[NEMO-devel] new evolutionary algorithm
Ben Elliston
b.elliston at unsw.edu.au
Tue Jan 13 16:34:05 AEDT 2015
Hi all,
I recently spent some time investigating a more complete and better
maintained framework for evolutionary algorithms called DEAP
(Distributed Evolutionary Algorithms in Python). Last night I modified
NEMO to use this framework instead of Pyevolve. Initially, I used it to
implement another GA, but DEAP provides a number of other common algorithms.
A recent paper on optimised 100% renewable systems used a more recently
developed algorithm called CMA-ES (Covariance Matrix Adaptation
Evolution Strategy), which I know little about other than it appears to
consistently outperform GAs for certain classes of problems. I modified
NEMO today to use CMA-ES and was blown away. It produces slightly lower
cost scenarios (about 5% lower cost) than Pyevolve and does so in fewer
generations. On the cluster I am using, this takes 6 min 40 sec!
The code changes are checked into a branch called 'deap-branch' and I
won't merge it in until I am satisified that it's all working as it
should. To use it, you will need to install:
DEAP
https://pypi.python.org/pypi/deap/
SCOOP (for distributed computation, if you wish)
https://code.google.com/p/scoop/
.. or they can be installed with Python's easy_install.
Cheers, Ben
--
Ben Elliston
Centre for Energy and Environmental Markets
University of New South Wales
"The difficulty lies not in the new ideas, but in escaping from the old
ones."
-- John Maynard Keynes
More information about the nemo-devel
mailing list