calculate_bufsize(struct fpga_device *priv)
> +{
> +	u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
> +	u32 conf1, conf2, version;
> +	u32 num_lag_ram, blk_size;
> +	int i;
> +
> +	/* Each buffer starts with the 5 FPGA register areas */
> +	priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
> +
> +	/* Read and store the configuration data for each FPGA */
> +	for (i = 0; i < NUM_FPGA; i++) {
> +		version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
> +		conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
> +		conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
> +
> +		/* minor version 2 and later */
> +		if ((version & 0x000000FF) >= 2) {
> +			num_corl = (conf1 & 0x000000F0) >> 4;
> +			num_pack = (conf1 & 0x00000F00) >> 8;
> +			num_lags = (conf1 & 0x00FFF000) >> 12;
> +			num_meta = (conf1 & 0x7F000000) >> 24;
> +			num_qcnt = (conf2 & 0x00000FFF) >> 0;
> +		} else {
> +			num_corl = (conf1 & 0x000000F0) >> 4;
> +			num_pack = 1; /* implied */
> +			num_lags = (conf1 & 0x000FFF00) >> 8;
> +			num_meta = (conf1 & 0x7FF00000) >> 20;
> +			num_qcnt = (conf2 & 0x00000FFF) >> 0;
> +		}
> +
> +		num_lag_ram = (num_corl + num_pack - 1) / num_pack;
> +		blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
> +
> +		priv->info[i].num_lag_ram = num_lag_ram;
> +		priv->info[i].blk_size = blk_size;
> +		priv->bufsize += num_lag_ram * blk_size;
> +
> +		dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
> +		dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
> +		dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
> +		dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
> +		dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
> +		dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
> +	}
> +
> +	dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
> +	return 0;
> +}
> +
> +/*
> + * Interrupt Handling
> + */
> +
> +/**
> + * data_disable_interrupts() - stop the device from generating interrupts
> + * @priv: the driver's private data structure
> + *
> + * Hide interrupts by switching to GPIO interrupt source
> + *
> + * LOCKING: must hold dev->lock
> + */
> +static void data_disable_interrupts(struct fpga_device *priv)
> +{
> +	/* hide the interrupt by switching the IRQ driver to GPIO */
> +	iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
> +}
> +
> +/**
> + * data_enable_interrupts() - allow the device to generate interrupts
> + * @priv: the driver's private data structure
> + *
> + * Unhide interrupts by switching to the FPGA interrupt source. At the
> + * same time, clear the DATA-FPGA status registers.
> + *
> + * LOCKING: must hold dev->lock
> + */
> +static void data_enable_interrupts(struct fpga_device *priv)
> +{
> +	/* clear the actual FPGA corl_done interrupt */
> +	fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
> +	fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
> +	fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
> +	fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
> +
> +	/* flush the writes */
> +	fpga_read_reg(priv, 0, MMAP_REG_STATUS);
> +
> +	/* switch back to the external interrupt source */
> +	iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
> +}
> +
> +/**
> + * data_dma_cb() - DMAEngine callback for DMA completion
> + * @data: the driver's private data structure
> + *
> + * Complete a DMA transfer from the DATA-FPGA's
> + *
> + * This is called via the DMA callback mechanism, and will handle moving the
> + * completed DMA transaction to the used list, and then wake any processes
> + * waiting for new data
> + *
> + * CONTEXT: any, softirq expected
> + */
> +static void data_dma_cb(void *data)
> +{
> +	struct fpga_device *priv = data;
> +	struct data_buf *buf;
> +	unsigned long flags;
> +
> +	spin_lock_irqsave(&priv->lock, flags);
> +
> +	/* clear the FPGA status and re-enable interrupts */
> +	data_enable_interrupts(priv);
> +
> +	/* If the inflight list is empty, we've got a bug */
> +	BUG_ON(list_empty(&priv->inflight));
> +
> +	/* Grab the first buffer from the inflight list */
> +	buf = list_first_entry(&priv->inflight, struct data_buf, entry);
> +	list_del_init(&buf->entry);
> +
> +	/* Add it to the used list */
> +	list_add_tail(&buf->entry, &priv->used);
> +
> +	spin_unlock_irqrestore(&priv->lock, flags);
> +
> +	/* We've changed both the inflight and used lists, so we need
> +	 * to wake up any processes that are blocking for those events */
> +	wake_up(&priv->wait);
> +}
> +
> +/**
> + * data_submit_dma() - prepare and submit the required DMA to fill a buffer
> + * @priv: the driver's private data structure
> + * @buf: the data buffer
> + *
> + * Prepare and submit the necessary DMA transactions to fill a correlation
> + * data buffer.
> + *
> + * LOCKING: must hold dev->lock
> + * CONTEXT: hardirq only
> + *
> + * Returns 0 on success, -ERRNO otherwise
> + */
> +static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
> +{
> +	struct scatterlist *dst_sg, *src_sg;
> +	unsigned int dst_nents, src_nents;
> +	struct dma_chan *chan = priv->chan;
> +	struct dma_async_tx_descriptor *tx;
> +	dma_cookie_t cookie;
> +	dma_addr_t dst, src;
> +
> +	dst_sg = buf->vb.sglist;
> +	dst_nents = buf->vb.sglen;
> +
> +	src_sg = priv->corl_table.sgl;
> +	src_nents = priv->corl_nents;
> +
> +	/*
> +	 * All buffers passed to this function should be ready and mapped
> +	 * for DMA already. Therefore, we don't need to do anything except
> +	 * submit it to the Freescale DMA Engine for processing
> +	 */
> +
> +	/* setup the scatterlist to scatterlist transfer */
> +	tx = chan->device->device_prep_dma_sg(chan,
> +					      dst_sg, dst_nents,
> +					      src_sg, src_nents,
> +					      0);
> +	if (!tx) {
> +		dev_err(priv->dev, "unable to prep scatterlist DMA\n");
> +		return -ENOMEM;
> +	}
> +
> +	/* submit the transaction to the DMA controller */
> +	cookie = tx->tx_submit(tx);
> +	if (dma_submit_error(cookie)) {
> +		dev_err(priv->dev, "unable to submit scatterlist DMA\n");
> +		return -ENOMEM;
> +	}
> +
> +	/* Prepare the re-read of the SYS-FPGA block */
> +	dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
> +	src = SYS_FPGA_BLOCK;
> +	tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
> +						  REG_BLOCK_SIZE,
> +						  DMA_PREP_INTERRUPT);
> +	if (!tx) {
> +		dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
> +		return -ENOMEM;
> +	}
> +
> +	/* Setup the callback */
> +	tx->callback = data_dma_cb;
> +	tx->callback_param = priv;
> +
> +	/* submit the transaction to the DMA controller */
> +	cookie = tx->tx_submit(tx);
> +	if (dma_submit_error(cookie)) {
> +		dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
> +		return -ENOMEM;
> +	}
> +
> +	return 0;
> +}
> +
> +#define CORL_DONE	0x1
> +#define CORL_ERR	0x2
> +
> +static irqreturn_t data_irq(int irq, void *dev_id)
> +{
> +	struct fpga_device *priv = dev_id;
> +	struct data_buf *buf;
> +	u32 status;
> +	int i;
> +
> +	/* detect spurious interrupts via FPGA status */
> +	for (i = 0; i < 4; i++) {
> +		status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
> +		if (!(status & (CORL_DONE | CORL_ERR))) {
> +			dev_err(priv->dev, "spurious irq detected (FPGA)\n");
> +			return IRQ_NONE;
> +		}
> +	}
> +
> +	/* detect spurious interrupts via raw IRQ pin readback */
> +	status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
> +	if (status & IRQ_CORL_DONE) {
> +		dev_err(priv->dev, "spurious irq detected (IRQ)\n");
> +		return IRQ_NONE;
> +	}
> +
> +	spin_lock(&priv->lock);
> +
> +	/* hide the interrupt by switching the IRQ driver to GPIO */
> +	data_disable_interrupts(priv);
> +
> +	/* Check that we actually have a free buffer */
> +	if (list_empty(&priv->free)) {
> +		priv->num_dropped++;
> +		data_enable_interrupts(priv);
> +		goto out_unlock;
> +	}
> +
> +	buf = list_first_entry(&priv->free, struct data_buf, entry);
> +	list_del_init(&buf->entry);
> +
> +	/* Check the buffer size */
> +	BUG_ON(buf->size != priv->bufsize);
> +
> +	/* Submit a DMA transfer to get the correlation data */
> +	if (data_submit_dma(priv, buf)) {
> +		dev_err(priv->dev, "Unable to setup DMA transfer\n");
> +		list_add_tail(&buf->entry, &priv->free);
> +		data_enable_interrupts(priv);
> +		goto out_unlock;
> +	}
> +
> +	/* DMA setup succeeded, GO!!! */
> +	list_add_tail(&buf->entry, &priv->inflight);
> +	dma_async_memcpy_issue_pending(priv->chan);
> +
> +out_unlock:
> +	spin_unlock(&priv->lock);
> +	return IRQ_HANDLED;
> +}
> +
> +/*
> + * Realtime Device Enable Helpers
> + */
> +
> +/**
> + * data_device_enable() - enable the device for buffered dumping
> + * @priv: the driver's private data structure
> + *
> + * Enable the device for buffered dumping. Allocates buffers and hooks up
> + * the interrupt handler. When this finishes, data will come pouring in.
> + *
> + * LOCKING: must hold dev->mutex
> + * CONTEXT: user context only
> + *
> + * Returns 0 on success, -ERRNO otherwise
> + */
> +static int data_device_enable(struct fpga_device *priv)
> +{
> +	u32 val;
> +	int ret;
> +
> +	/* multiple enables are safe: they do nothing */
> +	if (priv->enabled)
> +		return 0;
> +
> +	/* check that the FPGAs are programmed */
> +	val = ioread32be(priv->regs + 0x44);
> +	if (!(val & (1 << 18))) {
> +		dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
> +		return -ENODATA;
> +	}
> +
> +	/* read the FPGAs to calculate the buffer size */
> +	ret = data_calculate_bufsize(priv);
> +	if (ret) {
> +		dev_err(priv->dev, "unable to calculate buffer size\n");
> +		goto out_error;
> +	}
> +
> +	/* allocate the correlation data buffers */
> +	ret = data_alloc_buffers(priv);
> +	if (ret) {
> +		dev_err(priv->dev, "unable to allocate buffers\n");
> +		goto out_error;
> +	}
> +
> +	/* setup the source scatterlist for dumping correlation data */
> +	ret = data_setup_corl_table(priv);
> +	if (ret) {
> +		dev_err(priv->dev, "unable to setup correlation DMA table\n");
> +		goto out_error;
> +	}
> +
> +	/* switch to the external FPGA IRQ line */
> +	data_enable_interrupts(priv);
> +
> +	/* hookup the irq handler */
> +	ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
> +	if (ret) {
> +		dev_err(priv->dev, "unable to request IRQ handler\n");
> +		goto out_error;
> +	}
> +
> +	/* success, we're enabled */
> +	priv->enabled = true;
> +	return 0;
> +
> +out_error:
> +	sg_free_table(&priv->corl_table);
> +	priv->corl_nents = 0;
> +
> +	data_free_buffers(priv);
> +	return ret;
> +}
> +
> +/**
> + * data_device_disable() - disable the device for buffered dumping
> + * @priv: the driver's private data structure
> + *
> + * Disable the device for buffered dumping. Stops new DMA transactions from
> + * being generated, waits for all outstanding DMA to complete, and then frees
> + * all buffers.
> + *
> + * LOCKING: must hold dev->mutex
> + * CONTEXT: user only
> + *
> + * Returns 0 on success, -ERRNO otherwise
> + */
> +static int data_device_disable(struct fpga_device *priv)
> +{
> +	struct list_head *list;
> +	int ret;
> +
> +	/* allow multiple disable */
> +	if (!priv->enabled)
> +		return 0;
> +
> +	/* switch to the internal GPIO IRQ line */
> +	data_disable_interrupts(priv);
> +
> +	/* unhook the irq handler */
> +	free_irq(priv->irq, priv);
> +
> +	/* wait for all outstanding DMA to complete */
> +	list = &priv->inflight;
> +
> +	spin_lock_irq(&priv->lock);
> +	while (!list_empty(list)) {
> +		spin_unlock_irq(&priv->lock);
> +
> +		ret = wait_event_interruptible(priv->wait, list_empty(list));
> +		if (ret)
> +			return -ERESTARTSYS;
> +
> +		spin_lock_irq(&priv->lock);
> +	}
> +	spin_unlock_irq(&priv->lock);

Locking is not needed - if you disable interrupyts what would put more
stuff on the list?

> +
> +	/* free the correlation table */
> +	sg_free_table(&priv->corl_table);
> +	priv->corl_nents = 0;
> +
> +	/* free all of the buffers */
> +	data_free_buffers(priv);
> +	priv->enabled = false;
> +	return 0;
> +}
> +
> +/*
> + * SYSFS Attributes
> + */
> +
> +/*
> + * Count the number of entries in the given list
> + */
> +static unsigned int list_num_entries(struct list_head *list)
> +{
> +	struct list_head *entry;
> +	unsigned int ret = 0;
> +
> +	list_for_each(entry, list)
> +		ret++;
> +
> +	return ret;
> +}
> +
> +static ssize_t data_num_buffers_show(struct device *dev,
> +				     struct device_attribute *attr, char *buf)
> +{
> +	struct fpga_device *priv = dev_get_drvdata(dev);
> +	unsigned int num;
> +
> +	spin_lock_irq(&priv->lock);
> +	num = priv->num_buffers;
> +	spin_unlock_irq(&priv->lock);

This spin lock is pointless, priv->num_buffers might be already changed
here, you can't guarantee that you show accurate data.

> +
> +	return snprintf(buf, PAGE_SIZE, "%u\n", num);
> +}
> +
> +static ssize_t data_bufsize_show(struct device *dev,
> +				 struct device_attribute *attr, char *buf)
> +{
> +	struct fpga_device *priv = dev_get_drvdata(dev);
> +	size_t num;
> +
> +	spin_lock_irq(&priv->lock);
> +	num = priv->bufsize;
> +	spin_unlock_irq(&priv->lock);

Same here.

> +
> +	return snprintf(buf, PAGE_SIZE, "%zu\n", num);
> +}
> +
> +static ssize_t data_inflight_show(struct device *dev,
> +				  struct device_attribute *attr, char *buf)
> +{
> +	struct fpga_device *priv = dev_get_drvdata(dev);
> +	unsigned int num;
> +
> +	spin_lock_irq(&priv->lock);
> +	num = list_num_entries(&priv->inflight);
> +	spin_unlock_irq(&priv->lock);

And here.

> +
> +	return snprintf(buf, PAGE_SIZE, "%u\n", num);
> +}
> +
> +static ssize_t data_free_show(struct device *dev,
> +			      struct device_attribute *attr, char *buf)
> +{
> +	struct fpga_device *priv = dev_get_drvdata(dev);
> +	unsigned int num;
> +
> +	spin_lock_irq(&priv->lock);
> +	num = list_num_entries(&priv->free);
> +	spin_unlock_irq(&priv->lock);
> +

And here.

> +	return snprintf(buf, PAGE_SIZE, "%u\n", num);
> +}
> +
> +static ssize_t data_used_show(struct device *dev,
> +			      struct device_attribute *attr, char *buf)
> +{
> +	struct fpga_device *priv = dev_get_drvdata(dev);
> +	unsigned int num;
> +
> +	spin_lock_irq(&priv->lock);
> +	num = list_num_entries(&priv->used);
> +	spin_unlock_irq(&priv->lock);
> +

Ditto.

> +	return snprintf(buf, PAGE_SIZE, "%u\n", num);
> +}
> +
> +static ssize_t data_num_dropped_show(struct device *dev,
> +				     struct device_attribute *attr, char *buf)
> +{
> +	struct fpga_device *priv = dev_get_drvdata(dev);
> +	unsigned int num;
> +
> +	spin_lock_irq(&priv->lock);
> +	num = priv->num_dropped;
> +	spin_unlock_irq(&priv->lock);
> +

Yep..

> +	return snprintf(buf, PAGE_SIZE, "%u\n", num);
> +}
> +
> +static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
> +			    char *buf)
> +{
> +	struct fpga_device *priv = dev_get_drvdata(dev);
> +	ssize_t count;
> +
> +	if (mutex_lock_interruptible(&priv->mutex))
> +		return -ERESTARTSYS;
> +
> +	count = snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
> +	mutex_unlock(&priv->mutex);

By the time buf gets all the way to userspace, yep you guessed it...

> +	return count;
> +}
> +
> +static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
> +			   const char *buf, size_t count)
> +{
> +	struct fpga_device *priv = dev_get_drvdata(dev);
> +	unsigned long enable;
> +	int ret;
> +
> +	ret = strict_strtoul(buf, 0, &enable);
> +	if (ret) {
> +		dev_err(priv->dev, "unable to parse enable input\n");
> +		return -EINVAL;
> +	}
> +
> +	if (mutex_lock_interruptible(&priv->mutex))
> +		return -ERESTARTSYS;

Why don't

	error = mutex_lock_interruptible(&priv->mutex);
	if (error)
		return error;

- do not clobber perfectly valid error codes.

> +
> +	if (enable)
> +		ret = data_device_enable(priv);
> +	else
> +		ret = data_device_disable(priv);
> +
> +	if (ret) {
> +		dev_err(priv->dev, "device %s failed\n",
> +			enable ? "enable" : "disable");
> +		count = ret;
> +		goto out_unlock;
> +	}
> +
> +out_unlock:
> +	mutex_unlock(&priv->mutex);
> +	return count;
> +}
> +
> +static DEVICE_ATTR(num_buffers, S_IRUGO, data_num_buffers_show, NULL);
> +static DEVICE_ATTR(buffer_size, S_IRUGO, data_bufsize_show, NULL);
> +static DEVICE_ATTR(num_inflight, S_IRUGO, data_inflight_show, NULL);
> +static DEVICE_ATTR(num_free, S_IRUGO, data_free_show, NULL);
> +static DEVICE_ATTR(num_used, S_IRUGO, data_used_show, NULL);
> +static DEVICE_ATTR(num_dropped, S_IRUGO, data_num_dropped_show, NULL);
> +static DEVICE_ATTR(enable, S_IWUGO | S_IRUGO, data_en_show, data_en_set);
> +
> +static struct attribute *data_sysfs_attrs[] = {
> +	&dev_attr_num_buffers.attr,
> +	&dev_attr_buffer_size.attr,
> +	&dev_attr_num_inflight.attr,
> +	&dev_attr_num_free.attr,
> +	&dev_attr_num_used.attr,
> +	&dev_attr_num_dropped.attr,
> +	&dev_attr_enable.attr,
> +	NULL,
> +};

Are all of these really needed or most of them are for debug?

> +
> +static const struct attribute_group rt_sysfs_attr_group = {
> +	.attrs = data_sysfs_attrs,
> +};
> +
> +/*
> + * FPGA Realtime Data Character Device
> + */
> +
> +static int data_open(struct inode *inode, struct file *filp)
> +{
> +	/*
> +	 * The miscdevice layer puts our struct miscdevice into the
> +	 * filp->private_data field. We use this to find our private
> +	 * data and then overwrite it with our own private structure.
> +	 */
> +	struct fpga_device *priv = container_of(filp->private_data,
> +						struct fpga_device, miscdev);
> +	struct fpga_reader *reader;
> +	int ret;
> +
> +	/* allocate private data */
> +	reader = kzalloc(sizeof(*reader), GFP_KERNEL);
> +	if (!reader)
> +		return -ENOMEM;
> +
> +	reader->priv = priv;
> +	reader->buf = NULL;
> +
> +	filp->private_data = reader;
> +	ret = nonseekable_open(inode, filp);
> +	if (ret) {
> +		dev_err(priv->dev, "nonseekable-open failed\n");
> +		kfree(reader);
> +		return ret;
> +	}
> +
> +	return 0;
> +}
> +
> +static int data_release(struct inode *inode, struct file *filp)
> +{
> +	struct fpga_reader *reader = filp->private_data;
> +	struct fpga_device *priv = reader->priv;
> +
> +	/* free the per-reader structure */
> +	data_free_buffer(priv->dev, reader->buf);
> +	kfree(reader);
> +	filp->private_data = NULL;
> +	return 0;
> +}
> +
> +static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
> +			 loff_t *f_pos)
> +{
> +	struct fpga_reader *reader = filp->private_data;
> +	struct fpga_device *priv = reader->priv;
> +	struct list_head *used = &priv->used;
> +	struct data_buf *dbuf;
> +	size_t avail;
> +	void *data;
> +	int ret;
> +
> +	/* check if we already have a partial buffer */
> +	if (reader->buf) {
> +		dbuf = reader->buf;
> +		goto have_buffer;
> +	}
> +
> +	spin_lock_irq(&priv->lock);
> +
> +	/* Block until there is at least one buffer on the used list */
> +	while (list_empty(used)) {
> +		spin_unlock_irq(&priv->lock);
> +
> +		if (filp->f_flags & O_NONBLOCK)
> +			return -EAGAIN;
> +
> +		if (wait_event_interruptible(priv->wait, !list_empty(used)))
> +			return -ERESTARTSYS;
> +

And somebody grabs that entry here...

> +		spin_lock_irq(&priv->lock);
> +	}
> +
> +	/* Grab the first buffer off of the used list */
> +	dbuf = list_first_entry(used, struct data_buf, entry);

And list is empty so you grabgarbage.

> +	list_del_init(&dbuf->entry);
> +
> +	spin_unlock_irq(&priv->lock);

Shoudl be:

	struct data_buf *dbuf = NULL;
	...

	if (list_empty(&priv->used) && (filp->f_flags & O_NONBLOCK))
		return -EAGAIN;

	error = wait_event_interruptible(priv->wait, !list_empty(&priv->used);
	if (error)
		return error;

	spin_lock_irq(&priv->lock);
	if (!list_empty(&priv->used)) {
		buf = list_first_entry(&priv->used, struct data_buf, entry);
		list_del_init(&dbuf->entry);
	}
	spin_unlock_irq(&priv->lock);

	if (dbuf) {
		.. deal with the buffer
	}

> +
> +	/* Buffers are always mapped: unmap it */
> +	data_unmap_buffer(priv->dev, dbuf);
> +
> +	/* save the buffer for later */
> +	reader->buf = dbuf;
> +	reader->buf_start = 0;
> +
> +	/* we removed a buffer from the used list: wake any waiters */
> +	wake_up(&priv->wait);
> +
> +have_buffer:
> +	/* Get the number of bytes available */
> +	avail = dbuf->size - reader->buf_start;
> +	data = dbuf->vb.vaddr + reader->buf_start;
> +
> +	/* Get the number of bytes we can transfer */
> +	count = min(count, avail);
> +
> +	/* Copy the data to the userspace buffer */
> +	if (copy_to_user(ubuf, data, count))
> +		return -EFAULT;
> +
> +	/* Update the amount of available space */
> +	avail -= count;
> +
> +	/* Lock against concurrent enable/disable */
> +	if (mutex_lock_interruptible(&priv->mutex))
> +		return -ERESTARTSYS;
> +
> +	/* Still some space available: save the buffer for later */
> +	if (avail != 0) {
> +		reader->buf_start += count;
> +		reader->buf = dbuf;
> +		goto out_unlock;
> +	}
> +
> +	/*
> +	 * No space is available in this buffer
> +	 *
> +	 * This is a complicated decision:
> +	 * - if the device is not enabled: free the buffer
> +	 * - if the buffer is too small: free the buffer
> +	 */
> +	if (!priv->enabled || dbuf->size != priv->bufsize) {
> +		data_free_buffer(priv->dev, dbuf);
> +		reader->buf = NULL;
> +		goto out_unlock;
> +	}
> +
> +	/*
> +	 * The buffer is safe to recycle: remap it and finish
> +	 *
> +	 * If this fails, we pretend that the read never happened, and return
> +	 * -EFAULT to userspace. They'll retry the read again.
> +	 */
> +	ret = data_map_buffer(priv->dev, dbuf);
> +	if (ret) {
> +		dev_err(priv->dev, "unable to remap buffer for DMA\n");
> +		count = -EFAULT;
> +		goto out_unlock;
> +	}
> +
> +	/* Add the buffer back to the free list */
> +	reader->buf = NULL;
> +	spin_lock_irq(&priv->lock);
> +	list_add_tail(&dbuf->entry, &priv->free);
> +	spin_unlock_irq(&priv->lock);
> +
> +out_unlock:
> +	mutex_unlock(&priv->mutex);
> +	return count;
> +}
> +
> +static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
> +{
> +	struct fpga_reader *reader = filp->private_data;
> +	struct fpga_device *priv = reader->priv;
> +	unsigned int mask = 0;
> +
> +	poll_wait(filp, &priv->wait, tbl);
> +
> +	spin_lock_irq(&priv->lock);
> +
> +	if (!list_empty(&priv->used))
> +		mask |= POLLIN | POLLRDNORM;
> +
> +	spin_unlock_irq(&priv->lock);

No lock is needed.

> +	return mask;
> +}
> +
> +static int data_mmap(struct file *filp, struct vm_area_struct *vma)
> +{
> +	struct fpga_reader *reader = filp->private_data;
> +	struct fpga_device *priv = reader->priv;
> +	unsigned long offset, vsize, psize, addr;
> +
> +	/* VMA properties */
> +	offset = vma->vm_pgoff << PAGE_SHIFT;
> +	vsize = vma->vm_end - vma->vm_start;
> +	psize = priv->phys_size - offset;
> +	addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
> +
> +	/* Check against the FPGA region's physical memory size */
> +	if (vsize > psize) {
> +		dev_err(priv->dev, "requested mmap mapping too large\n");
> +		return -EINVAL;
> +	}
> +
> +	/* IO memory (stop cacheing) */
> +	vma->vm_flags |= VM_IO | VM_RESERVED;
> +	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
> +
> +	return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
> +				  vma->vm_page_prot);
> +}
> +
> +static const struct file_operations data_fops = {
> +	.owner		= THIS_MODULE,
> +	.open		= data_open,
> +	.release	= data_release,
> +	.read		= data_read,
> +	.poll		= data_poll,
> +	.mmap		= data_mmap,
> +	.llseek		= no_llseek,
> +};
> +
> +/*
> + * OpenFirmware Device Subsystem
> + */
> +
> +static bool dma_filter(struct dma_chan *chan, void *data)
> +{
> +	/*
> +	 * DMA Channel #0 is used for the FPGA Programmer, so ignore it
> +	 *
> +	 * This probably won't survive an unload/load cycle of the Freescale
> +	 * DMAEngine driver, but that won't be a problem
> +	 */
> +	if (chan->chan_id == 0 && chan->device->dev_id == 0)
> +		return false;
> +
> +	return true;
> +}
> +
> +static int data_of_probe(struct platform_device *op,
> +			 const struct of_device_id *match)
> +{
> +	struct device_node *of_node = op->dev.of_node;
> +	struct device *this_device;
> +	struct fpga_device *priv;
> +	struct resource res;
> +	dma_cap_mask_t mask;
> +	int ret;
> +
> +	/* Allocate private data */
> +	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
> +	if (!priv) {
> +		dev_err(&op->dev, "Unable to allocate device private data\n");
> +		ret = -ENOMEM;
> +		goto out_return;
> +	}
> +
> +	dev_set_drvdata(&op->dev, priv);
> +	priv->dev = &op->dev;
> +
> +	/* Setup the misc device */
> +	priv->miscdev.minor = MISC_DYNAMIC_MINOR;
> +	priv->miscdev.name = drv_name;
> +	priv->miscdev.fops = &data_fops;
> +
> +	/* Get the physical address of the FPGA registers */
> +	ret = of_address_to_resource(of_node, 0, &res);
> +	if (ret) {
> +		dev_err(&op->dev, "Unable to find FPGA physical address\n");
> +		ret = -ENODEV;
> +		goto out_free_priv;
> +	}
> +
> +	priv->phys_addr = res.start;
> +	priv->phys_size = resource_size(&res);
> +
> +	/* ioremap the registers for use */
> +	priv->regs = of_iomap(of_node, 0);
> +	if (!priv->regs) {
> +		dev_err(&op->dev, "Unable to ioremap registers\n");
> +		ret = -ENOMEM;
> +		goto out_free_priv;
> +	}
> +
> +	dma_cap_zero(mask);
> +	dma_cap_set(DMA_MEMCPY, mask);
> +	dma_cap_set(DMA_INTERRUPT, mask);
> +	dma_cap_set(DMA_SLAVE, mask);
> +	dma_cap_set(DMA_SG, mask);
> +
> +	/* Request a DMA channel */
> +	priv->chan = dma_request_channel(mask, dma_filter, NULL);
> +	if (!priv->chan) {
> +		dev_err(&op->dev, "Unable to request DMA channel\n");
> +		ret = -ENODEV;
> +		goto out_unmap_regs;
> +	}
> +
> +	/* Find the correct IRQ number */
> +	priv->irq = irq_of_parse_and_map(of_node, 0);
> +	if (priv->irq == NO_IRQ) {
> +		dev_err(&op->dev, "Unable to find IRQ line\n");
> +		ret = -ENODEV;
> +		goto out_release_dma;
> +	}
> +
> +	dev_set_drvdata(priv->dev, priv);
> +	mutex_init(&priv->mutex);
> +	spin_lock_init(&priv->lock);
> +	INIT_LIST_HEAD(&priv->free);
> +	INIT_LIST_HEAD(&priv->used);
> +	INIT_LIST_HEAD(&priv->inflight);
> +	init_waitqueue_head(&priv->wait);
> +
> +	/* Drive the GPIO for FPGA IRQ high (no interrupt) */
> +	iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
> +
> +	/* Register the miscdevice */
> +	ret = misc_register(&priv->miscdev);
> +	if (ret) {
> +		dev_err(&op->dev, "Unable to register miscdevice\n");
> +		goto out_irq_dispose_mapping;
> +	}
> +
> +	/* Create the sysfs files */
> +	this_device = priv->miscdev.this_device;
> +	dev_set_drvdata(this_device, priv);
> +	ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
> +	if (ret) {
> +		dev_err(&op->dev, "Unable to create sysfs files\n");
> +		goto out_misc_deregister;
> +	}
> +
> +	dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
> +	return 0;
> +
> +out_misc_deregister:
> +	misc_deregister(&priv->miscdev);
> +out_irq_dispose_mapping:
> +	irq_dispose_mapping(priv->irq);
> +out_release_dma:
> +	dma_release_channel(priv->chan);
> +out_unmap_regs:
> +	iounmap(priv->regs);
> +out_free_priv:
> +	mutex_destroy(&priv->mutex);
> +	kfree(priv);
> +out_return:
> +	return ret;
> +}
> +
> +static int data_of_remove(struct platform_device *op)
> +{
> +	struct fpga_device *priv = dev_get_drvdata(&op->dev);
> +	struct device *this_device = priv->miscdev.this_device;
> +
> +	/* make sure the IRQ line is disabled */
> +	mutex_lock(&priv->mutex);
> +	data_device_disable(priv);
> +	mutex_unlock(&priv->mutex);

Remove attributes first and lose the mutex.

> +
> +	sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
> +	misc_deregister(&priv->miscdev);
> +	irq_dispose_mapping(priv->irq);
> +	dma_release_channel(priv->chan);
> +	iounmap(priv->regs);
> +	mutex_destroy(&priv->mutex);
> +	kfree(priv);
> +
> +	return 0;
> +}
> +
> +static struct of_device_id data_of_match[] = {
> +	{ .compatible = "carma,carma-fpga", },
> +	{},
> +};
> +
> +static struct of_platform_driver data_of_driver = {
> +	.probe		= data_of_probe,
> +	.remove		= data_of_remove,
> +	.driver		= {
> +		.name		= drv_name,
> +		.of_match_table	= data_of_match,
> +		.owner		= THIS_MODULE,
> +	},
> +};
> +
> +/*
> + * Module Init / Exit
> + */
> +
> +static int __init data_init(void)
> +{
> +	return of_register_platform_driver(&data_of_driver);
> +}
> +
> +static void __exit data_exit(void)
> +{
> +	of_unregister_platform_driver(&data_of_driver);
> +}
> +
> +MODULE_AUTHOR("Ira W. Snyder <iws at ovro.caltech.edu>");
> +MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
> +MODULE_LICENSE("GPL");
> +
> +module_init(data_init);
> +module_exit(data_exit);

Thanks.

-- 
Dmitry


More information about the Linuxppc-dev mailing list