[PATCH 4/9] Add Synopsys DesignWare HS USB OTG Controller driver.

Fushen Chen fchen at apm.com
Wed Jun 30 07:26:57 EST 2010


Implements DWC OTG USB Host Controller Driver (HCD) and interface to
USB Host controller Driver framework.

Signed-off-by: Fushen Chen <fchen at apm.com>
Signed-off-by: Mark Miesfeld <mmiesfeld at apm.com>
---
 drivers/usb/otg/dwc_otg_hcd.c | 2397 +++++++++++++++++++++++++++++++++++++++++
 drivers/usb/otg/dwc_otg_hcd.h |  421 ++++++++
 2 files changed, 2818 insertions(+), 0 deletions(-)
 create mode 100644 drivers/usb/otg/dwc_otg_hcd.c
 create mode 100644 drivers/usb/otg/dwc_otg_hcd.h

diff --git a/drivers/usb/otg/dwc_otg_hcd.c b/drivers/usb/otg/dwc_otg_hcd.c
new file mode 100644
index 0000000..5c9af7c
--- /dev/null
+++ b/drivers/usb/otg/dwc_otg_hcd.c
@@ -0,0 +1,2397 @@
+/*
+ * DesignWare HS OTG controller driver
+ *
+ * Author: Mark Miesfeld <mmiesfeld at apm.com>
+ *
+ * Based on versions provided by AMCC and Synopsis which are:
+ *	Copyright (C) 2009-2010 AppliedMicro(www.apm.com)
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+/*
+ * This file contains the implementation of the HCD. In Linux, the HCD
+ * implements the hc_driver API.
+ */
+
+#include <asm/unaligned.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/device.h>
+#include <linux/errno.h>
+#include <linux/list.h>
+#include <linux/interrupt.h>
+#include <linux/string.h>
+#include <linux/dma-mapping.h>
+
+#include "dwc_otg_driver.h"
+#include "dwc_otg_hcd.h"
+#include "dwc_otg_regs.h"
+
+static const char dwc_otg_hcd_name[] = "dwc_otg_hcd";
+
+/**
+ * Clears the transfer state for a host channel. This function is normally
+ * called after a transfer is done and the host channel is being released. It
+ * clears the channel interrupt enables and any unhandled channel interrupt
+ * conditions.
+ */
+void dwc_otg_hc_cleanup(struct core_if *core_if, struct dwc_hc *hc)
+{
+	struct dwc_hc_regs *regs;
+	hc->xfer_started = 0;
+
+	regs = core_if->host_if->hc_regs[hc->hc_num];
+	dwc_write_reg32(&regs->hcintmsk, 0);
+	dwc_write_reg32(&regs->hcint, 0xFFFFFFFF);
+}
+
+/**
+ * This function enables the Host mode interrupts.
+ */
+static void dwc_otg_enable_host_interrupts(struct core_if *core_if)
+{
+	struct core_global_regs *global_regs = core_if->core_global_regs;
+	union gintmsk_data intr_mask = {.d32 = 0};
+
+	/* Disable all interrupts. */
+	dwc_write_reg32(&global_regs->gintmsk, 0);
+
+	/* Clear any pending interrupts. */
+	dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
+
+	/* Enable the common interrupts */
+	dwc_otg_enable_common_interrupts(core_if);
+
+	/*
+	 * Enable host mode interrupts without disturbing common
+	 * interrupts.
+	 */
+	intr_mask.b.sofintr = 1;
+	intr_mask.b.portintr = 1;
+	intr_mask.b.hcintr = 1;
+	dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
+}
+
+/**
+ * This function initializes the DWC_otg controller registers for
+ * host mode.
+ *
+ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
+ * request queues. Host channels are reset to ensure that they are ready for
+ * performing transfers.
+ */
+static void dwc_otg_core_host_init(struct core_if *core_if)
+{
+	struct core_global_regs *global_regs = core_if->core_global_regs;
+	struct dwc_host_if *host_if = core_if->host_if;
+	struct core_params *params = core_if->core_params;
+	union hprt0_data hprt0 = {.d32 = 0};
+	union fifosize_data nptxfifosize;
+	union fifosize_data ptxfifosize;
+	u32 i;
+	union hcchar_data hcchar;
+	union hcfg_data hcfg;
+	struct dwc_hc_regs *hc_regs;
+	int num_channels;
+	union gotgctl_data gotgctl = {.d32 = 0};
+
+	/* Restart the Phy Clock */
+	dwc_write_reg32(core_if->pcgcctl, 0);
+
+	/* Initialize Host Configuration Register */
+	init_fslspclksel(core_if);
+	if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
+		hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
+		hcfg.b.fslssupp = 1;
+		dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
+	}
+
+	/* Configure data FIFO sizes */
+	if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
+		/* Rx FIFO */
+		dwc_write_reg32(&global_regs->grxfsiz,
+			params->host_rx_fifo_size);
+
+		/* Non-periodic Tx FIFO */
+		nptxfifosize.b.depth = params->host_nperio_tx_fifo_size;
+		nptxfifosize.b.startaddr = params->host_rx_fifo_size;
+		dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
+
+		/* Periodic Tx FIFO */
+		ptxfifosize.b.depth = params->host_perio_tx_fifo_size;
+		ptxfifosize.b.startaddr = nptxfifosize.b.startaddr +
+				nptxfifosize.b.depth;
+		dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
+	}
+
+	/* Clear Host Set HNP Enable in the OTG Control Register */
+	gotgctl.b.hstsethnpen = 1;
+	dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
+
+	/* Make sure the FIFOs are flushed. */
+	dwc_otg_flush_tx_fifo(core_if, DWC_GRSTCTL_TXFNUM_ALL);
+	dwc_otg_flush_rx_fifo(core_if);
+
+	/* Flush out any leftover queued requests. */
+	num_channels = core_if->core_params->host_channels;
+	for (i = 0; i < num_channels; i++) {
+		hc_regs = core_if->host_if->hc_regs[i];
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		hcchar.b.chen = 0;
+		hcchar.b.chdis = 1;
+		hcchar.b.epdir = 0;
+		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+	}
+
+	/* Halt all channels to put them into a known state. */
+	for (i = 0; i < num_channels; i++) {
+		int count = 0;
+		hc_regs = core_if->host_if->hc_regs[i];
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		hcchar.b.chen = 1;
+		hcchar.b.chdis = 1;
+		hcchar.b.epdir = 0;
+		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+		do {
+			hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+			if (++count > 10000) {
+				printk(KERN_ERR "%s: Unable to clear halt on "
+						"channel %d\n",	__func__, i);
+				break;
+			}
+		} while (hcchar.b.chen);
+	}
+
+	/* Turn on the vbus power. */
+	printk(KERN_INFO "Init: Port Power? op_state=%d\n", core_if->op_state);
+
+	if (core_if->op_state == A_HOST) {
+		hprt0.d32 = dwc_otg_read_hprt0(core_if);
+		printk(KERN_INFO "Init: Power Port (%d)\n", hprt0.b.prtpwr);
+		if (hprt0.b.prtpwr == 0) {
+			hprt0.b.prtpwr = 1;
+			dwc_write_reg32(host_if->hprt0, hprt0.d32);
+		}
+	}
+
+	dwc_otg_enable_host_interrupts(core_if);
+}
+
+/**
+ * Initializes dynamic portions of the DWC_otg HCD state.
+ */
+static void hcd_reinit(struct dwc_hcd *hcd)
+{
+	struct list_head *item;
+	int num_channels;
+	u32 i;
+	struct dwc_hc *channel;
+
+	hcd->flags.d32 = 0;
+	hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
+	hcd->non_periodic_channels = 0;
+	hcd->periodic_channels = 0;
+
+	/*
+	 * Put all channels in the free channel list and clean up channel
+	 * states.
+	 */
+	item = hcd->free_hc_list.next;
+	while (item != &hcd->free_hc_list) {
+		list_del(item);
+		item = hcd->free_hc_list.next;
+	}
+
+	num_channels = hcd->core_if->core_params->host_channels;
+	for (i = 0; i < num_channels; i++) {
+		channel = hcd->hc_ptr_array[i];
+		list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list);
+		dwc_otg_hc_cleanup(hcd->core_if, channel);
+	}
+
+	/* Initialize the DWC core for host mode operation. */
+	dwc_otg_core_host_init(hcd->core_if);
+}
+
+/* Gets the dwc_hcd from a struct usb_hcd */
+static inline struct dwc_hcd *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
+{
+	return (struct dwc_hcd *) hcd->hcd_priv;
+}
+
+/**
+ * Initializes the DWC_otg controller and its root hub and prepares it for host
+ * mode operation. Activates the root port. Returns 0 on success and a negative
+ * error code on failure.
+*/
+static int dwc_otg_hcd_start(struct usb_hcd *hcd)
+{
+	struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+	struct usb_bus *bus = hcd_to_bus(hcd);
+
+	hcd->state = HC_STATE_RUNNING;
+
+	/* Inform the HUB driver to resume. */
+	if (bus->root_hub)
+		usb_hcd_resume_root_hub(hcd);
+
+	hcd_reinit(dwc_hcd);
+	return 0;
+}
+
+/**
+ * Work queue function for starting the HCD when A-Cable is connected.
+ * The dwc_otg_hcd_start() must be called in a process context.
+ */
+static void hcd_start_func(struct work_struct *work)
+{
+	struct dwc_hcd *priv =
+		container_of(work, struct dwc_hcd, start_work);
+	struct usb_hcd *usb_hcd = (struct usb_hcd *) priv->_p;
+
+	if (usb_hcd)
+		dwc_otg_hcd_start(usb_hcd);
+}
+
+/**
+ * HCD Callback function for starting the HCD when A-Cable is
+ * connected.
+ */
+static int dwc_otg_hcd_start_cb(void *_p)
+{
+	struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(_p);
+	struct core_if *core_if = dwc_hcd->core_if;
+	union hprt0_data hprt0;
+
+	if (core_if->op_state == B_HOST) {
+		/*
+		 * Reset the port.  During a HNP mode switch the reset
+		 * needs to occur within 1ms and have a duration of at
+		 * least 50ms.
+		 */
+		hprt0.d32 = dwc_otg_read_hprt0(core_if);
+		hprt0.b.prtrst = 1;
+		dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+		((struct usb_hcd *) _p)->self.is_b_host = 1;
+	} else {
+		((struct usb_hcd *) _p)->self.is_b_host = 0;
+	}
+
+	/* Need to start the HCD in a non-interrupt context. */
+	INIT_WORK(&dwc_hcd->start_work, hcd_start_func);
+	dwc_hcd->_p = _p;
+	schedule_work(&dwc_hcd->start_work);
+	return 1;
+}
+
+/**
+ * This function disables the Host Mode interrupts.
+ */
+static void dwc_otg_disable_host_interrupts(struct core_if *core_if)
+{
+	struct core_global_regs *global_regs = core_if->core_global_regs;
+	union gintmsk_data intr_mask = {.d32 = 0};
+
+	/*
+	 * Disable host mode interrupts without disturbing common
+	 * interrupts.
+	*/
+	intr_mask.b.sofintr = 1;
+	intr_mask.b.portintr = 1;
+	intr_mask.b.hcintr = 1;
+	intr_mask.b.ptxfempty = 1;
+	intr_mask.b.nptxfempty = 1;
+	dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
+}
+
+/**
+ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
+ * stopped.
+ */
+static void dwc_otg_hcd_stop(struct usb_hcd *hcd)
+{
+	struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+	union hprt0_data hprt0 = {.d32 = 0};
+
+	/* Turn off all host-specific interrupts. */
+	dwc_otg_disable_host_interrupts(dwc_hcd->core_if);
+
+	/*
+	 * The root hub should be disconnected before this function is called.
+	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
+	 * and the QH lists (via ..._hcd_endpoint_disable).
+	 */
+
+	/* Turn off the vbus power */
+	printk(KERN_INFO "PortPower off\n");
+	hprt0.b.prtpwr = 0;
+	dwc_write_reg32(dwc_hcd->core_if->host_if->hprt0, hprt0.d32);
+}
+
+/**
+ * HCD Callback function for stopping the HCD.
+ */
+static int dwc_otg_hcd_stop_cb(void *_p)
+{
+	struct usb_hcd *usb_hcd = (struct usb_hcd *) _p;
+
+	dwc_otg_hcd_stop(usb_hcd);
+	return 1;
+}
+
+static void del_timers(struct dwc_hcd *hcd)
+{
+	del_timer_sync(&hcd->conn_timer);
+}
+
+/**
+ * Processes all the URBs in a single list of QHs. Completes them with
+ * -ETIMEDOUT and frees the QTD.
+ */
+static void kill_urbs_in_qh_list(struct dwc_hcd *hcd, struct list_head *qh_list)
+{
+	struct list_head *qh_item, *q;
+
+	qh_item = qh_list->next;
+
+	list_for_each_safe(qh_item, q, qh_list) {
+		struct dwc_qh *qh;
+		struct list_head *qtd_item;
+		struct dwc_qtd *qtd;
+
+		qh = list_entry(qh_item, struct dwc_qh, qh_list_entry);
+		qtd_item = qh->qtd_list.next;
+		qtd = list_entry(qtd_item, struct dwc_qtd, qtd_list_entry);
+		if (qtd->urb != NULL) {
+			dwc_otg_hcd_complete_urb(hcd, qtd->urb, -ETIMEDOUT);
+			dwc_otg_hcd_qtd_remove_and_free(qtd);
+		}
+	}
+}
+
+/**
+ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
+ * and periodic schedules. The QTD associated with each URB is removed from
+ * the schedule and freed. This function may be called when a disconnect is
+ * detected or when the HCD is being stopped.
+ */
+static void kill_all_urbs(struct dwc_hcd *hcd)
+{
+	kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
+	kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
+	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
+	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
+	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
+	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
+}
+
+/**
+ * HCD Callback function for disconnect of the HCD.
+ */
+static int dwc_otg_hcd_disconnect_cb(void *_p)
+{
+	union gintsts_data intr;
+	struct dwc_hcd *hcd = hcd_to_dwc_otg_hcd(_p);
+	struct core_if *core_if = hcd->core_if;
+
+	/* Set status flags for the hub driver. */
+	hcd->flags.b.port_connect_status_change = 1;
+	hcd->flags.b.port_connect_status = 0;
+
+	/*
+	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
+	 * interrupt mask and status bits and disabling subsequent host
+	 * channel interrupts.
+	 */
+	intr.d32 = 0;
+	intr.b.nptxfempty = 1;
+	intr.b.ptxfempty = 1;
+	intr.b.hcintr = 1;
+	dwc_modify_reg32(gintmsk_reg(hcd), intr.d32, 0);
+	dwc_modify_reg32(gintsts_reg(hcd), intr.d32, 0);
+
+	del_timers(hcd);
+
+	/*
+	 * Turn off the vbus power only if the core has transitioned to device
+	 * mode. If still in host mode, need to keep power on to detect a
+	 * reconnection.
+	 */
+	if (dwc_otg_is_device_mode(core_if)) {
+		if (core_if->op_state != A_SUSPEND) {
+			union hprt0_data hprt0 = {.d32 = 0};
+			printk(KERN_INFO "Disconnect: PortPower off\n");
+			hprt0.b.prtpwr = 0;
+			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+		}
+		dwc_otg_disable_host_interrupts(core_if);
+	}
+
+	/* Respond with an error status to all URBs in the schedule. */
+	kill_all_urbs(hcd);
+	if (dwc_otg_is_host_mode(core_if)) {
+		/* Clean up any host channels that were in use. */
+		int num_channels;
+		u32 i;
+		struct dwc_hc *channel;
+		struct dwc_hc_regs *regs;
+		union hcchar_data hcchar;
+
+		num_channels = core_if->core_params->host_channels;
+		if (!core_if->dma_enable) {
+			/* Flush out any channel requests in slave mode. */
+			for (i = 0; i < num_channels; i++) {
+				channel = hcd->hc_ptr_array[i];
+				if (list_empty(&channel->hc_list_entry)) {
+					regs = core_if->host_if->hc_regs[i];
+					hcchar.d32 = dwc_read_reg32(
+							&regs->hcchar);
+
+					if (hcchar.b.chen) {
+						hcchar.b.chen = 0;
+						hcchar.b.chdis = 1;
+						hcchar.b.epdir = 0;
+						dwc_write_reg32(&regs->hcchar,
+								hcchar.d32);
+					}
+				}
+			}
+		}
+
+		for (i = 0; i < num_channels; i++) {
+			channel = hcd->hc_ptr_array[i];
+			if (list_empty(&channel->hc_list_entry)) {
+				regs = core_if->host_if->hc_regs[i];
+				hcchar.d32 = dwc_read_reg32(&regs->hcchar);
+
+				if (hcchar.b.chen) {
+					/* Halt the channel. */
+					hcchar.b.chdis = 1;
+					dwc_write_reg32(&regs->hcchar,
+							hcchar.d32);
+				}
+				dwc_otg_hc_cleanup(core_if, channel);
+				list_add_tail(&channel->hc_list_entry,
+						&hcd->free_hc_list);
+			}
+		}
+	}
+
+	/*
+	 * A disconnect will end the session so the B-Device is no
+	 * longer a B-host.
+	 */
+	((struct usb_hcd *) _p)->self.is_b_host = 0;
+	return 1;
+}
+
+/**
+ * Connection timeout function.  An OTG host is required to display a
+ * message if the device does not connect within 10 seconds.
+ */
+static void dwc_otg_hcd_connect_timeout(unsigned long _ptr)
+{
+	printk(KERN_INFO "Connect Timeout\n");
+	printk(KERN_ERR "Device Not Connected/Responding\n");
+}
+
+/**
+ * Start the connection timer.  An OTG host is required to display a
+ * message if the device does not connect within 10 seconds.  The
+ * timer is deleted if a port connect interrupt occurs before the
+ * timer expires.
+ */
+static void dwc_otg_hcd_start_connect_timer(struct dwc_hcd *hcd)
+{
+	init_timer(&hcd->conn_timer);
+	hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
+	hcd->conn_timer.data = (unsigned long)0;
+	hcd->conn_timer.expires = jiffies + (HZ * 10);
+	add_timer(&hcd->conn_timer);
+}
+
+/**
+ * HCD Callback function for disconnect of the HCD.
+ */
+static int dwc_otg_hcd_session_start_cb(void *_p)
+{
+	struct dwc_hcd *hcd = hcd_to_dwc_otg_hcd(_p);
+
+	dwc_otg_hcd_start_connect_timer(hcd);
+	return 1;
+}
+
+/* HCD Callback structure for handling mode switching. */
+static struct cil_callbacks hcd_cil_callbacks = {
+	.start = dwc_otg_hcd_start_cb,
+	.stop = dwc_otg_hcd_stop_cb,
+	.disconnect = dwc_otg_hcd_disconnect_cb,
+	.session_start = dwc_otg_hcd_session_start_cb,
+	.p = 0,
+};
+
+/*
+ * Reset Workqueue implementation
+ */
+static void port_reset_wqfunc(struct work_struct *work)
+{
+	struct dwc_hcd *hcd = container_of(work, struct dwc_hcd, usb_port_reset);
+
+	struct core_if *core_if = hcd->core_if;
+	union hprt0_data hprt0;
+	unsigned long flags;
+
+	printk(KERN_INFO "%s\n", __func__);
+	spin_lock_irqsave(&hcd->lock, flags);
+	hprt0.d32 = dwc_otg_read_hprt0(core_if);
+	hprt0.b.prtrst = 1;
+	dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+	spin_unlock_irqrestore(&hcd->lock, flags);
+	msleep(60);
+	spin_lock_irqsave(&hcd->lock, flags);
+	hprt0.b.prtrst = 0;
+	dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+	hcd->flags.b.port_reset_change = 1;
+	spin_unlock_irqrestore(&hcd->lock, flags);
+}
+
+/*
+ * Wakeup Workqueue implementation
+ */
+static void port_wakeup_wqfunc(struct work_struct *work)
+{
+	struct core_if *core_if = container_of(to_delayed_work(work),
+			struct core_if, usb_port_wakeup);
+	union hprt0_data hprt0;
+
+	printk(KERN_INFO "%s\n", __func__);
+	/* Now wait for 70 ms. */
+	hprt0.d32 = dwc_otg_read_hprt0(core_if);
+	msleep(70);
+	hprt0.b.prtres = 0;	/* Resume */
+	dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+}
+
+/**
+ * Starts processing a USB transfer request specified by a USB Request Block
+ * (URB). mem_flags indicates the type of memory allocation to use while
+ * processing this URB.
+ */
+static int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
+				gfp_t _mem_flags)
+{
+
+	int retval;
+	unsigned long flags;
+	struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+	struct dwc_qtd *qtd;
+
+	if (!dwc_hcd->flags.b.port_connect_status) {
+		/* No longer connected. */
+		retval = -ENODEV;
+		goto err_enq;
+	}
+
+	qtd = dwc_otg_hcd_qtd_create(urb, _mem_flags);
+	if (!qtd) {
+		printk(KERN_ERR "DWC OTG HCD URB Enqueue failed creating "
+					"QTD\n");
+		retval = -ENOMEM;
+		goto err_enq;
+	}
+
+	spin_lock_irqsave(&dwc_hcd->lock, flags);
+	retval = usb_hcd_link_urb_to_ep(hcd, urb);
+	if (unlikely(retval))
+		goto fail;
+
+	retval = dwc_otg_hcd_qtd_add(qtd, dwc_hcd);
+	if (retval < 0) {
+		printk(KERN_ERR "DWC OTG HCD URB Enqueue failed adding QTD. "
+				"Error status %d\n", retval);
+		usb_hcd_unlink_urb_from_ep(hcd, urb);
+		goto fail;
+	}
+
+fail:
+	if (retval)
+		dwc_otg_hcd_qtd_free(qtd);
+
+	spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+err_enq:
+
+	return retval;
+}
+
+/**
+ * Attempts to halt a host channel. This function should only be called in
+ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
+ * normal circumstances in DMA mode, the controller halts the channel when the
+ * transfer is complete or a condition occurs that requires application
+ * intervention.
+ *
+ * In slave mode, checks for a free request queue entry, then sets the Channel
+ * Enable and Channel Disable bits of the Host Channel Characteristics
+ * register of the specified channel to intiate the halt. If there is no free
+ * request queue entry, sets only the Channel Disable bit of the HCCHARn
+ * register to flush requests for this channel. In the latter case, sets a
+ * flag to indicate that the host channel needs to be halted when a request
+ * queue slot is open.
+ *
+ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
+ * HCCHARn register. The controller ensures there is space in the request
+ * queue before submitting the halt request.
+ *
+ * Some time may elapse before the core flushes any posted requests for this
+ * host channel and halts. The Channel Halted interrupt handler completes the
+ * deactivation of the host channel.
+ */
+void dwc_otg_hc_halt(struct core_if *core_if, struct dwc_hc *hc,
+			enum dwc_halt_status hlt_sts)
+{
+	union gnptxsts_data nptxsts;
+	union hptxsts_data hptxsts;
+	union hcchar_data hcchar;
+	struct dwc_hc_regs *hc_regs;
+	struct core_global_regs *global_regs;
+	struct host_global_regs *host_global_regs;
+
+	hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+	global_regs = core_if->core_global_regs;
+	host_global_regs = core_if->host_if->host_global_regs;
+
+	WARN_ON(hlt_sts == DWC_OTG_HC_XFER_NO_HALT_STATUS);
+
+	if (hlt_sts == DWC_OTG_HC_XFER_URB_DEQUEUE ||
+			hlt_sts == DWC_OTG_HC_XFER_AHB_ERR) {
+		/*
+		 * Disable all channel interrupts except Ch Halted. The QTD
+		 * and QH state associated with this transfer has been cleared
+		 * (in the case of URB_DEQUEUE), so the channel needs to be
+		 * shut down carefully to prevent crashes.
+		 */
+		union hcintmsk_data hcintmsk;
+		hcintmsk.d32 = 0;
+		hcintmsk.b.chhltd = 1;
+		dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
+
+		/*
+		 * Make sure no other interrupts besides halt are currently
+		 * pending. Handling another interrupt could cause a crash due
+		 * to the QTD and QH state.
+		 */
+		dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
+
+		/*
+		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
+		 * even if the channel was already halted for some other reason.
+		 */
+		hc->halt_status = hlt_sts;
+
+		/*
+		 * If the channel is not enabled, the channel is either already
+		 * halted or it hasn't started yet. In DMA mode, the transfer
+		 * may halt if it finishes normally or a condition occurs that
+		 * requires driver intervention. Don't want to halt the channel
+		 * again. In either Slave or DMA mode, it's possible that the
+		 * transfer has been assigned to a channel, but not started yet
+		 * when an URB is dequeued. Don't want to halt a channel that
+		 * hasn't started yet.
+		 */
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		if (!hcchar.b.chen)
+			return;
+	}
+
+	if (hc->halt_pending)
+		/*
+		 * A halt has already been issued for this channel. This might
+		 * happen when a transfer is aborted by a higher level in
+		 * the stack.
+		 */
+		return;
+
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	hcchar.b.chen = 1;
+	hcchar.b.chdis = 1;
+	if (!core_if->dma_enable) {
+		/* Check for space in the request queue to issue the halt. */
+		if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
+				hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
+			nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
+
+			if (!nptxsts.b.nptxqspcavail)
+				hcchar.b.chen = 0;
+		} else {
+			hptxsts.d32 =
+				dwc_read_reg32(&host_global_regs->hptxsts);
+
+			if (!hptxsts.b.ptxqspcavail ||
+					core_if->queuing_high_bandwidth)
+				hcchar.b.chen = 0;
+		}
+	}
+	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+	hc->halt_status = hlt_sts;
+	if (hcchar.b.chen) {
+		hc->halt_pending = 1;
+		hc->halt_on_queue = 0;
+	} else {
+		hc->halt_on_queue = 1;
+	}
+}
+
+/**
+ * Aborts/cancels a USB transfer request. Always returns 0 to indicate
+ * success.
+ */
+static int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
+	int status)
+{
+	unsigned long flags;
+	struct dwc_hcd *dwc_hcd;
+	struct dwc_qtd *urb_qtd;
+	struct dwc_qh *qh;
+	struct usb_host_endpoint *_ep = dwc_urb_to_endpoint(urb);
+	int retval;
+
+	if (!_ep)
+		return -EINVAL;
+
+	urb_qtd = (struct dwc_qtd *) urb->hcpriv;
+	qh = (struct dwc_qh *) _ep->hcpriv;
+	if (!urb_qtd || !qh)
+		return -EINVAL;
+
+	dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+	spin_lock_irqsave(&dwc_hcd->lock, flags);
+
+	retval = usb_hcd_check_unlink_urb(hcd, urb, status);
+	if (retval) {
+		spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+		return retval;
+	}
+
+	if (qh && urb_qtd == qh->qtd_in_process) {
+		/* The QTD is in process (it has been assigned to a channel). */
+		if (dwc_hcd->flags.b.port_connect_status) {
+			/*
+			 * If still connected (i.e. in host mode), halt the
+			 * channel so it can be used for other transfers. If
+			 * no longer connected, the host registers can't be
+			 * written to halt the channel since the core is in
+			 * device mode.
+			 */
+			dwc_otg_hc_halt(dwc_hcd->core_if, qh->channel,
+					DWC_OTG_HC_XFER_URB_DEQUEUE);
+		}
+	}
+
+	/*
+	 * Free the QTD and clean up the associated QH. Leave the QH in the
+	 * schedule if it has any remaining QTDs.
+	 */
+	dwc_otg_hcd_qtd_remove_and_free(urb_qtd);
+	if (qh && urb_qtd == qh->qtd_in_process) {
+		dwc_otg_hcd_qh_deactivate(dwc_hcd, qh, 0);
+		qh->channel = NULL;
+		qh->qtd_in_process = NULL;
+	} else if (qh && list_empty(&qh->qtd_list)) {
+		dwc_otg_hcd_qh_remove(dwc_hcd, qh);
+	}
+
+	urb->hcpriv = NULL;
+	usb_hcd_unlink_urb_from_ep(hcd, urb);
+	spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+
+	/* Higher layer software sets URB status. */
+	usb_hcd_giveback_urb(hcd, urb, status);
+
+	return 0;
+}
+
+/* Remove and free a QH */
+static inline void dwc_otg_hcd_qh_remove_and_free(struct dwc_hcd *hcd,
+				struct dwc_qh *qh)
+{
+	dwc_otg_hcd_qh_remove(hcd, qh);
+	dwc_otg_hcd_qh_free(qh);
+}
+
+static void qh_list_free(struct dwc_hcd *hcd, struct list_head *_qh_list)
+{
+	struct list_head *item, *tmp;
+	struct dwc_qh *qh;
+
+	/* If the list hasn't been initialized yet, return. */
+	if (_qh_list->next == NULL)
+		return;
+
+	/* Ensure there are no QTDs or URBs left. */
+	kill_urbs_in_qh_list(hcd, _qh_list);
+
+	list_for_each_safe(item, tmp, _qh_list) {
+		qh = list_entry(item, struct dwc_qh, qh_list_entry);
+		dwc_otg_hcd_qh_remove_and_free(hcd, qh);
+	}
+}
+
+/**
+ * Frees resources in the DWC_otg controller related to a given endpoint. Also
+ * clears state in the HCD related to the endpoint. Any URBs for the endpoint
+ * must already be dequeued.
+ */
+static void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
+		struct usb_host_endpoint *ep)
+{
+	struct dwc_qh *qh;
+	struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+	unsigned long flags;
+
+	spin_lock_irqsave(&dwc_hcd->lock, flags);
+	qh = (struct dwc_qh *) ep->hcpriv;
+	if (qh) {
+		dwc_otg_hcd_qh_remove_and_free(dwc_hcd, qh);
+		ep->hcpriv = NULL;
+	}
+	spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+}
+
+/**
+ * Creates Status Change bitmap for the root hub and root port. The bitmap is
+ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
+ * is the status change indicator for the single root port. Returns 1 if either
+ * change indicator is 1, otherwise returns 0.
+ */
+static int dwc_otg_hcd_hub_status_data(struct usb_hcd *_hcd, char *buf)
+{
+	struct dwc_hcd *hcd = hcd_to_dwc_otg_hcd(_hcd);
+	buf[0] = 0;
+	buf[0] |= (hcd->flags.b.port_connect_status_change
+			|| hcd->flags.b.port_reset_change
+			|| hcd->flags.b.port_enable_change
+			|| hcd->flags.b.port_suspend_change
+			|| hcd->flags.b.port_over_current_change) << 1;
+
+	return (buf[0] != 0);
+}
+
+/* Handles the hub class-specific ClearPortFeature request.*/
+static int do_clear_port_feature(struct dwc_hcd *hcd, u16 val)
+{
+	struct core_if *core_if = hcd->core_if;
+	union hprt0_data hprt0;
+    unsigned long flags;
+
+    spin_lock_irqsave(&hcd->lock, flags);
+	switch (val) {
+	case USB_PORT_FEAT_ENABLE:
+		hprt0.d32 = dwc_otg_read_hprt0(core_if);
+		hprt0.b.prtena = 1;
+		dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+		break;
+	case USB_PORT_FEAT_SUSPEND:
+		hprt0.d32 = dwc_otg_read_hprt0(core_if);
+		hprt0.b.prtres = 1;
+		dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+
+		/* Clear Resume bit */
+		spin_unlock_irqrestore(&hcd->lock, flags);
+		msleep(100);
+		spin_lock_irqsave(&hcd->lock, flags);
+		hprt0.b.prtres = 0;
+		dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+		break;
+	case USB_PORT_FEAT_POWER:
+		hprt0.d32 = dwc_otg_read_hprt0(core_if);
+		hprt0.b.prtpwr = 0;
+		dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+		break;
+	case USB_PORT_FEAT_INDICATOR:
+		/* Port inidicator not supported */
+		break;
+	case USB_PORT_FEAT_C_CONNECTION:
+		/* Clears drivers internal connect status change flag */
+		hcd->flags.b.port_connect_status_change = 0;
+		break;
+	case USB_PORT_FEAT_C_RESET:
+		/* Clears driver's internal Port Reset Change flag */
+		hcd->flags.b.port_reset_change = 0;
+		break;
+	case USB_PORT_FEAT_C_ENABLE:
+		/* Clears driver's internal Port Enable/Disable Change flag  */
+		hcd->flags.b.port_enable_change = 0;
+		break;
+	case USB_PORT_FEAT_C_SUSPEND:
+		/*
+		 * Clears the driver's internal Port Suspend
+		 * Change flag, which is set when resume signaling on
+		 * the host port is complete
+		 */
+		hcd->flags.b.port_suspend_change = 0;
+		break;
+	case USB_PORT_FEAT_C_OVER_CURRENT:
+		hcd->flags.b.port_over_current_change = 0;
+		break;
+	default:
+		printk(KERN_ERR "DWC OTG HCD - ClearPortFeature request %xh "
+			"unknown or unsupported\n", val);
+		spin_unlock_irqrestore(&hcd->lock, flags);
+		return -EINVAL;
+	}
+	spin_unlock_irqrestore(&hcd->lock, flags);
+	return 0;
+}
+
+/* Handles the hub class-specific SetPortFeature request.*/
+static int do_set_port_feature(struct usb_hcd *hcd, u16 val, u16 index)
+{
+	struct core_if *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
+	union hprt0_data hprt0 = {.d32 = 0};
+	struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+	unsigned long flags;
+
+	spin_lock_irqsave(&dwc_hcd->lock, flags);
+
+	switch (val) {
+	case USB_PORT_FEAT_SUSPEND:
+		if (hcd->self.otg_port == index && hcd->self.b_hnp_enable) {
+			union gotgctl_data gotgctl = {.d32 = 0};
+			gotgctl.b.hstsethnpen = 1;
+			dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
+						0, gotgctl.d32);
+			core_if->op_state = A_SUSPEND;
+		}
+
+		hprt0.d32 = dwc_otg_read_hprt0(core_if);
+		hprt0.b.prtsusp = 1;
+		dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+
+		/* Suspend the Phy Clock */
+		{
+			union pcgcctl_data pcgcctl = {.d32 = 0};
+			pcgcctl.b.stoppclk = 1;
+			dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
+		}
+
+		/* For HNP the bus must be suspended for at least 200ms. */
+		if (hcd->self.b_hnp_enable) {
+			spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+			msleep(200);
+			spin_lock_irqsave(&dwc_hcd->lock, flags);
+		}
+		break;
+	case USB_PORT_FEAT_POWER:
+		hprt0.d32 = dwc_otg_read_hprt0(core_if);
+		hprt0.b.prtpwr = 1;
+		dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+		break;
+	case USB_PORT_FEAT_RESET:
+		hprt0.d32 = dwc_otg_read_hprt0(core_if);
+
+		/*
+		 * When B-Host the Port reset bit is set in the Start HCD
+		 * Callback function, so that the reset is started within 1ms
+		 * of the HNP success interrupt.
+		 */
+		if (!hcd->self.is_b_host) {
+			hprt0.b.prtrst = 1;
+			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+		}
+
+		/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
+		spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+		msleep(60);
+		spin_lock_irqsave(&dwc_hcd->lock, flags);
+		hprt0.b.prtrst = 0;
+		dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+		break;
+	case USB_PORT_FEAT_INDICATOR:
+		/* Not supported */
+		break;
+	default:
+		printk(KERN_ERR "DWC OTG HCD - "
+				"SetPortFeature request %xh "
+				"unknown or unsupported\n", val);
+		spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+		return -EINVAL;
+	}
+	spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+	return 0;
+}
+
+/* Handles hub class-specific requests.*/
+static int dwc_otg_hcd_hub_control(struct usb_hcd *hcd, u16 req_type, u16 val,
+		u16 index, char *buf, u16 len)
+{
+	int retval = 0;
+	struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+	struct core_if *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
+	struct usb_hub_descriptor *desc;
+	union hprt0_data hprt0 = {.d32 = 0};
+	u32 port_status;
+	unsigned long flags;
+
+	spin_lock_irqsave(&dwc_hcd->lock, flags);
+	switch (req_type) {
+	case ClearHubFeature:
+		switch (val) {
+		case C_HUB_LOCAL_POWER:
+		case C_HUB_OVER_CURRENT:
+			/* Nothing required here */
+			break;
+		default:
+			retval = -EINVAL;
+			printk(KERN_ERR "DWC OTG HCD - ClearHubFeature request"
+					" %xh unknown\n", val);
+		}
+		break;
+	case ClearPortFeature:
+		if (!index || index > 1)
+			goto error;
+		spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+		retval = do_clear_port_feature(dwc_hcd, val);
+		spin_lock_irqsave(&dwc_hcd->lock, flags);
+		break;
+	case GetHubDescriptor:
+		desc = (struct usb_hub_descriptor *) buf;
+		desc->bDescLength = 9;
+		desc->bDescriptorType = 0x29;
+		desc->bNbrPorts = 1;
+		desc->wHubCharacteristics = 0x08;
+		desc->bPwrOn2PwrGood = 1;
+		desc->bHubContrCurrent = 0;
+		desc->bitmap[0] = 0;
+		desc->bitmap[1] = 0xff;
+		break;
+	case GetHubStatus:
+		memset(buf, 0, 4);
+		break;
+	case GetPortStatus:
+		if (!index || index > 1)
+			goto error;
+
+		port_status = 0;
+		if (dwc_hcd->flags.b.port_connect_status_change)
+			port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
+		if (dwc_hcd->flags.b.port_enable_change)
+			port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
+		if (dwc_hcd->flags.b.port_suspend_change)
+			port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
+		if (dwc_hcd->flags.b.port_reset_change)
+			port_status |= (1 << USB_PORT_FEAT_C_RESET);
+		if (dwc_hcd->flags.b.port_over_current_change) {
+			printk(KERN_ERR "Device Not Supported\n");
+			port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
+		}
+		if (!dwc_hcd->flags.b.port_connect_status) {
+			/*
+			 * The port is disconnected, which means the core is
+			 * either in device mode or it soon will be. Just
+			 * return 0's for the remainder of the port status
+			 * since the port register can't be read if the core
+			 * is in device mode.
+			 */
+			*((__le32 *) buf) = cpu_to_le32(port_status);
+			break;
+		}
+
+		hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
+
+		if (hprt0.b.prtconnsts)
+			port_status |= USB_PORT_STAT_CONNECTION;
+		if (hprt0.b.prtena)
+			port_status |= USB_PORT_STAT_ENABLE;
+		if (hprt0.b.prtsusp)
+			port_status |= USB_PORT_STAT_SUSPEND;
+		if (hprt0.b.prtovrcurract)
+			port_status |= USB_PORT_STAT_OVERCURRENT;
+		if (hprt0.b.prtrst)
+			port_status |= USB_PORT_STAT_RESET;
+		if (hprt0.b.prtpwr)
+			port_status |= USB_PORT_STAT_POWER;
+
+		if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
+			port_status |= USB_PORT_STAT_HIGH_SPEED;
+		else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
+			port_status |= USB_PORT_STAT_LOW_SPEED;
+
+		if (hprt0.b.prttstctl)
+			port_status |= (1 << USB_PORT_FEAT_TEST);
+
+		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
+		*((__le32 *) buf) = cpu_to_le32(port_status);
+		break;
+	case SetHubFeature:
+		/* No HUB features supported */
+		break;
+	case SetPortFeature:
+		if (val != USB_PORT_FEAT_TEST && (!index || index > 1))
+			goto error;
+
+		if (!dwc_hcd->flags.b.port_connect_status) {
+			/*
+			 * The port is disconnected, which means the core is
+			 * either in device mode or it soon will be. Just
+			 * return without doing anything since the port
+			 * register can't be written if the core is in device
+			 * mode.
+			 */
+			break;
+		}
+		spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+		retval = do_set_port_feature(hcd, val, index);
+		spin_lock_irqsave(&dwc_hcd->lock, flags);
+		break;
+	default:
+error:
+		retval = -EINVAL;
+		printk(KERN_WARNING "DWC OTG HCD - Unknown hub control request"
+			" type or invalid req_type: %xh index: %xh "
+			"val: %xh\n", req_type, index, val);
+		break;
+	}
+	spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+	return retval;
+}
+
+/**
+ * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
+ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
+ * interrupt.
+ *
+ * This function is called by the USB core when an interrupt occurs
+ */
+static irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd)
+{
+	struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+	return IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_hcd));
+}
+
+static const struct hc_driver dwc_otg_hc_driver = {
+	.description = dwc_otg_hcd_name,
+	.product_desc = "DWC OTG Controller",
+	.hcd_priv_size = sizeof(struct dwc_hcd),
+	.irq = dwc_otg_hcd_irq,
+	.flags = HCD_MEMORY | HCD_USB2,
+	.start = dwc_otg_hcd_start,
+	.stop = dwc_otg_hcd_stop,
+	.urb_enqueue = dwc_otg_hcd_urb_enqueue,
+	.urb_dequeue = dwc_otg_hcd_urb_dequeue,
+	.endpoint_disable = dwc_otg_hcd_endpoint_disable,
+	.get_frame_number = dwc_otg_hcd_get_frame_number,
+	.hub_status_data = dwc_otg_hcd_hub_status_data,
+	.hub_control = dwc_otg_hcd_hub_control,
+};
+
+/**
+ * Frees secondary storage associated with the dwc_hcd structure contained
+ * in the struct usb_hcd field.
+ */
+static void dwc_otg_hcd_free(struct usb_hcd *hcd)
+{
+	struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+	u32 i;
+
+	del_timers(dwc_hcd);
+
+	/* Free memory for QH/QTD lists */
+	qh_list_free(dwc_hcd, &dwc_hcd->non_periodic_sched_inactive);
+	qh_list_free(dwc_hcd, &dwc_hcd->non_periodic_sched_active);
+	qh_list_free(dwc_hcd, &dwc_hcd->periodic_sched_inactive);
+	qh_list_free(dwc_hcd, &dwc_hcd->periodic_sched_ready);
+	qh_list_free(dwc_hcd, &dwc_hcd->periodic_sched_assigned);
+	qh_list_free(dwc_hcd, &dwc_hcd->periodic_sched_queued);
+
+	/* Free memory for the host channels. */
+	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
+		struct dwc_hc *hc = dwc_hcd->hc_ptr_array[i];
+
+		kfree(hc);
+	}
+	if (dwc_hcd->core_if->dma_enable) {
+		if (dwc_hcd->status_buf_dma) {
+			dma_free_coherent(hcd->self.controller,
+					DWC_OTG_HCD_STATUS_BUF_SIZE,
+					dwc_hcd->status_buf,
+					dwc_hcd->status_buf_dma);
+		}
+	} else {
+		kfree(dwc_hcd->status_buf);
+	}
+}
+
+/**
+ * Initializes the HCD. This function allocates memory for and initializes the
+ * static parts of the usb_hcd and dwc_hcd structures. It also registers the
+ * USB bus with the core and calls the hc_driver->start() function. It returns
+ * a negative error on failure.
+ */
+int __devinit dwc_otg_hcd_init(struct device *_dev,
+		struct dwc_otg_device *dwc_otg_device)
+{
+	struct usb_hcd *hcd = NULL;
+	struct dwc_hcd *dwc_hcd = NULL;
+	struct dwc_otg_device *otg_dev = dev_get_drvdata(_dev);
+	int num_channels;
+	u32 i;
+	struct dwc_hc *channel;
+	int retval = 0;
+
+	/*
+	 * Allocate memory for the base HCD plus the DWC OTG HCD.
+	 * Initialize the base HCD.
+	 */
+	hcd = usb_create_hcd(&dwc_otg_hc_driver, _dev, dwc_otg_hcd_name);
+	if (!hcd) {
+		retval = -ENOMEM;
+		goto error1;
+	}
+	dev_set_drvdata(_dev, dwc_otg_device);
+	hcd->regs = otg_dev->base;
+	hcd->self.otg_port = 1;
+
+	/* Initialize the DWC OTG HCD. */
+	dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+	dwc_hcd->core_if = otg_dev->core_if;
+	spin_lock_init(&dwc_hcd->lock);
+	otg_dev->hcd = dwc_hcd;
+
+	/* Register the HCD CIL Callbacks */
+	dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if, &hcd_cil_callbacks,
+						hcd);
+
+	/* Initialize the non-periodic schedule. */
+	INIT_LIST_HEAD(&dwc_hcd->non_periodic_sched_inactive);
+	INIT_LIST_HEAD(&dwc_hcd->non_periodic_sched_active);
+
+	/* Initialize the periodic schedule. */
+	INIT_LIST_HEAD(&dwc_hcd->periodic_sched_inactive);
+	INIT_LIST_HEAD(&dwc_hcd->periodic_sched_ready);
+	INIT_LIST_HEAD(&dwc_hcd->periodic_sched_assigned);
+	INIT_LIST_HEAD(&dwc_hcd->periodic_sched_queued);
+
+	/*
+	 * Create a host channel descriptor for each host channel implemented
+	 * in the controller. Initialize the channel descriptor array.
+	 */
+	INIT_LIST_HEAD(&dwc_hcd->free_hc_list);
+	num_channels = dwc_hcd->core_if->core_params->host_channels;
+
+	for (i = 0; i < num_channels; i++) {
+		channel = kzalloc(sizeof(struct dwc_hc), GFP_KERNEL);
+		if (!channel) {
+			retval = -ENOMEM;
+			printk(KERN_ERR "%s: host channel allocation failed\n",
+				__func__);
+			goto error2;
+		}
+
+		channel->hc_num = i;
+		dwc_hcd->hc_ptr_array[i] = channel;
+	}
+
+	/* Initialize the Connection timeout timer. */
+	init_timer(&dwc_hcd->conn_timer);
+
+    /* Initialize reset workqueue */
+	INIT_WORK(&dwc_hcd->usb_port_reset, port_reset_wqfunc);
+	INIT_DELAYED_WORK(&dwc_hcd->core_if->usb_port_wakeup,
+		port_wakeup_wqfunc);
+
+	/* Set device flags indicating whether the HCD supports DMA. */
+	if (otg_dev->core_if->dma_enable) {
+		static u64 dummy_mask = DMA_BIT_MASK(32);
+		printk(KERN_INFO "Using DMA mode\n");
+		_dev->dma_mask = (void *) &dummy_mask;
+		_dev->coherent_dma_mask = ~0;
+	} else {
+		printk(KERN_INFO "Using Slave mode\n");
+		_dev->dma_mask = (void *) 0;
+		_dev->coherent_dma_mask = 0;
+	}
+
+	/*
+	 * Finish generic HCD initialization and start the HCD. This function
+	 * allocates the DMA buffer pool, registers the USB bus, requests the
+	 * IRQ line, and calls dwc_otg_hcd_start method.
+	 */
+	retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED);
+	if (retval < 0)
+		goto error2;
+
+	/*
+	 * Allocate space for storing data on status transactions. Normally no
+	 * data is sent, but this space acts as a bit bucket. This must be
+	 * done after usb_add_hcd since that function allocates the DMA buffer
+	 * pool.
+	 */
+	if (otg_dev->core_if->dma_enable) {
+		dwc_hcd->status_buf =
+			dma_alloc_coherent(_dev, DWC_OTG_HCD_STATUS_BUF_SIZE,
+						&dwc_hcd->status_buf_dma,
+						GFP_KERNEL | GFP_DMA);
+	} else {
+		dwc_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
+							GFP_KERNEL);
+	}
+	if (!dwc_hcd->status_buf) {
+		retval = -ENOMEM;
+		printk(KERN_ERR "%s: status_buf allocation failed\n", __func__);
+		goto error3;
+	}
+	return 0;
+
+error3:
+	usb_remove_hcd(hcd);
+error2:
+	dwc_otg_hcd_free(hcd);
+	usb_put_hcd(hcd);
+error1:
+	return retval;
+}
+
+/**
+ * Removes the HCD.
+ * Frees memory and resources associated with the HCD and deregisters the bus.
+ */
+void __devexit dwc_otg_hcd_remove(struct device *_dev)
+{
+	struct dwc_otg_device *otg_dev = dev_get_drvdata(_dev);
+	struct dwc_hcd *dwc_hcd = otg_dev->hcd;
+	struct usb_hcd *hcd = dwc_otg_hcd_to_hcd(dwc_hcd);
+
+	/* Turn off all interrupts */
+	dwc_write_reg32(gintmsk_reg(dwc_hcd), 0);
+	dwc_modify_reg32(gahbcfg_reg(dwc_hcd), 1, 0);
+
+	cancel_work_sync(&dwc_hcd->start_work);
+	cancel_work_sync(&dwc_hcd->usb_port_reset);
+	cancel_work_sync(&dwc_hcd->core_if->usb_port_otg);
+	cancel_rearming_delayed_work(&dwc_hcd->core_if->usb_port_wakeup);
+
+	usb_remove_hcd(hcd);
+	dwc_otg_hcd_free(hcd);
+	usb_put_hcd(hcd);
+}
+
+/** Returns the current frame number. */
+int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd)
+{
+	struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+	union hfnum_data hfnum;
+
+	hfnum.d32 = dwc_read_reg32(&dwc_hcd->core_if->host_if->
+					host_global_regs->hfnum);
+
+	return hfnum.b.frnum;
+}
+
+/**
+ * Prepares a host channel for transferring packets to/from a specific
+ * endpoint. The HCCHARn register is set up with the characteristics specified
+ * in _hc. Host channel interrupts that may need to be serviced while this
+ * transfer is in progress are enabled.
+ */
+static void dwc_otg_hc_init(struct core_if *core_if, struct dwc_hc *hc)
+{
+	u32 intr_enable;
+	union hcintmsk_data hc_intr_mask;
+	union gintmsk_data gintmsk = {.d32 = 0};
+	union hcchar_data hcchar;
+	union hcsplt_data hcsplt;
+	u8 hc_num = hc->hc_num;
+	struct dwc_host_if *host_if = core_if->host_if;
+	struct dwc_hc_regs *hc_regs = host_if->hc_regs[hc_num];
+
+	/* Clear old interrupt conditions for this host channel. */
+	hc_intr_mask.d32 = 0xFFFFFFFF;
+	hc_intr_mask.b.reserved = 0;
+	dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
+
+	/* Enable channel interrupts required for this transfer. */
+	hc_intr_mask.d32 = 0;
+	hc_intr_mask.b.chhltd = 1;
+	if (core_if->dma_enable) {
+		hc_intr_mask.b.ahberr = 1;
+
+		if (hc->error_state && !hc->do_split &&
+				 hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
+			hc_intr_mask.b.ack = 1;
+			if (hc->ep_is_in) {
+				hc_intr_mask.b.datatglerr = 1;
+				if (hc->ep_type != DWC_OTG_EP_TYPE_INTR)
+					hc_intr_mask.b.nak = 1;
+			}
+		}
+	} else {
+		switch (hc->ep_type) {
+		case DWC_OTG_EP_TYPE_CONTROL:
+		case DWC_OTG_EP_TYPE_BULK:
+			hc_intr_mask.b.xfercompl = 1;
+			hc_intr_mask.b.stall = 1;
+			hc_intr_mask.b.xacterr = 1;
+			hc_intr_mask.b.datatglerr = 1;
+
+			if (hc->ep_is_in) {
+				hc_intr_mask.b.bblerr = 1;
+			}
+			else {
+				hc_intr_mask.b.nak = 1;
+				hc_intr_mask.b.nyet = 1;
+				if (hc->do_ping)
+					hc_intr_mask.b.ack = 1;
+			}
+
+			if (hc->do_split) {
+				hc_intr_mask.b.nak = 1;
+				if (hc->complete_split)
+					hc_intr_mask.b.nyet = 1;
+				else
+					hc_intr_mask.b.ack = 1;
+			}
+
+			if (hc->error_state)
+				hc_intr_mask.b.ack = 1;
+			break;
+		case DWC_OTG_EP_TYPE_INTR:
+			hc_intr_mask.b.xfercompl = 1;
+			hc_intr_mask.b.nak = 1;
+			hc_intr_mask.b.stall = 1;
+			hc_intr_mask.b.xacterr = 1;
+			hc_intr_mask.b.datatglerr = 1;
+			hc_intr_mask.b.frmovrun = 1;
+
+			if (hc->ep_is_in)
+				hc_intr_mask.b.bblerr = 1;
+			if (hc->error_state)
+				hc_intr_mask.b.ack = 1;
+
+			if (hc->do_split) {
+				if (hc->complete_split)
+					hc_intr_mask.b.nyet = 1;
+				else
+					hc_intr_mask.b.ack = 1;
+			}
+			break;
+		case DWC_OTG_EP_TYPE_ISOC:
+			hc_intr_mask.b.xfercompl = 1;
+			hc_intr_mask.b.frmovrun = 1;
+			hc_intr_mask.b.ack = 1;
+
+			if (hc->ep_is_in) {
+				hc_intr_mask.b.xacterr = 1;
+				hc_intr_mask.b.bblerr = 1;
+			}
+			break;
+		}
+	}
+	dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
+
+	/* Enable the top level host channel interrupt. */
+	intr_enable = (1 << hc_num);
+	dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
+
+	/* Make sure host channel interrupts are enabled. */
+	gintmsk.b.hcintr = 1;
+	dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
+
+	/*
+	 * Program the HCCHARn register with the endpoint characteristics for
+	 * the current transfer.
+	 */
+	hcchar.d32 = 0;
+	hcchar.b.devaddr = hc->dev_addr;
+	hcchar.b.epnum = hc->ep_num;
+	hcchar.b.epdir = hc->ep_is_in;
+	hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW);
+	hcchar.b.eptype = hc->ep_type;
+	hcchar.b.mps = hc->max_packet;
+	dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
+
+	/* Program the HCSPLIT register for SPLITs */
+	hcsplt.d32 = 0;
+	if (hc->do_split) {
+		hcsplt.b.compsplt = hc->complete_split;
+		hcsplt.b.xactpos = hc->xact_pos;
+		hcsplt.b.hubaddr = hc->hub_addr;
+		hcsplt.b.prtaddr = hc->port_addr;
+	}
+	dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
+}
+
+/**
+ * Assigns transactions from a QTD to a free host channel and initializes the
+ * host channel to perform the transactions. The host channel is removed from
+ * the free list.
+ */
+static void assign_and_init_hc(struct dwc_hcd *hcd, struct dwc_qh * qh)
+{
+	struct dwc_hc *hc;
+	struct dwc_qtd *qtd;
+	struct urb *urb;
+	struct usb_iso_packet_descriptor *frame_desc;
+
+	hc = list_entry(hcd->free_hc_list.next, struct dwc_hc, hc_list_entry);
+
+	/* Remove the host channel from the free list. */
+	list_del_init(&hc->hc_list_entry);
+	qtd = list_entry(qh->qtd_list.next, struct dwc_qtd, qtd_list_entry);
+	urb = qtd->urb;
+	qh->channel = hc;
+	qh->qtd_in_process = qtd;
+
+	/*
+	 * Use usb_pipedevice to determine device address. This address is
+	 * 0 before the SET_ADDRESS command and the correct address afterward.
+	 */
+	hc->dev_addr = usb_pipedevice(urb->pipe);
+	hc->ep_num = usb_pipeendpoint(urb->pipe);
+
+	if (urb->dev->speed == USB_SPEED_LOW)
+		hc->speed = DWC_OTG_EP_SPEED_LOW;
+	else if (urb->dev->speed == USB_SPEED_FULL)
+		hc->speed = DWC_OTG_EP_SPEED_FULL;
+	else
+		hc->speed = DWC_OTG_EP_SPEED_HIGH;
+
+	hc->max_packet = dwc_max_packet(qh->maxp);
+	hc->xfer_started = 0;
+	hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
+	hc->error_state = (qtd->error_count > 0);
+	hc->halt_on_queue = 0;
+	hc->halt_pending = 0;
+	hc->requests = 0;
+
+	/*
+	 * The following values may be modified in the transfer type section
+	 * below. The xfer_len value may be reduced when the transfer is
+	 * started to accommodate the max widths of the XferSize and PktCnt
+	 * fields in the HCTSIZn register.
+	 */
+	hc->do_ping = qh->ping_state;
+	hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
+	hc->data_pid_start = qh->data_toggle;
+	hc->multi_count = 1;
+
+	if (hcd->core_if->dma_enable)
+		hc->xfer_buff = (u8 *) urb->transfer_dma +
+			urb->actual_length;
+	 else
+		hc->xfer_buff = (u8 *) urb->transfer_buffer +
+			urb->actual_length;
+
+	hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
+	hc->xfer_count = 0;
+
+	/*
+	 * Set the split attributes
+	 */
+	hc->do_split = 0;
+	if (qh->do_split) {
+		hc->do_split = 1;
+		hc->xact_pos = qtd->isoc_split_pos;
+		hc->complete_split = qtd->complete_split;
+		hc->hub_addr = urb->dev->tt->hub->devnum;
+		hc->port_addr = urb->dev->ttport;
+	}
+
+	switch (usb_pipetype(urb->pipe)) {
+	case PIPE_CONTROL:
+		hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
+
+		switch (qtd->control_phase) {
+		case DWC_OTG_CONTROL_SETUP:
+			hc->do_ping = 0;
+			hc->ep_is_in = 0;
+			hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
+
+			if (hcd->core_if->dma_enable)
+				hc->xfer_buff = (u8 *) urb->setup_dma;
+			else
+				hc->xfer_buff = (u8 *) urb->setup_packet;
+
+			hc->xfer_len = 8;
+			break;
+		case DWC_OTG_CONTROL_DATA:
+			hc->data_pid_start = qtd->data_toggle;
+			break;
+		case DWC_OTG_CONTROL_STATUS:
+			/*
+			 * Direction is opposite of data direction or IN if no
+			 * data.
+			 */
+			if (urb->transfer_buffer_length == 0)
+				hc->ep_is_in = 1;
+			else
+				hc->ep_is_in = (usb_pipein(urb->pipe) !=
+							USB_DIR_IN);
+
+			if (hc->ep_is_in)
+				hc->do_ping = 0;
+
+			hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
+			hc->xfer_len = 0;
+			if (hcd->core_if->dma_enable)
+				hc->xfer_buff = (u8 *) hcd->status_buf_dma;
+			else
+				hc->xfer_buff = (u8 *) hcd->status_buf;
+			break;
+		}
+		break;
+	case PIPE_BULK:
+		hc->ep_type = DWC_OTG_EP_TYPE_BULK;
+		break;
+	case PIPE_INTERRUPT:
+		hc->ep_type = DWC_OTG_EP_TYPE_INTR;
+		break;
+	case PIPE_ISOCHRONOUS:
+		frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
+		hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
+
+		if (hcd->core_if->dma_enable)
+			hc->xfer_buff = (u8 *) urb->transfer_dma;
+		else
+			hc->xfer_buff = (u8 *) urb->transfer_buffer;
+
+		hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset;
+		hc->xfer_len = frame_desc->length - qtd->isoc_split_offset;
+
+		if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
+			if (hc->xfer_len <= 188)
+				hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
+			else
+				hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN;
+		}
+		break;
+	}
+
+	if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+			hc->ep_type == DWC_OTG_EP_TYPE_ISOC)
+		/*
+		 * This value may be modified when the transfer is started to
+		 * reflect the actual transfer length.
+		 */
+		hc->multi_count = dwc_hb_mult(qh->maxp);
+
+	dwc_otg_hc_init(hcd->core_if, hc);
+	hc->qh = qh;
+}
+
+/**
+ * This function selects transactions from the HCD transfer schedule and
+ * assigns them to available host channels. It is called from HCD interrupt
+ * handler functions.
+ */
+enum dwc_transaction_type dwc_otg_hcd_select_transactions(struct dwc_hcd *hcd)
+{
+	struct list_head *qh_ptr;
+	struct dwc_qh *qh;
+	int num_channels;
+	enum dwc_transaction_type ret_val = DWC_OTG_TRANSACTION_NONE;
+
+	/* Process entries in the periodic ready list. */
+	qh_ptr = hcd->periodic_sched_ready.next;
+	while (qh_ptr != &hcd->periodic_sched_ready &&
+	       !list_empty(&hcd->free_hc_list)) {
+		qh = list_entry(qh_ptr, struct dwc_qh, qh_list_entry);
+		assign_and_init_hc(hcd, qh);
+
+		/*
+		 * Move the QH from the periodic ready schedule to the
+		 * periodic assigned schedule.
+		 */
+		qh_ptr = qh_ptr->next;
+		list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned);
+		ret_val = DWC_OTG_TRANSACTION_PERIODIC;
+	}
+
+	/*
+	 * Process entries in the inactive portion of the non-periodic
+	 * schedule. Some free host channels may not be used if they are
+	 * reserved for periodic transfers.
+	 */
+	qh_ptr = hcd->non_periodic_sched_inactive.next;
+	num_channels = hcd->core_if->core_params->host_channels;
+
+	while (qh_ptr != &hcd->non_periodic_sched_inactive &&
+	       (hcd->non_periodic_channels <
+	       num_channels - hcd->periodic_channels) &&
+	       !list_empty(&hcd->free_hc_list)) {
+		qh = list_entry(qh_ptr, struct dwc_qh, qh_list_entry);
+		assign_and_init_hc(hcd, qh);
+
+		/*
+		 * Move the QH from the non-periodic inactive schedule to the
+		 * non-periodic active schedule.
+		 */
+		qh_ptr = qh_ptr->next;
+		list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active);
+		if (ret_val == DWC_OTG_TRANSACTION_NONE)
+			ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
+		else
+			ret_val = DWC_OTG_TRANSACTION_ALL;
+
+		hcd->non_periodic_channels++;
+	}
+	return ret_val;
+}
+
+/**
+ * Sets the channel property that indicates in which frame a periodic transfer
+ * should occur. This is always set to the _next_ frame. This function has no
+ * effect on non-periodic transfers.
+ */
+static inline void hc_set_even_odd_frame(struct core_if *core_if,
+			struct dwc_hc *hc, union hcchar_data *hcchar)
+{
+	if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+			hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+		union hfnum_data hfnum;
+		hfnum.d32 = dwc_read_reg32(
+			&core_if->host_if->host_global_regs->hfnum);
+
+		/* 1 if _next_ frame is odd, 0 if it's even */
+		hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
+	}
+}
+
+static void set_initial_xfer_pid(struct dwc_hc *hc)
+{
+	if (hc->speed == DWC_OTG_EP_SPEED_HIGH) {
+		if (hc->ep_is_in) {
+			if (hc->multi_count == 1)
+				hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
+			else if (hc->multi_count == 2)
+				hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
+			else
+				hc->data_pid_start = DWC_OTG_HC_PID_DATA2;
+		} else {
+			if (hc->multi_count == 1)
+				hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
+			else
+				hc->data_pid_start = DWC_OTG_HC_PID_MDATA;
+		}
+	} else {
+		hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
+	}
+}
+
+/**
+ * Starts a PING transfer. This function should only be called in Slave mode.
+ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
+ */
+void dwc_otg_hc_do_ping(struct core_if *core_if, struct dwc_hc *hc)
+{
+	union hcchar_data hcchar;
+	union hctsiz_data hctsiz;
+	struct dwc_hc_regs *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+
+	hctsiz.d32 = 0;
+	hctsiz.b.dopng = 1;
+	hctsiz.b.pktcnt = 1;
+	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
+
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	hcchar.b.chen = 1;
+	hcchar.b.chdis = 0;
+	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+}
+
+/**
+ * This function writes a packet into the Tx FIFO associated with the Host
+ * Channel. For a channel associated with a non-periodic EP, the non-periodic
+ * Tx FIFO is written. For a channel associated with a periodic EP, the
+ * periodic Tx FIFO is written. This function should only be called in Slave
+ * mode.
+ *
+ * Upon return the xfer_buff and xfer_count fields in hc are incremented by
+ * then number of bytes written to the Tx FIFO.
+ */
+static void dwc_otg_hc_write_packet(struct core_if *core_if, struct dwc_hc *hc)
+{
+	u32 i;
+	u32 remaining_count;
+	u32 byte_count;
+	u32 dword_count;
+	u32 *data_buff = (u32 *) (hc->xfer_buff);
+	u32 *data_fifo = core_if->data_fifo[hc->hc_num];
+
+	remaining_count = hc->xfer_len - hc->xfer_count;
+	if (remaining_count > hc->max_packet)
+		byte_count = hc->max_packet;
+	 else
+		byte_count = remaining_count;
+
+	dword_count = (byte_count + 3) / 4;
+
+	if (((unsigned long)data_buff) & 0x3)
+		/* xfer_buff is not DWORD aligned. */
+		for (i = 0; i < dword_count; i++, data_buff++)
+			dwc_write_datafifo32(data_fifo,
+				get_unaligned(data_buff));
+	else
+		/* xfer_buff is DWORD aligned. */
+		for (i = 0; i < dword_count; i++, data_buff++)
+			dwc_write_datafifo32(data_fifo, *data_buff);
+
+	hc->xfer_count += byte_count;
+	hc->xfer_buff += byte_count;
+}
+
+/**
+ * This function does the setup for a data transfer for a host channel and
+ * starts the transfer. May be called in either Slave mode or DMA mode. In
+ * Slave mode, the caller must ensure that there is sufficient space in the
+ * request queue and Tx Data FIFO.
+ *
+ * For an OUT transfer in Slave mode, it loads a data packet into the
+ * appropriate FIFO. If necessary, additional data packets will be loaded in
+ * the Host ISR.
+ *
+ * For an IN transfer in Slave mode, a data packet is requested. The data
+ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
+ * additional data packets are requested in the Host ISR.
+ *
+ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
+ * register along with a packet count of 1 and the channel is enabled. This
+ * causes a single PING transaction to occur. Other fields in HCTSIZ are
+ * simply set to 0 since no data transfer occurs in this case.
+ *
+ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
+ * all the information required to perform the subsequent data transfer. In
+ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
+ * controller performs the entire PING protocol, then starts the data
+ * transfer.
+ */
+static void dwc_otg_hc_start_transfer(struct core_if *core_if,
+	struct dwc_hc *hc)
+{
+	union hcchar_data hcchar;
+	union hctsiz_data hctsiz;
+	u16 num_packets;
+	u32 max_hc_xfer_size = core_if->core_params->max_transfer_size;
+	u16 max_hc_pkt_count = core_if->core_params->max_packet_count;
+	struct dwc_hc_regs *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+	hctsiz.d32 = 0;
+
+	if (hc->do_ping) {
+		if (!core_if->dma_enable) {
+			dwc_otg_hc_do_ping(core_if, hc);
+			hc->xfer_started = 1;
+			return;
+		} else {
+			hctsiz.b.dopng = 1;
+		}
+	}
+
+	if (hc->do_split) {
+		num_packets = 1;
+
+		if (hc->complete_split && !hc->ep_is_in)
+			/*
+			 * For CSPLIT OUT Transfer, set the size to 0 so the
+			 * core doesn't expect any data written to the FIFO
+			 */
+			hc->xfer_len = 0;
+		else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet))
+			hc->xfer_len = hc->max_packet;
+		else if (!hc->ep_is_in && (hc->xfer_len > 188))
+			hc->xfer_len = 188;
+
+		hctsiz.b.xfersize = hc->xfer_len;
+	} else {
+		/*
+		 * Ensure that the transfer length and packet count will fit
+		 * in the widths allocated for them in the HCTSIZn register.
+		 */
+		if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+				hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+			u32 max_len = hc->multi_count * hc->max_packet;
+
+			/*
+			 * Make sure the transfer size is no larger than one
+			 * (micro)frame's worth of data. (A check was done
+			 * when the periodic transfer was accepted to ensure
+			 * that a (micro)frame's worth of data can be
+			 * programmed into a channel.)
+			 */
+			if (hc->xfer_len > max_len)
+				hc->xfer_len = max_len;
+		} else if (hc->xfer_len > max_hc_xfer_size) {
+			/*
+			 * Make sure that xfer_len is a multiple of max packet
+			 * size.
+			 */
+			hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1;
+		}
+		if (hc->xfer_len > 0) {
+			num_packets = (hc->xfer_len + hc->max_packet - 1) /
+				hc->max_packet;
+			if (num_packets > max_hc_pkt_count) {
+				num_packets = max_hc_pkt_count;
+				hc->xfer_len = num_packets * hc->max_packet;
+			}
+		} else {
+			/* Need 1 packet for transfer length of 0. */
+			num_packets = 1;
+		}
+
+		if (hc->ep_is_in)
+			/*
+			 * Always program an integral # of max packets for IN
+			 * transfers.
+			 */
+			hc->xfer_len = num_packets * hc->max_packet;
+
+		if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+				hc->ep_type == DWC_OTG_EP_TYPE_ISOC)
+			/*
+			 * Make sure that the multi_count field matches the
+			 * actual transfer length.
+			 */
+			hc->multi_count = num_packets;
+
+		/* Set up the initial PID for the transfer. */
+		if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC)
+			set_initial_xfer_pid(hc);
+
+		hctsiz.b.xfersize = hc->xfer_len;
+	}
+
+	hc->start_pkt_count = num_packets;
+	hctsiz.b.pktcnt = num_packets;
+	hctsiz.b.pid = hc->data_pid_start;
+	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
+
+	if (core_if->dma_enable)
+		dwc_write_reg32(&hc_regs->hcdma, (u32) hc->xfer_buff);
+
+	/* Start the split */
+	if (hc->do_split) {
+		union hcsplt_data hcsplt;
+		hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
+		hcsplt.b.spltena = 1;
+		dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
+	}
+
+	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+	hcchar.b.multicnt = hc->multi_count;
+	hc_set_even_odd_frame(core_if, hc, &hcchar);
+
+	/* Set host channel enable after all other setup is complete. */
+	hcchar.b.chen = 1;
+	hcchar.b.chdis = 0;
+	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+	hc->xfer_started = 1;
+	hc->requests++;
+	if (!core_if->dma_enable && !hc->ep_is_in && hc->xfer_len > 0)
+		/* Load OUT packet into the appropriate Tx FIFO. */
+		dwc_otg_hc_write_packet(core_if, hc);
+}
+
+/**
+ * This function continues a data transfer that was started by previous call
+ * to dwc_otg_hc_start_transfer</code>. The caller must ensure there is
+ * sufficient space in the request queue and Tx Data FIFO. This function
+ * should only be called in Slave mode. In DMA mode, the controller acts
+ * autonomously to complete transfers programmed to a host channel.
+ *
+ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
+ * if there is any data remaining to be queued. For an IN transfer, another
+ * data packet is always requested. For the SETUP phase of a control transfer,
+ * this function does nothing.
+ */
+static int dwc_otg_hc_continue_transfer(struct core_if *core_if,
+	struct dwc_hc *hc)
+{
+	if (hc->do_split) {
+		/* SPLITs always queue just once per channel */
+		return 0;
+	}
+	else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
+		/* SETUPs are queued only once since they can't be NAKed. */
+		return 0;
+	}
+	else if (hc->ep_is_in) {
+		/*
+		  * Always queue another request for other IN transfers. If
+		  * back-to-back INs are issued and NAKs are received for both,
+		  * the driver may still be processing the first NAK when the
+		  * second NAK is received. When the interrupt handler clears
+		  * the NAK interrupt for the first NAK, the second NAK will
+		  * not be seen. So we can't depend on the NAK interrupt
+		  * handler to requeue a NAKed request. Instead, IN requests
+		  * are issued each time this function is called. When the
+		  * transfer completes, the extra requests for the channel will
+		  * be flushed.
+		  */
+		union hcchar_data hcchar;
+		struct dwc_hc_regs *hc_regs =
+			core_if->host_if->hc_regs[hc->hc_num];
+
+		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+		hc_set_even_odd_frame(core_if, hc, &hcchar);
+
+		hcchar.b.chen = 1;
+		hcchar.b.chdis = 0;
+		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+		hc->requests++;
+		return 1;
+	} else {
+		/* OUT transfers. */
+		if (hc->xfer_count < hc->xfer_len) {
+			if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+					hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+				union hcchar_data hcchar;
+				struct dwc_hc_regs *hc_regs;
+
+				hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+				hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+				hc_set_even_odd_frame(core_if, hc, &hcchar);
+			}
+
+			/* Load OUT packet into the appropriate Tx FIFO. */
+			dwc_otg_hc_write_packet(core_if, hc);
+			hc->requests++;
+			return 1;
+		} else  {
+			return 0;
+		}
+	}
+}
+
+/**
+ * This function writes a packet into the Tx FIFO associated with the Host
+ * Channel. For a channel associated with a non-periodic EP, the non-periodic
+ * Tx FIFO is written. For a channel associated with a periodic EP, the
+ * periodic Tx FIFO is written. This function should only be called in Slave
+ * mode.
+ *
+ * Upon return the xfer_buff and xfer_count fields in hc are incremented by
+ * then number of bytes written to the Tx FIFO.
+ */
+
+/**
+ * Attempts to queue a single transaction request for a host channel
+ * associated with either a periodic or non-periodic transfer. This function
+ * assumes that there is space available in the appropriate request queue. For
+ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
+ * is available in the appropriate Tx FIFO.
+ */
+static int queue_transaction(struct dwc_hcd *hcd, struct dwc_hc *hc,
+			u16 _fifo_dwords_avail)
+{
+	int retval;
+
+	if (hcd->core_if->dma_enable) {
+		if (!hc->xfer_started) {
+			dwc_otg_hc_start_transfer(hcd->core_if, hc);
+			hc->qh->ping_state = 0;
+		}
+		retval = 0;
+	} else if (hc->halt_pending) {
+		/* Don't queue a request if the channel has been halted. */
+		retval = 0;
+	}
+	else if (hc->halt_on_queue) {
+		dwc_otg_hc_halt(hcd->core_if, hc, hc->halt_status);
+		retval = 0;
+	} else if (hc->do_ping) {
+		if (!hc->xfer_started)
+			dwc_otg_hc_start_transfer(hcd->core_if, hc);
+		retval = 0;
+	} else if (!hc->ep_is_in ||
+			hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
+		if ((_fifo_dwords_avail * 4) >= hc->max_packet) {
+			if (!hc->xfer_started) {
+				dwc_otg_hc_start_transfer(hcd->core_if, hc);
+				retval = 1;
+			} else {
+				retval = dwc_otg_hc_continue_transfer(
+						hcd->core_if, hc);
+			}
+		} else {
+			retval = -1;
+		}
+	} else {
+		if (!hc->xfer_started) {
+			dwc_otg_hc_start_transfer(hcd->core_if, hc);
+			retval = 1;
+		} else {
+			retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
+		}
+	}
+	return retval;
+}
+
+/**
+ * Processes active non-periodic channels and queues transactions for these
+ * channels to the DWC_otg controller. After queueing transactions, the NP Tx
+ * FIFO Empty interrupt is enabled if there are more transactions to queue as
+ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
+ * FIFO Empty interrupt is disabled.
+ */
+static void process_non_periodic_channels(struct dwc_hcd *hcd)
+{
+	union gnptxsts_data tx_status;
+	struct list_head *orig_qh_ptr;
+	struct dwc_qh *qh;
+	int status;
+	int no_queue_space = 0;
+	int no_fifo_space = 0;
+	int more_to_do = 0;
+	struct core_global_regs *regs = hcd->core_if->core_global_regs;
+
+	/*
+	 * Keep track of the starting point. Skip over the start-of-list
+	 * entry.
+	 */
+	if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active)
+		hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
+	orig_qh_ptr = hcd->non_periodic_qh_ptr;
+
+	/*
+	 * Process once through the active list or until no more space is
+	 * available in the request queue or the Tx FIFO.
+	 */
+	do {
+		tx_status.d32 = dwc_read_reg32(&regs->gnptxsts);
+		if (!hcd->core_if->dma_enable &&
+				tx_status.b.nptxqspcavail == 0) {
+			no_queue_space = 1;
+			break;
+		}
+
+		qh = list_entry(hcd->non_periodic_qh_ptr, struct dwc_qh,
+					qh_list_entry);
+		status = queue_transaction(hcd, qh->channel,
+					tx_status.b.nptxfspcavail);
+
+		if (status > 0) {
+			more_to_do = 1;
+		}
+		else if (status < 0) {
+			no_fifo_space = 1;
+			break;
+		}
+
+		/* Advance to next QH, skipping start-of-list entry. */
+		hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
+		if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active)
+			hcd->non_periodic_qh_ptr =
+				hcd->non_periodic_qh_ptr->next;
+	} while (hcd->non_periodic_qh_ptr != orig_qh_ptr);
+
+	if (!hcd->core_if->dma_enable) {
+		union gintmsk_data intr_mask = {.d32 = 0};
+
+		intr_mask.b.nptxfempty = 1;
+
+		if (more_to_do || no_queue_space || no_fifo_space) {
+			/*
+			 * May need to queue more transactions as the request
+			 * queue or Tx FIFO empties. Enable the non-periodic
+			 * Tx FIFO empty interrupt. (Always use the half-empty
+			 * level to ensure that new requests are loaded as
+			 * soon as possible.)
+			 */
+			dwc_modify_reg32(gintmsk_reg(hcd), 0, intr_mask.d32);
+		} else {
+			/*
+			 * Disable the Tx FIFO empty interrupt since there are
+			 * no more transactions that need to be queued right
+			 * now. This function is called from interrupt
+			 * handlers to queue more transactions as transfer
+			 * states change.
+			 */
+			dwc_modify_reg32(gintmsk_reg(hcd), intr_mask.d32, 0);
+		}
+	}
+}
+
+/**
+ * Processes periodic channels for the next frame and queues transactions for
+ * these channels to the DWC_otg controller. After queueing transactions, the
+ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
+ * to queue as Periodic Tx FIFO or request queue space becomes available.
+ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
+ */
+static void process_periodic_channels(struct dwc_hcd *hcd)
+{
+	union hptxsts_data tx_status;
+	struct list_head *qh_ptr;
+	struct dwc_qh *qh;
+	int status;
+	int no_queue_space = 0;
+	int no_fifo_space = 0;
+	struct host_global_regs *host_regs;
+
+	host_regs = hcd->core_if->host_if->host_global_regs;
+
+	qh_ptr = hcd->periodic_sched_assigned.next;
+	while (qh_ptr != &hcd->periodic_sched_assigned) {
+		tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
+		if (tx_status.b.ptxqspcavail == 0) {
+			no_queue_space = 1;
+			break;
+		}
+
+		qh = list_entry(qh_ptr, struct dwc_qh, qh_list_entry);
+
+		/*
+		 * Set a flag if we're queuing high-bandwidth in slave mode.
+		 * The flag prevents any halts to get into the request queue in
+		 * the middle of multiple high-bandwidth packets getting queued.
+		 */
+		if (!hcd->core_if->dma_enable && qh->channel->multi_count > 1)
+			hcd->core_if->queuing_high_bandwidth = 1;
+
+		status = queue_transaction(hcd, qh->channel,
+				tx_status.b.ptxfspcavail);
+		if (status < 0) {
+			no_fifo_space = 1;
+			break;
+		}
+
+		/*
+		 * In Slave mode, stay on the current transfer until there is
+		 * nothing more to do or the high-bandwidth request count is
+		 * reached. In DMA mode, only need to queue one request. The
+		 * controller automatically handles multiple packets for
+		 * high-bandwidth transfers.
+		 */
+		if (hcd->core_if->dma_enable || (status == 0 ||
+				qh->channel->requests ==
+				qh->channel->multi_count)) {
+			qh_ptr = qh_ptr->next;
+
+			/*
+			 * Move the QH from the periodic assigned schedule to
+			 * the periodic queued schedule.
+			 */
+			list_move(&qh->qh_list_entry,
+				  &hcd->periodic_sched_queued);
+
+			/* done queuing high bandwidth */
+			hcd->core_if->queuing_high_bandwidth = 0;
+		}
+	}
+
+	if (!hcd->core_if->dma_enable) {
+		union gintmsk_data intr_mask = {.d32 = 0};
+
+		intr_mask.b.ptxfempty = 1;
+
+		if (!list_empty(&hcd->periodic_sched_assigned) ||
+				no_queue_space || no_fifo_space)
+			/*
+			 * May need to queue more transactions as the request
+			 * queue or Tx FIFO empties. Enable the periodic Tx
+			 * FIFO empty interrupt. (Always use the half-empty
+			 * level to ensure that new requests are loaded as
+			 * soon as possible.)
+			 */
+			dwc_modify_reg32(gintmsk_reg(hcd), 0, intr_mask.d32);
+		else
+			/*
+			 * Disable the Tx FIFO empty interrupt since there are
+			 * no more transactions that need to be queued right
+			 * now. This function is called from interrupt
+			 * handlers to queue more transactions as transfer
+			 * states change.
+			 */
+			dwc_modify_reg32(gintmsk_reg(hcd), intr_mask.d32, 0);
+	}
+}
+
+/**
+ * This function processes the currently active host channels and queues
+ * transactions for these channels to the DWC_otg controller. It is called
+ * from HCD interrupt handler functions.
+ */
+void dwc_otg_hcd_queue_transactions(struct dwc_hcd *hcd,
+		enum dwc_transaction_type tr_type)
+{
+	/* Process host channels associated with periodic transfers. */
+	if ((tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
+			tr_type == DWC_OTG_TRANSACTION_ALL) &&
+			!list_empty(&hcd->periodic_sched_assigned))
+		process_periodic_channels(hcd);
+
+	/* Process host channels associated with non-periodic transfers. */
+	if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
+			tr_type == DWC_OTG_TRANSACTION_ALL) {
+		if (!list_empty(&hcd->non_periodic_sched_active)) {
+			process_non_periodic_channels(hcd);
+		} else {
+			/*
+			 * Ensure NP Tx FIFO empty interrupt is disabled when
+			 * there are no non-periodic transfers to process.
+			 */
+			union gintmsk_data gintmsk = {.d32 = 0};
+			gintmsk.b.nptxfempty = 1;
+			dwc_modify_reg32(gintmsk_reg(hcd), gintmsk.d32, 0);
+		}
+	}
+}
+
+/**
+ * Sets the final status of an URB and returns it to the device driver. Any
+ * required cleanup of the URB is performed.
+ */
+void dwc_otg_hcd_complete_urb(struct dwc_hcd *hcd, struct urb *urb, int status)
+__releases(hcd->lock)
+__acquires(hcd->lock)
+{
+	urb->hcpriv = NULL;
+	usb_hcd_unlink_urb_from_ep(dwc_otg_hcd_to_hcd(hcd), urb);
+
+	spin_unlock(&hcd->lock);
+	usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status);
+	spin_lock(&hcd->lock);
+}
diff --git a/drivers/usb/otg/dwc_otg_hcd.h b/drivers/usb/otg/dwc_otg_hcd.h
new file mode 100644
index 0000000..57c36f2
--- /dev/null
+++ b/drivers/usb/otg/dwc_otg_hcd.h
@@ -0,0 +1,421 @@
+/*
+ * DesignWare HS OTG controller driver
+ *
+ * Author: Mark Miesfeld <mmiesfeld at apm.com>
+ *
+ * Based on versions provided by AMCC and Synopsis which are:
+ *	Copyright (C) 2009-2010 AppliedMicro(www.apm.com)
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#if !defined(__DWC_HCD_H__)
+#define __DWC_HCD_H__
+
+#include <linux/list.h>
+#include <linux/usb.h>
+#include <linux/slab.h>
+#include <linux/usb/hcd.h>
+
+struct dwc_otg_device;
+
+#include "dwc_otg_cil.h"
+
+/*
+ * This file contains the structures, constants, and interfaces for
+ * the Host Contoller Driver (HCD).
+ *
+ * The Host Controller Driver (HCD) is responsible for translating requests
+ * from the USB Driver into the appropriate actions on the DWC_otg controller.
+ * It isolates the USBD from the specifics of the controller by providing an
+ * API to the USBD.
+ */
+
+/* Phases for control transfers. */
+enum dwc_control_phase {
+	DWC_OTG_CONTROL_SETUP,
+	DWC_OTG_CONTROL_DATA,
+	DWC_OTG_CONTROL_STATUS
+};
+
+/* Transaction types. */
+enum dwc_transaction_type {
+	DWC_OTG_TRANSACTION_NONE,
+	DWC_OTG_TRANSACTION_PERIODIC,
+	DWC_OTG_TRANSACTION_NON_PERIODIC,
+	DWC_OTG_TRANSACTION_ALL
+};
+
+/*
+ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
+ * interrupt, or isochronous transfer. A single QTD is created for each URB
+ * (of one of these types) submitted to the HCD. The transfer associated with
+ * a QTD may require one or multiple transactions.
+ *
+ * A QTD is linked to a Queue Head, which is entered in either the
+ * non-periodic or periodic schedule for execution. When a QTD is chosen for
+ * execution, some or all of its transactions may be executed. After
+ * execution, the state of the QTD is updated. The QTD may be retired if all
+ * its transactions are complete or if an error occurred. Otherwise, it
+ * remains in the schedule so more transactions can be executed later.
+ */
+struct dwc_qtd {
+	/*
+	 * Determines the PID of the next data packet for the data phase of
+	 * control transfers. Ignored for other transfer types.
+	 * One of the following values:
+	 *	- DWC_OTG_HC_PID_DATA0
+	 *	- DWC_OTG_HC_PID_DATA1
+	 */
+	u8 data_toggle;
+
+	/* Current phase for control transfers (Setup, Data, or Status). */
+	enum dwc_control_phase control_phase;
+
+	/*
+	 * Keep track of the current split type
+	 * for FS/LS endpoints on a HS Hub
+	 */
+	u8 complete_split;
+
+	/* How many bytes transferred during SSPLIT OUT */
+	u32 ssplit_out_xfer_count;
+
+	/*
+	 * Holds the number of bus errors that have occurred for a transaction
+	 * within this transfer.
+	 */
+	u8 error_count;
+
+	/*
+	 * Index of the next frame descriptor for an isochronous transfer. A
+	 * frame descriptor describes the buffer position and length of the
+	 * data to be transferred in the next scheduled (micro)frame of an
+	 * isochronous transfer. It also holds status for that transaction.
+	 * The frame index starts at 0.
+	 */
+	int isoc_frame_index;
+
+	/* Position of the ISOC split on full/low speed */
+	u8 isoc_split_pos;
+
+	/* Position of the ISOC split in the buffer for the current frame */
+	u16 isoc_split_offset;
+
+	/* URB for this transfer */
+	struct urb *urb;
+
+	/* This list of QTDs */
+	struct list_head qtd_list_entry;
+};
+
+/*
+ * A Queue Head (QH) holds the static characteristics of an endpoint and
+ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
+ * be entered in either the non-periodic or periodic schedule.
+ */
+struct dwc_qh {
+	/*
+	 * Endpoint type.
+	 * One of the following values:
+	 *	- USB_ENDPOINT_XFER_CONTROL
+	 *	- USB_ENDPOINT_XFER_ISOC
+	 *	- USB_ENDPOINT_XFER_BULK
+	 *	- USB_ENDPOINT_XFER_INT
+	 */
+	u8 ep_type;
+	u8 ep_is_in;
+
+	/* wMaxPacketSize Field of Endpoint Descriptor. */
+	u16 maxp;
+
+	/*
+	 * Determines the PID of the next data packet for non-control
+	 * transfers. Ignored for control transfers.
+	 * One of the following values:
+	 *	- DWC_OTG_HC_PID_DATA0
+	 *	- DWC_OTG_HC_PID_DATA1
+	 */
+	u8 data_toggle;
+
+	/* Ping state if 1. */
+	u8 ping_state;
+
+	/* List of QTDs for this QH. */
+	struct list_head qtd_list;
+
+	/* Host channel currently processing transfers for this QH. */
+	struct dwc_hc *channel;
+
+	/* QTD currently assigned to a host channel for this QH. */
+	struct dwc_qtd *qtd_in_process;
+
+	/* Full/low speed endpoint on high-speed hub requires split. */
+	u8 do_split;
+
+	/* Periodic schedule information */
+
+	/* Bandwidth in microseconds per (micro)frame. */
+	u8 usecs;
+
+	/* Interval between transfers in (micro)frames. */
+	u16 interval;
+
+	/*
+	 * (micro)frame to initialize a periodic transfer. The transfer
+	 * executes in the following (micro)frame.
+	 */
+	u16 sched_frame;
+
+	/* (micro)frame at which last start split was initialized. */
+	u16 start_split_frame;
+
+	/* Entry for QH in either the periodic or non-periodic schedule. */
+	struct list_head qh_list_entry;
+};
+
+/* Gets the struct usb_hcd that contains a struct dwc_hcd. */
+static inline struct usb_hcd *dwc_otg_hcd_to_hcd(struct dwc_hcd *dwc_hcd)
+{
+	return container_of((void *)dwc_hcd, struct usb_hcd, hcd_priv);
+}
+
+/* HCD Create/Destroy Functions */
+extern int  __init dwc_otg_hcd_init(struct device *_dev,
+			struct dwc_otg_device *dwc_dev);
+extern void dwc_otg_hcd_remove(struct device *_dev);
+
+/*
+ * The following functions support managing the DWC_otg controller in host
+ * mode.
+ */
+extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
+extern void dwc_otg_hc_cleanup(struct core_if *core_if, struct dwc_hc *hc);
+extern void dwc_otg_hc_halt(struct core_if *core_if, struct dwc_hc *hc,
+				enum dwc_halt_status _halt_status);
+
+
+/* Transaction Execution Functions */
+extern enum dwc_transaction_type dwc_otg_hcd_select_transactions(
+				struct dwc_hcd *hcd);
+extern void dwc_otg_hcd_queue_transactions(struct dwc_hcd *hcd,
+			enum dwc_transaction_type tr_type);
+extern void dwc_otg_hcd_complete_urb(struct dwc_hcd *_hcd, struct urb *urb,
+				int status);
+
+/* Interrupt Handler Functions */
+extern int dwc_otg_hcd_handle_intr(struct dwc_hcd *hcd);
+
+/* Schedule Queue Functions */
+extern void dwc_otg_hcd_qh_free(struct dwc_qh *qh);
+extern void dwc_otg_hcd_qh_remove(struct dwc_hcd *hcd, struct dwc_qh *qh);
+extern void dwc_otg_hcd_qh_deactivate(struct dwc_hcd *hcd, struct dwc_qh *qh,
+				int sched_csplit);
+
+extern struct dwc_qtd *dwc_otg_hcd_qtd_create(struct urb *urb,
+				gfp_t _mem_flags);
+extern int dwc_otg_hcd_qtd_add(struct dwc_qtd *qtd, struct dwc_hcd *dwc_hcd);
+
+/*
+ * Frees the memory for a QTD structure.  QTD should already be removed from
+ * list.
+ */
+static inline void dwc_otg_hcd_qtd_free(struct dwc_qtd *_qtd)
+{
+	kfree(_qtd);
+}
+
+/* Removes a QTD from list. */
+static inline void dwc_otg_hcd_qtd_remove(struct dwc_qtd *_qtd)
+{
+	list_del(&_qtd->qtd_list_entry);
+}
+
+/* Remove and free a QTD */
+static inline void dwc_otg_hcd_qtd_remove_and_free(struct dwc_qtd *_qtd)
+{
+	dwc_otg_hcd_qtd_remove(_qtd);
+	dwc_otg_hcd_qtd_free(_qtd);
+}
+
+struct dwc_qh *dwc_urb_to_qh(struct urb *_urb);
+
+/* Gets the usb_host_endpoint associated with an URB. */
+static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *_urb)
+{
+	struct usb_device *dev = _urb->dev;
+	int ep_num = usb_pipeendpoint(_urb->pipe);
+
+	if (usb_pipein(_urb->pipe))
+		return dev->ep_in[ep_num];
+	else
+		return dev->ep_out[ep_num];
+}
+
+/*
+ * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
+ * qualified with its direction (possible 32 endpoints per device).
+ */
+#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) \
+		((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
+		((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
+
+/* Gets the QH that contains the list_head */
+#define dwc_list_to_qh(_list_head_ptr_) \
+		(container_of(_list_head_ptr_, struct dwc_qh, qh_list_entry))
+
+/* Gets the QTD that contains the list_head */
+#define dwc_list_to_qtd(_list_head_ptr_) \
+		(container_of(_list_head_ptr_, struct dwc_qtd, qtd_list_entry))
+
+/* Check if QH is non-periodic  */
+#define dwc_qh_is_non_per(_qh_ptr_) \
+		((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
+		(_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
+
+/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
+#define dwc_hb_mult(wMaxPacketSize)	(1 + (((wMaxPacketSize) >> 11) & 0x03))
+
+/* Packet size for any kind of endpoint descriptor */
+#define dwc_max_packet(wMaxPacketSize)	((wMaxPacketSize) & 0x07ff)
+
+/*
+ * Returns true if _frame1 is less than or equal to _frame2. The comparison is
+ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
+ * frame number when the max frame number is reached.
+ */
+static inline int dwc_frame_num_le(u16 _frame1, u16 _frame2)
+{
+	return ((_frame2 - _frame1) & DWC_HFNUM_MAX_FRNUM) <=
+			(DWC_HFNUM_MAX_FRNUM >> 1);
+}
+
+/*
+ * Returns true if _frame1 is greater than _frame2. The comparison is done
+ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
+ * number when the max frame number is reached.
+ */
+static inline int dwc_frame_num_gt(u16 _frame1, u16 _frame2)
+{
+	return (_frame1 != _frame2) &&
+			(((_frame1 - _frame2) &
+			DWC_HFNUM_MAX_FRNUM) < (DWC_HFNUM_MAX_FRNUM >> 1));
+}
+
+/*
+ * Increments _frame by the amount specified by _inc. The addition is done
+ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
+ */
+static inline u16 dwc_frame_num_inc(u16 _frame, u16 _inc)
+{
+	return (_frame + _inc) & DWC_HFNUM_MAX_FRNUM;
+}
+
+static inline u16 dwc_full_frame_num(u16 _frame)
+{
+	return ((_frame) & DWC_HFNUM_MAX_FRNUM) >> 3;
+}
+
+static inline u16 dwc_micro_frame_num(u16 _frame)
+{
+	return (_frame) & 0x7;
+}
+
+static inline u32 *gintsts_reg(struct dwc_hcd *hcd)
+{
+	return (u32 *) &hcd->core_if->core_global_regs->gintsts;
+}
+
+static inline u32 *gintmsk_reg(struct dwc_hcd *hcd)
+{
+	return (u32 *) &hcd->core_if->core_global_regs->gintmsk;
+}
+
+static inline u32 *gahbcfg_reg(struct dwc_hcd *hcd)
+{
+	return (u32 *) &hcd->core_if->core_global_regs->gahbcfg;
+}
+
+static inline const char *pipetype_str(unsigned int pipe)
+{
+	switch (usb_pipetype(pipe)) {
+	case PIPE_CONTROL:
+		return "control";
+	case PIPE_BULK:
+		return "bulk";
+	case PIPE_INTERRUPT:
+		return "interrupt";
+	case PIPE_ISOCHRONOUS:
+		return "isochronous";
+	default:
+		return "unknown";
+	}
+}
+
+static inline const char *dev_speed_str(enum usb_device_speed speed)
+{
+	switch (speed) {
+	case USB_SPEED_HIGH:
+		return "high";
+	case USB_SPEED_FULL:
+		return "full";
+	case USB_SPEED_LOW:
+		return "low";
+	default:
+		return "unknown";
+	}
+}
+
+static inline const char *ep_type_str(u8 type)
+{
+	switch (type) {
+	case USB_ENDPOINT_XFER_ISOC:
+		return "isochronous";
+	case USB_ENDPOINT_XFER_INT:
+		return "interrupt";
+	case USB_ENDPOINT_XFER_CONTROL:
+		return "control";
+	case USB_ENDPOINT_XFER_BULK:
+		return "bulk";
+	default:
+		return "?";
+	}
+}
+#endif
-- 
1.6.0.1



More information about the Linuxppc-dev mailing list