[Skiboot] [PATCH v2 30/59] xive/p10: Add a XIVE2 driver

Vasant Hegde hegdevasant at linux.vnet.ibm.com
Wed Aug 4 17:21:08 AEST 2021


From: Cédric Le Goater <clg at kaod.org>

The XIVE2 interrupt controller of the POWER10 processor follows the
same logic than on POWER9 but the HW interface has been largely
reviewed.  It has a new register interface, different BARs, extra
VSDs, new layout for the XIVE structures, and a set of new features
which are described below.

The OPAL XIVE2 driver code activating this controller was duplicated
from P9 for clarity as the registers and structures have changed
considerably. The same OPAL interface is implemented for OS
compatibility and it should not impact existing Linux kernels, KVM
included. Guest OS is not impacted either.

Support for new features will be implemented in time and will require
new support from the OS.

* XIVE2 BARS

The interrupt controller BARs have a different layout outlined below.
Each sub-engine has now own its range and the indirect TIMA access was
replaced with a set of pages, one per CPU, under the IC BAR:

  - IC BAR (Interrupt Controller)
    . 4 pages, one per sub-engine
    . 128 indirect TIMA pages
  - TM BAR (Thread Interrupt Management Area)
    . 4 pages
  - ESB BAR (ESB pages for IPIs)
    . up to 1TB
  - END BAR (ESB pages for ENDs)
    . up to 2TB
  - NVC BAR (Notification Virtual Crowd)
    . up to 128
  - NVPG BAR (Notification Virtual Process and Group)
    . up to 1TB
  - Direct mapped Thread Context Area (reads & writes)

OPAL does not use the grouping and crowd capability.

* Virtual Structure Tables

XIVE2 adds new tables types and also changes the field layout of the END
and NVP Virtualization Structure Descriptors.

  - EAS
  - END new layout
  - NVT was splitted in :
    . NVP (Processor), 32B
    . NVG (Group), 32B
    . NVC (Crowd == P9 block group) 32B
  - IC for remote configuration
  - SYNC for cache injection
  - ERQ for event input queue

The setup is slighly different on XIVE2 because the indexing has changed
for some of the tables, block ID or the chip topology ID can be used.

* XIVE2 features

SCOM and MMIO registers have a new layout and XIVE2 adds a new global
capability and configuration registers.

The lowlevel hardware offers a set of new features among which :

  - cache injection mechanism
  - 4 cache watch engines
  - a configurable number of priorities : 1 -8
  - StoreEOI with load-after-store ordering is activated by default
  - new sync/kill operations for cache operations

Other features will have some impact on the Hypervisor and guest OS
when activated, but this is not required for initial support of the
controller.

  - Gen2 TIMA layout
  - A P9-compat mode, or Gen1, TIMA toggle bit for SW compatibility
  - Automatic Context save & restore
  - increase to 24bit for VP number
  - New escalations schems : ESB, Adaptive, CPPR

POWER10 adds support for User interrupts. When configured, the XIVE2
controller can notify directly user processes using the Event Based
Branch exception line of the thread. If not running, the OS is
notified through an escalation event. New OPAL and PAPR interfaces
will be required and OS support needs to be studied.

* XIVE2 P9-compat mode, or Gen1

The thread interrupt management area (TIMA) is a set of pages mapped
in the Hypervisor and in the guest OS address space giving access to
the interrupt thread context registers for interrupt management, ACK,
EOI, CPPR, etc.

XIVE2 changes slightly the TIMA layout with extra bits for the new
features, larger CAM lines and the controller provides configuration
switches for backward compatibility. This is called the XIVE2
P9-compat mode, of Gen1 TIMA. It impacts the layout of the TIMA and
the availability of the internal features associated with it,
Automatic Save & Restore for instance. Using a P9 layout also means
setting the controller in such a mode at init time.

The XIVE2 driver in OPAL chooses to initialize the XIVE2 controller
with a XIVE2/P10 TIMA directly because the layouts are compatible with
the Linux PowerNV and the guest OSes expectations.

For KVM support, the OPAL calls abstract the HW interface and no
assumption is made on the OS CAM line width.

* Activating new XIVE2 features

Everything related to OPAL internals such as the use of the new cache
sync mechanism can be implemented in time without impact on the OS.

Other features will require new device tree properties exposed to the
OS and extra support for the OS. Automatic Context save & restore is
one of the first feature which should be looked at.

* XICS-over-XICS driver (P8 compatibility)

The P8 emulation mode is an OPAL compat interface used for Linux
kernels which did not have XIVE native support. This was useful for
POWER9 bringup but it is much less now. As it was adding a lot of
complexity and reducing the interrupt controller resources, this mode
is not available in the XIVE2 driver for POWER10.

It will still be possible to add this compat mode in the future if
required. The OS will have to reset the driver at boot time, like on
POWER9.

* Impact on other drivers (PSI, PHB, NPU)

Interrupts are allocated in a very similar way. Each controller might
have different ESB characteristics, StoreEOI support, 64K pages for
PSI. All is in place to support these changes already.

PHB5 will have support for "address-based trigger mode", probably in
the DD2.0 time frame when verification is completed. When activated,
the XIVE IC ESB pages will be used instead of the PHB ESB pages for a
lower interrupt latency.

LSI will still use old fashion triggers without StoreEOI.

* Yet to be addressed :

 - OPAL P10 interface incomplete (stop states)
 - Clarify the PHB5 strategy regarding the use of the XIVE IC ESB
   pages instead of the PHB ones when address-based trigger mode is
   supported.

Signed-off-by: Cédric Le Goater <clg at kaod.org>
Signed-off-by: Vasant Hegde <hegdevasant at linux.vnet.ibm.com>
---
 core/fast-reboot.c   |    4 +
 core/init.c          |   12 +-
 hw/Makefile.inc      |    2 +-
 hw/psi.c             |   25 +-
 hw/slw.c             |   12 +-
 hw/xive.c            |    6 +-
 hw/xive2.c           | 4444 ++++++++++++++++++++++++++++++++++++++++++
 include/xive.h       |   29 +
 include/xive2-regs.h |  549 ++++++
 9 files changed, 5071 insertions(+), 12 deletions(-)
 create mode 100644 hw/xive2.c
 create mode 100644 include/xive2-regs.h

diff --git a/core/fast-reboot.c b/core/fast-reboot.c
index ac9b3b284..9f92525a9 100644
--- a/core/fast-reboot.c
+++ b/core/fast-reboot.c
@@ -262,6 +262,8 @@ static void cleanup_cpu_state(void)
 
 	if (proc_gen == proc_gen_p9)
 		xive_cpu_reset();
+	else if (proc_gen == proc_gen_p10)
+		xive2_cpu_reset();
 
 	/* Per core cleanup */
 	if (cpu_is_thread0(cpu) || cpu_is_core_chiplet_primary(cpu)) {
@@ -381,6 +383,8 @@ void __noreturn fast_reboot_entry(void)
 
 	if (proc_gen == proc_gen_p9)
 		xive_reset();
+	else if (proc_gen == proc_gen_p10)
+		xive2_reset();
 
 	/* Let the CPU layer do some last minute global cleanups */
 	cpu_fast_reboot_complete();
diff --git a/core/init.c b/core/init.c
index 0bf4ab269..e38969554 100644
--- a/core/init.c
+++ b/core/init.c
@@ -1225,8 +1225,11 @@ void __noreturn __nomcount main_cpu_entry(const void *fdt)
 	if (proc_gen == proc_gen_p8)
 		cpu_set_ipi_enable(true);
 
-	/* On P9, initialize XIVE */
-	init_xive();
+	/* On P9 and P10, initialize XIVE */
+	if (proc_gen == proc_gen_p9)
+		init_xive();
+	else if (proc_gen == proc_gen_p10)
+		xive2_init();
 
 	/* Grab centaurs from device-tree if present (only on FSP-less) */
 	centaur_init();
@@ -1437,7 +1440,10 @@ void __noreturn __secondary_cpu_entry(void)
 	mtmsrd(MSR_RI, 1);
 
 	/* Some XIVE setup */
-	xive_cpu_callin(cpu);
+	if (proc_gen == proc_gen_p9)
+		xive_cpu_callin(cpu);
+	else if (proc_gen == proc_gen_p10)
+		xive2_cpu_callin(cpu);
 
 	/* Wait for work to do */
 	while(true) {
diff --git a/hw/Makefile.inc b/hw/Makefile.inc
index a7f450cf7..37256d3cc 100644
--- a/hw/Makefile.inc
+++ b/hw/Makefile.inc
@@ -9,7 +9,7 @@ HW_OBJS += fake-nvram.o lpc-mbox.o npu2.o npu2-hw-procedures.o
 HW_OBJS += npu2-common.o npu2-opencapi.o phys-map.o sbe-p9.o capp.o
 HW_OBJS += occ-sensor.o vas.o sbe-p8.o dio-p9.o lpc-port80h.o cache-p9.o
 HW_OBJS += npu-opal.o npu3.o npu3-nvlink.o npu3-hw-procedures.o
-HW_OBJS += ocmb.o
+HW_OBJS += ocmb.o xive2.o
 HW=hw/built-in.a
 
 include $(SRC)/hw/fsp/Makefile.inc
diff --git a/hw/psi.c b/hw/psi.c
index f95a066d3..26677a3b2 100644
--- a/hw/psi.c
+++ b/hw/psi.c
@@ -772,12 +772,12 @@ static void psi_init_p10_interrupts(struct psi *psi)
 	       psi->chip_id, psi->esb_mmio);
 
 	/* Grab and configure the notification port */
-	val = xive_get_notify_port(psi->chip_id, XIVE_HW_SRC_PSI);
+	val = xive2_get_notify_port(psi->chip_id, XIVE_HW_SRC_PSI);
 	val |= PSIHB_ESB_NOTIF_VALID;
 	out_be64(psi->regs + PSIHB_ESB_NOTIF_ADDR, val);
 
 	/* Setup interrupt offset */
-	val = xive_get_notify_base(psi->interrupt);
+	val = xive2_get_notify_base(psi->interrupt);
 	val <<= 32;
 	out_be64(psi->regs + PSIHB_IVT_OFFSET, val);
 
@@ -786,7 +786,7 @@ static void psi_init_p10_interrupts(struct psi *psi)
 	      "PSI[0x%03x]: Interrupts sources registered for P10 DD%i.%i\n",
 	      psi->chip_id, 0xf & (chip->ec_level >> 4), chip->ec_level & 0xf);
 
-	xive_register_hw_source(psi->interrupt, P9_PSI_NUM_IRQS,
+	xive2_register_hw_source(psi->interrupt, P9_PSI_NUM_IRQS,
 				esb_shift, psi->esb_mmio, XIVE_SRC_LSI,
 				psi, &psi_p10_irq_ops);
 
@@ -956,6 +956,23 @@ static struct psi *psi_probe_p9(struct proc_chip *chip, u64 base)
 	return psi;
 }
 
+static struct psi *psi_probe_p10(struct proc_chip *chip, u64 base)
+{
+	struct psi *psi = NULL;
+	uint64_t addr;
+
+	phys_map_get(chip->id, PSIHB_REG, 0, &addr, NULL);
+	xscom_write(chip->id, base + PSIHB_XSCOM_P9_BASE,
+		    addr | PSIHB_XSCOM_P9_HBBAR_EN);
+
+	psi = alloc_psi(chip, base);
+	if (!psi)
+		return NULL;
+	psi->regs = (void *)addr;
+	psi->interrupt = xive2_alloc_hw_irqs(chip->id, P9_PSI_NUM_IRQS, 16);
+	return psi;
+}
+
 static bool psi_init_psihb(struct dt_node *psihb)
 {
 	uint32_t chip_id = dt_get_chip_id(psihb);
@@ -974,6 +991,8 @@ static bool psi_init_psihb(struct dt_node *psihb)
 		psi = psi_probe_p8(chip, base);
 	else if (dt_node_is_compatible(psihb, "ibm,power9-psihb-x"))
 		psi = psi_probe_p9(chip, base);
+	else if (dt_node_is_compatible(psihb, "ibm,power10-psihb-x"))
+		psi = psi_probe_p10(chip, base);
 	else {
 		prerror("PSI: Unknown processor type\n");
 		return false;
diff --git a/hw/slw.c b/hw/slw.c
index 8969096ac..9e676af74 100644
--- a/hw/slw.c
+++ b/hw/slw.c
@@ -965,9 +965,15 @@ void add_cpu_idle_state_properties(void)
 				}
 			}
 			if ((wakeup_engine_state == WAKEUP_ENGINE_PRESENT) && has_deep_states) {
-				slw_late_init_p9(chip);
-				xive_late_init();
-				nx_p9_rng_late_init();
+				if (chip->type == PROC_CHIP_P9_NIMBUS ||
+				    chip->type == PROC_CHIP_P9_CUMULUS) {
+					slw_late_init_p9(chip);
+					xive_late_init();
+					nx_p9_rng_late_init();
+				} else if (chip->type == PROC_CHIP_P10) {
+					/* TODO (p10): need P10 stop state engine */
+					xive2_late_init();
+				}
 			}
 			if (wakeup_engine_state != WAKEUP_ENGINE_PRESENT)
 				has_deep_states = false;
diff --git a/hw/xive.c b/hw/xive.c
index c442ea5e3..51b03549a 100644
--- a/hw/xive.c
+++ b/hw/xive.c
@@ -1776,7 +1776,8 @@ static void xive_create_mmio_dt_node(struct xive *x)
 	dt_add_property_cells(xive_dt_node, "ibm,xive-eq-sizes",
 			      12, 16, 21, 24);
 
-	dt_add_property_cells(xive_dt_node, "ibm,xive-#priorities", 8);
+	dt_add_property_cells(xive_dt_node, "ibm,xive-#priorities",
+			      NUM_INT_PRIORITIES);
 	dt_add_property(xive_dt_node, "single-escalation-support", NULL, 0);
 
 	xive_add_provisioning_properties();
@@ -4191,7 +4192,8 @@ static int64_t xive_setup_silent_gather(uint64_t vp_id, bool enable)
 	if (!memcmp(eq_orig, &eq, sizeof(eq)))
 		rc = 0;
 	else
-		rc = xive_eqc_cache_update(x, blk, idx + 7, &eq, false);
+		rc = xive_eqc_cache_update(x, blk, idx + XIVE_ESCALATION_PRIO,
+					   &eq, false);
 	if (rc)
 		return rc;
 
diff --git a/hw/xive2.c b/hw/xive2.c
new file mode 100644
index 000000000..a7bfdcbde
--- /dev/null
+++ b/hw/xive2.c
@@ -0,0 +1,4444 @@
+// SPDX-License-Identifier: Apache-2.0
+/*
+ * XIVE2: eXternal Interrupt Virtualization Engine. POWER10 interrupt
+ * controller
+ *
+ * Copyright (c) 2016-2019, IBM Corporation.
+ */
+
+#define pr_fmt(fmt) "XIVE: " fmt
+
+#include <skiboot.h>
+#include <xscom.h>
+#include <chip.h>
+#include <io.h>
+#include <xive.h>
+#include <xive2-regs.h>
+#include <xscom-p10-regs.h>
+#include <interrupts.h>
+#include <timebase.h>
+#include <bitmap.h>
+#include <buddy.h>
+#include <phys-map.h>
+#include <p9_stop_api.H> /* TODO (p10): need P10 stop state engine */
+
+
+/* Verbose debug */
+#undef XIVE_VERBOSE_DEBUG
+#undef DEBUG
+
+/* Extra debug options used in debug builds */
+#ifdef DEBUG
+#define XIVE_CHECK_LOCKS
+#define XIVE_DEBUG_INIT_CACHE_UPDATES
+#define XIVE_EXTRA_CHECK_INIT_CACHE
+#else
+#undef  XIVE_CHECK_LOCKS
+#undef  XIVE_DEBUG_INIT_CACHE_UPDATES
+#undef  XIVE_EXTRA_CHECK_INIT_CACHE
+#endif
+
+/*
+ * VSDs, blocks, set translation etc...
+ *
+ * For the following data structures, the XIVE use a mechanism called
+ * Virtualization Structure Tables (VST) to manage the memory layout
+ * and access: ESBs (Event State Buffers), EAS (Event assignment
+ * structures), ENDs (Event Notification Descriptors) and NVT/NVP
+ * (Notification Virtual Targets/Processors).
+ *
+ * These structures divide those tables into 16 "blocks". Each XIVE
+ * instance has a definition for all 16 blocks that can either represent
+ * an actual table in memory or a remote XIVE MMIO port to access a
+ * block that is owned by that remote XIVE.
+ *
+ * Our SW design will consist of allocating one block per chip (and thus
+ * per XIVE instance) for now, thus giving us up to 16 supported chips in
+ * the system. We may have to revisit that if we ever support systems with
+ * more than 16 chips but that isn't on our radar at the moment or if we
+ * want to do like pHyp on some machines and dedicate 2 blocks per chip
+ * for some structures.
+ *
+ * Thus we need to be careful that we never expose to Linux the concept
+ * of block and block boundaries, but instead we provide full number ranges
+ * so that consecutive blocks can be supported.
+ *
+ * Similarily, for MMIO access, the BARs support what is called "set
+ * translation" which allows the BAR to be devided into a certain
+ * number of sets. Each "set" can be routed to a specific block and
+ * offset within a block.
+ */
+
+#define XIVE_MAX_BLOCKS		16
+#define XIVE_VSD_SIZE		8
+
+/*
+ * Max number of ESBs. (direct table)
+ *
+ * The max number of ESBs supported in the P10 MMIO space is 1TB/128K: 8M.
+ *
+ * 1M is our current top limit of ESB entries and EAS entries
+ * pre-allocated per chip. That allocates 256KB per chip for the state
+ * bits and 8M per chip for the EAS.
+ */
+
+#define XIVE_INT_ORDER		20 /* 1M interrupts */
+#define XIVE_INT_COUNT		(1ul << XIVE_INT_ORDER)
+
+/*
+ * First interrupt number, also the first logical interrupt number
+ * allocated by Linux (maximum ISA interrupt number + 1)
+ */
+#define XIVE_INT_FIRST		0x10
+
+/* Corresponding direct table sizes */
+#define XIVE_ESB_SIZE		(XIVE_INT_COUNT / 4)
+#define XIVE_EAT_SIZE		(XIVE_INT_COUNT * 8)
+
+/* Use 64K for everything by default */
+#define XIVE_ESB_SHIFT		(16 + 1) /* trigger + mgmt pages */
+#define XIVE_ESB_PAGE_SIZE     (1ul << XIVE_ESB_SHIFT) /* 2 pages */
+
+/*
+ * Max number of ENDs. (indirect table)
+ *
+ * The max number of ENDs supported in the P10 MMIO space is 2TB/128K: 16M.
+ * Since one END is 32 bytes, a 64K indirect subpage can hold 2K ENDs.
+ * We need 8192 subpages, ie, 64K of memory for the indirect table.
+ */
+#define END_PER_PAGE		(PAGE_SIZE / sizeof(struct xive_end))
+
+#define XIVE_END_ORDER		23 /* 8M ENDs */
+#define XIVE_END_COUNT		(1ul << XIVE_END_ORDER)
+#define XIVE_END_TABLE_SIZE	((XIVE_END_COUNT / END_PER_PAGE) * XIVE_VSD_SIZE)
+
+#define XIVE_END_SHIFT		(16 + 1) /* ESn + ESe pages */
+
+/* One bit per number of priorities configured */
+#define xive_end_bitmap_size(x)	(XIVE_END_COUNT >> xive_cfg_vp_prio_shift(x))
+
+/* Number of priorities (and thus ENDs) we allocate for each VP */
+#define xive_cfg_vp_prio_shift(x) GETFIELD(CQ_XIVE_CFG_VP_INT_PRIO, (x)->config)
+#define xive_cfg_vp_prio(x)	(1 << xive_cfg_vp_prio_shift(x))
+
+/* Max priority number */
+#define xive_max_prio(x)	(xive_cfg_vp_prio(x) - 1)
+
+/* Priority used for gather/silent escalation (KVM) */
+#define xive_escalation_prio(x)	xive_max_prio(x)
+
+/*
+ * Max number of VPs. (indirect table)
+ *
+ * The max number of NVPs we support in our MMIO space is 1TB/128K: 8M.
+ * Since one NVP is 32 bytes, a 64K indirect subpage can hold 2K NVPs.
+ * We need 4096 pointers, ie, 32K of memory for the indirect table.
+ *
+ * However, we use 8 priorities (by default) per NVP and the number of
+ * ENDs is configured to 8M. Therefore, our VP space is limited to 1M.
+ */
+#define VP_PER_PAGE		(PAGE_SIZE / sizeof(struct xive_nvp))
+
+#define XIVE_VP_ORDER(x)	(XIVE_END_ORDER - xive_cfg_vp_prio_shift(x))
+#define XIVE_VP_COUNT(x)	(1ul << XIVE_VP_ORDER(x))
+#define XIVE_VP_TABLE_SIZE(x)	((XIVE_VP_COUNT(x) / VP_PER_PAGE) * XIVE_VSD_SIZE)
+
+#define XIVE_NVP_SHIFT		17 /* NVPG BAR: two pages, even NVP, odd NVG */
+
+/* VP Space maximums in Gen1 and Gen2 modes */
+#define VP_SHIFT_GEN1		19	/* in sync with END_W6_VP_OFFSET_GEN1 */
+#define VP_SHIFT_GEN2		24	/* in sync with END_W6_VP_OFFSET */
+
+/*
+ * VP ids for HW threads.
+ *
+ * Depends on the thread id bits configuration of the IC. 8bit is the
+ * default for P10 and 7bit for p9.
+ *
+ * These values are global because they should be common to all chips
+ */
+static uint32_t xive_threadid_shift;
+static uint32_t	xive_hw_vp_base;
+static uint32_t xive_hw_vp_count;
+
+/*
+ * The XIVE operation mode indicates the active "API" and corresponds
+ * to the "version/mode" parameter of the opal_xive_reset() call
+ */
+static enum {
+	/* No XICS emulation */
+	XIVE_MODE_EXPL	= OPAL_XIVE_MODE_EXPL, /* default */
+	XIVE_MODE_NONE,
+} xive_mode = XIVE_MODE_NONE;
+
+/*
+ * Each source controller has one of these. There's one embedded in
+ * the XIVE struct for IPIs
+ */
+struct xive_src {
+	struct irq_source		is;
+	const struct irq_source_ops	*orig_ops;
+	struct xive			*xive;
+	void				*esb_mmio;
+	uint32_t			esb_base;
+	uint32_t			esb_shift;
+	uint32_t			flags;
+};
+
+struct xive_cpu_state {
+	struct xive	*xive;
+	void		*tm_ring1;
+
+	/* Base HW VP and associated queues */
+	uint32_t	vp_blk;
+	uint32_t	vp_idx;
+	uint32_t	end_blk;
+	uint32_t	end_idx; /* Base end index of a block of 8 */
+
+	struct lock	lock;
+};
+
+enum xive_generation {
+	XIVE_GEN1 = 1, /* P9 compat mode */
+	XIVE_GEN2 = 2, /* P10 default */
+};
+
+enum xive_quirks {
+	/* HW527671 - 8bits Hardwired Thread Id range not implemented */
+	XIVE_QUIRK_THREADID_7BITS	= 0x00000001,
+	/* HW542974 - interrupt command priority checker not working properly */
+	XIVE_QUIRK_BROKEN_PRIO_CHECK	= 0x00000002,
+};
+
+struct xive {
+	uint32_t		 chip_id;
+	uint32_t		 block_id;
+	struct dt_node		*x_node;
+
+	enum xive_generation	 generation;
+	uint64_t		 config;
+
+	uint64_t		 xscom_base;
+
+	/* MMIO regions */
+	void			*ic_base;
+	uint64_t		 ic_size;
+	uint32_t		 ic_shift;
+	void			*ic_tm_direct_base;
+
+	void			*tm_base;
+	uint64_t		 tm_size;
+	uint32_t		 tm_shift;
+	void			*nvp_base;
+	uint64_t		 nvp_size;
+	void			*esb_base;
+	uint64_t		 esb_size;
+	void			*end_base;
+	uint64_t		 end_size;
+
+	/* Set on XSCOM register access error */
+	bool			 last_reg_error;
+
+	/* Per-XIVE mutex */
+	struct lock		 lock;
+
+	/* Pre-allocated tables.
+	 *
+	 * We setup all the VDS for actual tables (ie, by opposition to
+	 * forwarding ports) as either direct pre-allocated or indirect
+	 * and partially populated.
+	 *
+	 * Currently, the ESB and the EAS tables are direct and fully
+	 * pre-allocated based on XIVE_INT_COUNT.
+	 *
+	 * The other tables are indirect, we thus pre-allocate the indirect
+	 * table (ie, pages of pointers) and populate enough of the pages
+	 * for our basic setup using 64K subpages.
+	 *
+	 * The size of the indirect tables are driven by XIVE_VP_COUNT
+	 * and XIVE_END_COUNT. The number of pre-allocated ones are
+	 * driven by xive_hw_vp_count for the HW threads. The number
+	 * of END depends on number of VP.
+	 */
+
+	/* Direct SBE and EAT tables */
+	void			*sbe_base;
+	void			*eat_base;
+
+	/* Indirect END table. NULL entries are unallocated, count is
+	 * the numbre of pointers (ie, sub page placeholders).
+	 */
+	beint64_t		*end_ind_base;
+	uint32_t		 end_ind_count;
+	uint64_t 		 end_ind_size;
+
+	/* END allocation bitmap. Each bit represent #priority ENDs */
+	bitmap_t		*end_map;
+
+	/* Indirect NVT/VP table. NULL entries are unallocated, count is
+	 * the numbre of pointers (ie, sub page placeholders).
+	 */
+	beint64_t		*vp_ind_base;
+	uint32_t		 vp_ind_count;
+	uint64_t 		 vp_ind_size;
+
+	/* VP space size. Depends on Gen1/2 mode */
+	uint32_t		 vp_shift;
+
+	/* Pool of donated pages for provisioning indirect END and VP pages */
+	struct list_head	 donated_pages;
+
+	/* To ease a possible change to supporting more than one block of
+	 * interrupts per chip, we store here the "base" global number
+	 * and max number of interrupts for this chip. The global number
+	 * encompass the block number and index.
+	 */
+	uint32_t		 int_base;
+	uint32_t		 int_count;
+
+	/* Due to the overlap between IPIs and HW sources in the EAS table,
+	 * we keep some kind of top-down allocator. It is used for HW sources
+	 * to "allocate" interrupt entries and will limit what can be handed
+	 * out as IPIs. Of course this assumes we "allocate" all HW sources
+	 * before we start handing out IPIs.
+	 *
+	 * Note: The numbers here are global interrupt numbers so that we can
+	 * potentially handle more than one block per chip in the future.
+	 */
+	uint32_t		 int_hw_bot;	/* Bottom of HW allocation */
+	uint32_t		 int_ipi_top;	/* Highest IPI handed out so far + 1 */
+
+	/* The IPI allocation bitmap */
+	bitmap_t		*ipi_alloc_map;
+
+	/* We keep track of which interrupts were ever enabled to
+	 * speed up xive_reset
+	 */
+	bitmap_t		*int_enabled_map;
+
+	/* Embedded source IPIs */
+	struct xive_src		 ipis;
+
+	/* Embedded escalation interrupts */
+	struct xive_src		 esc_irqs;
+
+	/* In memory queue overflow */
+	void			*q_ovf;
+
+	/* Cache/sync injection */
+	uint64_t		 sync_inject_size;
+	void			*sync_inject;
+
+	/* INT HW Errata */
+	uint64_t		quirks;
+};
+
+#define XIVE_CAN_STORE_EOI(x) XIVE2_STORE_EOI_ENABLED
+
+/* First XIVE unit configured on the system */
+static struct xive *one_xive;
+
+/* Global DT node */
+static struct dt_node *xive_dt_node;
+
+/* Block <-> Chip conversions.
+ *
+ * As chipIDs may not be within the range of 16 block IDs supported by XIVE,
+ * we have a 2 way conversion scheme.
+ *
+ * From block to chip, use the global table below.
+ *
+ * From chip to block, a field in struct proc_chip contains the first block
+ * of that chip. For now we only support one block per chip but that might
+ * change in the future
+ */
+#define XIVE_INVALID_CHIP	0xffffffff
+#define XIVE_MAX_CHIPS		16
+static uint32_t xive_block_to_chip[XIVE_MAX_CHIPS];
+static uint32_t xive_block_count;
+
+static uint32_t xive_chip_to_block(uint32_t chip_id)
+{
+	struct proc_chip *c = get_chip(chip_id);
+
+	assert(c);
+	assert(c->xive);
+	return c->xive->block_id;
+}
+
+/*
+ * Conversion between GIRQ and block/index.
+ *
+ * ------------------------------------
+ * |000E|BLOC|                   INDEX|
+ * ------------------------------------
+ *   4     4           24
+ *
+ * the E bit indicates that this is an escalation interrupt, in
+ * that case, the BLOC/INDEX represents the END containing the
+ * corresponding escalation descriptor.
+ *
+ * Global interrupt numbers for non-escalation interrupts are thus
+ * limited to 28 bits.
+ */
+
+#define INT_SHIFT		24
+#define INT_ESC_SHIFT		(INT_SHIFT + 4) /* 4bits block id */
+
+#if XIVE_INT_ORDER > INT_SHIFT
+#error "Too many ESBs for IRQ encoding"
+#endif
+
+#if XIVE_END_ORDER > INT_SHIFT
+#error "Too many ENDs for escalation IRQ number encoding"
+#endif
+
+#define GIRQ_TO_BLK(__g)	(((__g) >> INT_SHIFT) & 0xf)
+#define GIRQ_TO_IDX(__g)	((__g) & ((1 << INT_SHIFT) - 1))
+#define BLKIDX_TO_GIRQ(__b,__i)	(((uint32_t)(__b)) << INT_SHIFT | (__i))
+
+#define GIRQ_IS_ESCALATION(__g)	((__g) & (1 << INT_ESC_SHIFT))
+#define MAKE_ESCALATION_GIRQ(__b,__i)(BLKIDX_TO_GIRQ(__b,__i) | (1 << INT_ESC_SHIFT))
+
+
+/* Block/IRQ to chip# conversions */
+#define PC_BLK_TO_CHIP(__b)	(xive_block_to_chip[__b])
+#define VC_BLK_TO_CHIP(__b)	(xive_block_to_chip[__b])
+#define GIRQ_TO_CHIP(__isn)	(VC_BLK_TO_CHIP(GIRQ_TO_BLK(__isn)))
+
+/* Routing of physical processors to VPs */
+#define PIR2VP_IDX( __pir)	(xive_hw_vp_base | P10_PIR2LOCALCPU(__pir))
+#define PIR2VP_BLK(__pir)	(xive_chip_to_block(P10_PIR2GCID(__pir)))
+#define VP2PIR(__blk, __idx)	(P10_PIRFROMLOCALCPU(VC_BLK_TO_CHIP(__blk), (__idx) & 0xff))
+
+/* Decoding of OPAL API VP IDs. The VP IDs are encoded as follow
+ *
+ * Block group mode:
+ *
+ * -----------------------------------
+ * |GVEOOOOO|                   INDEX|
+ * -----------------------------------
+ *  ||   |
+ *  ||  Order
+ *  |Virtual
+ *  Group
+ *
+ * G (Group)   : Set to 1 for a group VP (not currently supported)
+ * V (Virtual) : Set to 1 for an allocated VP (vs. a physical processor ID)
+ * E (Error)   : Should never be 1, used internally for errors
+ * O (Order)   : Allocation order of the VP block
+ *
+ * The conversion is thus done as follow (groups aren't implemented yet)
+ *
+ *  If V=0, O must be 0 and 24-bit INDEX value is the PIR
+ *  If V=1, the order O group is allocated such that if N is the number of
+ *          chip bits considered for allocation (*)
+ *          then the INDEX is constructed as follow (bit numbers such as 0=LSB)
+ *           - bottom O-N bits is the index within the "VP block"
+ *           - next N bits is the XIVE blockID of the VP
+ *           - the remaining bits is the per-chip "base"
+ *          so the conversion consists of "extracting" the block ID and moving
+ *          down the upper bits by N bits.
+ *
+ * In non-block-group mode, the difference is that the blockID is
+ * on the left of the index (the entire VP block is in a single
+ * block ID)
+ */
+
+#define VP_GROUP_SHIFT		31
+#define VP_VIRTUAL_SHIFT	30
+#define VP_ERROR_SHIFT		29
+#define VP_ORDER_SHIFT		24
+
+#define vp_group(vp)		(((vp) >> VP_GROUP_SHIFT) & 1)
+#define vp_virtual(vp) 		(((vp) >> VP_VIRTUAL_SHIFT) & 1)
+#define vp_order(vp)		(((vp) >> VP_ORDER_SHIFT) & 0x1f)
+#define vp_index(vp)		((vp) & ((1 << VP_ORDER_SHIFT) - 1))
+
+/* VP allocation */
+static uint32_t xive_chips_alloc_bits = 0;
+static struct buddy *xive_vp_buddy;
+static struct lock xive_buddy_lock = LOCK_UNLOCKED;
+
+/* VP# decoding/encoding */
+static bool xive_decode_vp(uint32_t vp, uint32_t *blk, uint32_t *idx,
+			   uint8_t *order, bool *group)
+{
+	uint32_t o = vp_order(vp);
+	uint32_t n = xive_chips_alloc_bits;
+	uint32_t index = vp_index(vp);
+	uint32_t imask = (1 << (o - n)) - 1;
+
+	/* Groups not supported yet */
+	if (vp_group(vp))
+		return false;
+	if (group)
+		*group = false;
+
+	/* PIR case */
+	if (!vp_virtual(vp)) {
+		if (find_cpu_by_pir(index) == NULL)
+			return false;
+		if (blk)
+			*blk = PIR2VP_BLK(index);
+		if (idx)
+			*idx = PIR2VP_IDX(index);
+		return true;
+	}
+
+	/* Ensure o > n, we have *at least* 2 VPs per block */
+	if (o <= n)
+		return false;
+
+	/* Combine the index base and index */
+	if (idx)
+		*idx = ((index >> n) & ~imask) | (index & imask);
+	/* Extract block ID */
+	if (blk)
+		*blk = (index >> (o - n)) & ((1 << n) - 1);
+
+	/* Return order as well if asked for */
+	if (order)
+		*order = o;
+
+	return true;
+}
+
+static uint32_t xive_encode_vp(uint32_t blk, uint32_t idx, uint32_t order)
+{
+	uint32_t vp = (1 << VP_VIRTUAL_SHIFT) | (order << VP_ORDER_SHIFT);
+	uint32_t n = xive_chips_alloc_bits;
+	uint32_t imask = (1 << (order - n)) - 1;
+
+	vp |= (idx & ~imask) << n;
+	vp |= blk << (order - n);
+	vp |= idx & imask;
+	return  vp;
+}
+
+/*
+ * XSCOM/MMIO helpers
+ */
+#define XIVE_NO_MMIO -1
+
+#define xive_regw(__x, __r, __v) \
+	__xive_regw(__x, __r, X_##__r, __v, #__r)
+#define xive_regr(__x, __r) \
+	__xive_regr(__x, __r, X_##__r, #__r)
+#define xive_regwx(__x, __r, __v) \
+	__xive_regw(__x, XIVE_NO_MMIO, X_##__r, __v, #__r)
+#define xive_regrx(__x, __r) \
+	__xive_regr(__x, XIVE_NO_MMIO, X_##__r, #__r)
+
+#ifdef XIVE_VERBOSE_DEBUG
+#define xive_vdbg(__x,__fmt,...)	prlog(PR_DEBUG,"[ IC %02x  ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_vdbg(__c,__fmt,...)	prlog(PR_DEBUG,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#else
+#define xive_vdbg(x,fmt,...)		do { } while(0)
+#define xive_cpu_vdbg(x,fmt,...)	do { } while(0)
+#endif
+
+#define xive_dbg(__x,__fmt,...)		prlog(PR_DEBUG,"[ IC %02x  ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_dbg(__c,__fmt,...)	prlog(PR_DEBUG,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#define xive_notice(__x,__fmt,...)	prlog(PR_NOTICE,"[ IC %02x  ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_notice(__c,__fmt,...)	prlog(PR_NOTICE,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#define xive_warn(__x,__fmt,...)	prlog(PR_WARNING,"[ IC %02x  ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_warn(__c,__fmt,...)	prlog(PR_WARNING,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#define xive_err(__x,__fmt,...)		prlog(PR_ERR,"[ IC %02x  ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_err(__c,__fmt,...)	prlog(PR_ERR,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+
+/*
+ * The XIVE subengine being accessed can be deduced from the XSCOM
+ * reg, and from there, the page offset in the IC BAR.
+ */
+static void* xive_ic_page(struct xive *x, uint32_t x_reg)
+{
+	uint64_t pgoff = (x_reg >> 8) & 0x3;
+
+	return x->ic_base + (pgoff << x->ic_shift);
+}
+
+static void __xive_regw(struct xive *x, uint32_t m_reg, uint32_t x_reg, uint64_t v,
+			const char *rname)
+{
+	bool use_xscom = (m_reg == XIVE_NO_MMIO) || !x->ic_base;
+	int64_t rc;
+
+	x->last_reg_error = false;
+
+	assert(x_reg != 0);
+
+	if (use_xscom) {
+		rc = xscom_write(x->chip_id, x->xscom_base + x_reg, v);
+		if (rc) {
+			if (!rname)
+				rname = "???";
+			xive_err(x, "Error writing register %s\n", rname);
+			/* Anything else we can do here ? */
+			x->last_reg_error = true;
+		}
+	} else {
+		out_be64(xive_ic_page(x, x_reg) + m_reg, v);
+	}
+}
+
+static uint64_t __xive_regr(struct xive *x, uint32_t m_reg, uint32_t x_reg,
+			    const char *rname)
+{
+	bool use_xscom = (m_reg == XIVE_NO_MMIO) || !x->ic_base;
+	int64_t rc;
+	uint64_t val;
+
+	x->last_reg_error = false;
+
+	assert(x_reg != 0);
+
+	if (use_xscom) {
+		rc = xscom_read(x->chip_id, x->xscom_base + x_reg, &val);
+		if (rc) {
+			if (!rname)
+				rname = "???";
+			xive_err(x, "Error reading register %s\n", rname);
+			/* Anything else we can do here ? */
+			x->last_reg_error = true;
+			return -1ull;
+		}
+	} else {
+		val = in_be64(xive_ic_page(x, x_reg) + m_reg);
+	}
+	return val;
+}
+
+/* Locate a controller from an IRQ number */
+static struct xive *xive_from_isn(uint32_t isn)
+{
+	uint32_t chip_id = GIRQ_TO_CHIP(isn);
+	struct proc_chip *c = get_chip(chip_id);
+
+	if (!c)
+		return NULL;
+	return c->xive;
+}
+
+static struct xive *xive_from_pc_blk(uint32_t blk)
+{
+	uint32_t chip_id = PC_BLK_TO_CHIP(blk);
+	struct proc_chip *c = get_chip(chip_id);
+
+	if (!c)
+		return NULL;
+	return c->xive;
+}
+
+static struct xive *xive_from_vc_blk(uint32_t blk)
+{
+	uint32_t chip_id = VC_BLK_TO_CHIP(blk);
+	struct proc_chip *c = get_chip(chip_id);
+
+	if (!c)
+		return NULL;
+	return c->xive;
+}
+
+static struct xive_end *xive_get_end(struct xive *x, unsigned int idx)
+{
+	struct xive_end *p;
+
+	if (idx >= (x->end_ind_count * END_PER_PAGE))
+		return NULL;
+	p = (struct xive_end *)(be64_to_cpu(x->end_ind_base[idx / END_PER_PAGE]) &
+			       VSD_ADDRESS_MASK);
+	if (!p)
+		return NULL;
+
+	return &p[idx % END_PER_PAGE];
+}
+
+static struct xive_eas *xive_get_eas(struct xive *x, unsigned int isn)
+{
+	struct xive_eas *eat;
+	uint32_t idx = GIRQ_TO_IDX(isn);
+
+	if (GIRQ_IS_ESCALATION(isn)) {
+		/* Allright, an escalation EAS is buried inside an END, let's
+		 * try to find it
+		 */
+		struct xive_end *end;
+
+		if (x->chip_id != VC_BLK_TO_CHIP(GIRQ_TO_BLK(isn))) {
+			xive_err(x, "%s, ESC ISN 0x%x not on right chip\n",
+				 __func__, isn);
+			return NULL;
+		}
+		end = xive_get_end(x, idx);
+		if (!end) {
+			xive_err(x, "%s, ESC ISN 0x%x END not found\n",
+				 __func__, isn);
+			return NULL;
+		}
+
+		/* If using single-escalation, don't let anybody get
+		 * to the individual escalation interrupts
+		 */
+		if (xive_get_field32(END_W0_UNCOND_ESCALATE, end->w0))
+			return NULL;
+
+		/* Grab the escalation END */
+		return (struct xive_eas *)(char *)&end->w4;
+	} else {
+		/* Check the block matches */
+		if (isn < x->int_base || isn >= x->int_count) {
+			xive_err(x, "%s, ISN 0x%x not on right chip\n",
+				 __func__, isn);
+			return NULL;
+		}
+		assert (idx < XIVE_INT_COUNT);
+
+		/* If we support >1 block per chip, this should still
+		 * work as we are likely to make the table contiguous
+		 * anyway
+		 */
+		eat = x->eat_base;
+		assert(eat);
+
+		return eat + idx;
+	}
+}
+
+static struct xive_nvp *xive_get_vp(struct xive *x, unsigned int idx)
+{
+	struct xive_nvp *p;
+
+	assert(idx < (x->vp_ind_count * VP_PER_PAGE));
+	p = (struct xive_nvp *)(be64_to_cpu(x->vp_ind_base[idx / VP_PER_PAGE]) &
+			       VSD_ADDRESS_MASK);
+	if (!p)
+		return NULL;
+
+	return &p[idx % VP_PER_PAGE];
+}
+
+/*
+ * Store the END base of the VP in W5, using the new architected field
+ * in P10. Used to be the pressure relief interrupt field on P9.
+ */
+static void xive_vp_set_end_base(struct xive_nvp *vp,
+				 uint32_t end_blk, uint32_t end_idx)
+{
+	vp->w5 = xive_set_field32(NVP_W5_VP_END_BLOCK, 0, end_blk) |
+		xive_set_field32(NVP_W5_VP_END_INDEX, 0, end_idx);
+
+	/* This is the criteria to know if a VP was allocated */
+	assert(vp->w5 != 0);
+}
+
+static void xive_init_default_vp(struct xive_nvp *vp,
+				 uint32_t end_blk, uint32_t end_idx)
+{
+	memset(vp, 0, sizeof(struct xive_nvp));
+
+	xive_vp_set_end_base(vp, end_blk, end_idx);
+
+	vp->w0 = xive_set_field32(NVP_W0_VALID, 0, 1);
+}
+
+/*
+ * VPs of the HW threads have their own set of ENDs which is allocated
+ * when XIVE is initialized. These are tagged with a FIRMWARE bit so
+ * that they can be identified when the driver is reset (kexec).
+ */
+static void xive_init_hw_end(struct xive_end *end)
+{
+	memset(end, 0, sizeof(struct xive_end));
+	end->w0 = xive_set_field32(END_W0_FIRMWARE1, 0, 1);
+}
+
+static void *xive_get_donated_page(struct xive *x)
+{
+	return (void *)list_pop_(&x->donated_pages, 0);
+}
+
+#define XIVE_ALLOC_IS_ERR(_idx)	((_idx) >= 0xfffffff0)
+
+#define XIVE_ALLOC_NO_SPACE	0xffffffff /* No possible space */
+#define XIVE_ALLOC_NO_IND	0xfffffffe /* Indirect need provisioning */
+#define XIVE_ALLOC_NO_MEM	0xfffffffd /* Local allocation failed */
+
+static uint32_t xive_alloc_end_set(struct xive *x, bool alloc_indirect)
+{
+	uint32_t ind_idx;
+	int idx;
+	int end_base_idx;
+
+	xive_vdbg(x, "Allocating END set...\n");
+
+	assert(x->end_map);
+
+	/* Allocate from the END bitmap. Each bit is 8 ENDs */
+	idx = bitmap_find_zero_bit(*x->end_map, 0, xive_end_bitmap_size(x));
+	if (idx < 0) {
+		xive_dbg(x, "Allocation from END bitmap failed !\n");
+		return XIVE_ALLOC_NO_SPACE;
+	}
+
+	end_base_idx = idx << xive_cfg_vp_prio_shift(x);
+
+	xive_vdbg(x, "Got ENDs 0x%x..0x%x\n", end_base_idx,
+		  end_base_idx + xive_max_prio(x));
+
+	/* Calculate the indirect page where the ENDs reside */
+	ind_idx = end_base_idx / END_PER_PAGE;
+
+	/* Is there an indirect page ? If not, check if we can provision it */
+	if (!x->end_ind_base[ind_idx]) {
+		/* Default flags */
+		uint64_t vsd_flags = SETFIELD(VSD_TSIZE, 0ull, 4) |
+			SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
+		void *page;
+
+		/* If alloc_indirect is set, allocate the memory from OPAL own,
+		 * otherwise try to provision from the donated pool
+		 */
+		if (alloc_indirect) {
+			/* Allocate/provision indirect page during boot only */
+			xive_vdbg(x, "Indirect empty, provisioning from local pool\n");
+			page = local_alloc(x->chip_id, PAGE_SIZE, PAGE_SIZE);
+			if (!page) {
+				xive_dbg(x, "provisioning failed !\n");
+				return XIVE_ALLOC_NO_MEM;
+			}
+			vsd_flags |= VSD_FIRMWARE;
+		} else {
+			xive_vdbg(x, "Indirect empty, provisioning from donated pages\n");
+			page = xive_get_donated_page(x);
+			if (!page) {
+				xive_vdbg(x, "no idirect pages available !\n");
+				return XIVE_ALLOC_NO_IND;
+			}
+		}
+		memset(page, 0, PAGE_SIZE);
+		x->end_ind_base[ind_idx] = cpu_to_be64(vsd_flags |
+			(((uint64_t)page) & VSD_ADDRESS_MASK));
+		/* Any cache scrub needed ? */
+	}
+
+	bitmap_set_bit(*x->end_map, idx);
+	return end_base_idx;
+}
+
+static void xive_free_end_set(struct xive *x, uint32_t ends)
+{
+	uint32_t idx;
+	uint8_t  prio_mask = xive_max_prio(x);
+
+	xive_vdbg(x, "Freeing END 0x%x..0x%x\n", ends, ends + xive_max_prio(x));
+
+	assert((ends & prio_mask) == 0);
+	assert(x->end_map);
+
+	idx = ends >> xive_cfg_vp_prio_shift(x);
+	bitmap_clr_bit(*x->end_map, idx);
+}
+
+static bool xive_provision_vp_ind(struct xive *x, uint32_t vp_idx, uint32_t order)
+{
+	uint32_t pbase, pend, i;
+
+	pbase = vp_idx / VP_PER_PAGE;
+	pend  = (vp_idx + (1 << order)) / VP_PER_PAGE;
+
+	for (i = pbase; i <= pend; i++) {
+		void *page;
+		u64 vsd;
+
+		/* Already provisioned ? */
+		if (x->vp_ind_base[i])
+			continue;
+
+		/* Try to grab a donated page */
+		page = xive_get_donated_page(x);
+		if (!page)
+			return false;
+
+		/* Install the page */
+		memset(page, 0, PAGE_SIZE);
+		vsd = ((uint64_t)page) & VSD_ADDRESS_MASK;
+		vsd |= SETFIELD(VSD_TSIZE, 0ull, 4);
+		vsd |= SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
+		x->vp_ind_base[i] = cpu_to_be64(vsd);
+	}
+	return true;
+}
+
+static void xive_init_vp_allocator(void)
+{
+	/* Initialize chip alloc bits */
+	xive_chips_alloc_bits = ilog2(xive_block_count);
+
+	prlog(PR_INFO, "%d chips considered for VP allocations\n",
+	      1 << xive_chips_alloc_bits);
+
+	/* Allocate a buddy big enough for XIVE_VP_ORDER allocations.
+	 *
+	 * each bit in the buddy represents 1 << xive_chips_alloc_bits
+	 * VPs.
+	 */
+	xive_vp_buddy = buddy_create(XIVE_VP_ORDER(one_xive));
+	assert(xive_vp_buddy);
+
+	/*
+	 * We reserve the whole range of VP ids representing HW threads.
+	 */
+	assert(buddy_reserve(xive_vp_buddy, xive_hw_vp_base,
+			     xive_threadid_shift));
+}
+
+static uint32_t xive_alloc_vps(uint32_t order)
+{
+	uint32_t local_order, i;
+	int vp;
+
+	/* The minimum order is 2 VPs per chip */
+	if (order < (xive_chips_alloc_bits + 1))
+		order = xive_chips_alloc_bits + 1;
+
+	/* We split the allocation */
+	local_order = order - xive_chips_alloc_bits;
+
+	/* We grab that in the global buddy */
+	assert(xive_vp_buddy);
+	lock(&xive_buddy_lock);
+	vp = buddy_alloc(xive_vp_buddy, local_order);
+	unlock(&xive_buddy_lock);
+	if (vp < 0)
+		return XIVE_ALLOC_NO_SPACE;
+
+	/* Provision on every chip considered for allocation */
+	for (i = 0; i < (1 << xive_chips_alloc_bits); i++) {
+		struct xive *x = xive_from_pc_blk(i);
+		bool success;
+
+		/* Return internal error & log rather than assert ? */
+		assert(x);
+		lock(&x->lock);
+		success = xive_provision_vp_ind(x, vp, local_order);
+		unlock(&x->lock);
+		if (!success) {
+			lock(&xive_buddy_lock);
+			buddy_free(xive_vp_buddy, vp, local_order);
+			unlock(&xive_buddy_lock);
+			return XIVE_ALLOC_NO_IND;
+		}
+	}
+
+	/* Encode the VP number. "blk" is 0 as this represents
+	 * all blocks and the allocation always starts at 0
+	 */
+	return xive_encode_vp(0, vp, order);
+}
+
+static void xive_free_vps(uint32_t vp)
+{
+	uint32_t idx;
+	uint8_t order, local_order;
+
+	assert(xive_decode_vp(vp, NULL, &idx, &order, NULL));
+
+	/* We split the allocation */
+	local_order = order - xive_chips_alloc_bits;
+
+	/* Free that in the buddy */
+	lock(&xive_buddy_lock);
+	buddy_free(xive_vp_buddy, idx, local_order);
+	unlock(&xive_buddy_lock);
+}
+
+enum xive_cache_type {
+	xive_cache_easc,
+	xive_cache_esbc,
+	xive_cache_endc,
+	xive_cache_nxc,
+};
+
+/*
+ * Cache update
+ */
+
+#define FLUSH_CTRL_POLL_VALID PPC_BIT(0)  /* POLL bit is the same for all */
+
+static int64_t __xive_cache_scrub(struct xive *x,
+				  enum xive_cache_type ctype,
+				  uint64_t block, uint64_t idx,
+				  bool want_inval __unused, bool want_disable __unused)
+{
+	uint64_t ctrl_reg, x_ctrl_reg;
+	uint64_t poll_val, ctrl_val;
+
+#ifdef XIVE_CHECK_LOCKS
+	assert(lock_held_by_me(&x->lock));
+#endif
+	switch (ctype) {
+	case xive_cache_easc:
+		poll_val =
+			SETFIELD(VC_EASC_FLUSH_POLL_BLOCK_ID, 0ll, block) |
+			SETFIELD(VC_EASC_FLUSH_POLL_OFFSET, 0ll, idx) |
+			VC_EASC_FLUSH_POLL_BLOCK_ID_MASK |
+			VC_EASC_FLUSH_POLL_OFFSET_MASK;
+		xive_regw(x, VC_EASC_FLUSH_POLL, poll_val);
+		ctrl_reg = VC_EASC_FLUSH_CTRL;
+		x_ctrl_reg = X_VC_EASC_FLUSH_CTRL;
+		break;
+	case xive_cache_esbc:
+		poll_val =
+			SETFIELD(VC_ESBC_FLUSH_POLL_BLOCK_ID, 0ll, block) |
+			SETFIELD(VC_ESBC_FLUSH_POLL_OFFSET, 0ll, idx) |
+			VC_ESBC_FLUSH_POLL_BLOCK_ID_MASK |
+			VC_ESBC_FLUSH_POLL_OFFSET_MASK;
+		xive_regw(x, VC_ESBC_FLUSH_POLL, poll_val);
+		ctrl_reg = VC_ESBC_FLUSH_CTRL;
+		x_ctrl_reg = X_VC_ESBC_FLUSH_CTRL;
+		break;
+	case xive_cache_endc:
+		poll_val =
+			SETFIELD(VC_ENDC_FLUSH_POLL_BLOCK_ID, 0ll, block) |
+			SETFIELD(VC_ENDC_FLUSH_POLL_OFFSET, 0ll, idx) |
+			VC_ENDC_FLUSH_POLL_BLOCK_ID_MASK |
+			VC_ENDC_FLUSH_POLL_OFFSET_MASK;
+		xive_regw(x, VC_ENDC_FLUSH_POLL, poll_val);
+		ctrl_reg = VC_ENDC_FLUSH_CTRL;
+		x_ctrl_reg = X_VC_ENDC_FLUSH_CTRL;
+		break;
+	case xive_cache_nxc:
+		poll_val =
+			SETFIELD(PC_NXC_FLUSH_POLL_BLOCK_ID, 0ll, block) |
+			SETFIELD(PC_NXC_FLUSH_POLL_OFFSET, 0ll, idx) |
+			PC_NXC_FLUSH_POLL_BLOCK_ID_MASK |
+			PC_NXC_FLUSH_POLL_OFFSET_MASK;
+		xive_regw(x, PC_NXC_FLUSH_POLL, poll_val);
+		ctrl_reg = PC_NXC_FLUSH_CTRL;
+		x_ctrl_reg = X_PC_NXC_FLUSH_CTRL;
+		break;
+	default:
+		return OPAL_INTERNAL_ERROR;
+	}
+
+	/* XXX Add timeout !!! */
+	for (;;) {
+		ctrl_val = __xive_regr(x, ctrl_reg, x_ctrl_reg, NULL);
+		if (!(ctrl_val & FLUSH_CTRL_POLL_VALID))
+			break;
+		/* Small delay */
+		time_wait(100);
+	}
+	sync();
+	return 0;
+}
+
+static int64_t xive_easc_scrub(struct xive *x, uint64_t block, uint64_t idx)
+{
+	return __xive_cache_scrub(x, xive_cache_easc, block, idx, false, false);
+}
+
+static int64_t xive_nxc_scrub(struct xive *x, uint64_t block, uint64_t idx)
+{
+	return __xive_cache_scrub(x, xive_cache_nxc, block, idx, false, false);
+}
+
+static int64_t xive_nxc_scrub_clean(struct xive *x, uint64_t block, uint64_t idx)
+{
+	return __xive_cache_scrub(x, xive_cache_nxc, block, idx, true, false);
+}
+
+static int64_t xive_endc_scrub(struct xive *x, uint64_t block, uint64_t idx)
+{
+	return __xive_cache_scrub(x, xive_cache_endc, block, idx, false, false);
+}
+
+#define XIVE_CACHE_WATCH_MAX_RETRIES 10
+
+static int64_t __xive_cache_watch(struct xive *x, enum xive_cache_type ctype,
+				  uint64_t block, uint64_t idx,
+				  uint32_t start_dword, uint32_t dword_count,
+				  beint64_t *new_data, bool light_watch,
+				  bool synchronous)
+{
+	uint64_t sreg, sregx, dreg0, dreg0x;
+	uint64_t dval0, sval, status;
+	int64_t i;
+	int retries = 0;
+
+#ifdef XIVE_CHECK_LOCKS
+	assert(lock_held_by_me(&x->lock));
+#endif
+	switch (ctype) {
+	case xive_cache_endc:
+		sreg = VC_ENDC_WATCH0_SPEC;
+		sregx = X_VC_ENDC_WATCH0_SPEC;
+		dreg0 = VC_ENDC_WATCH0_DATA0;
+		dreg0x = X_VC_ENDC_WATCH0_DATA0;
+		sval = SETFIELD(VC_ENDC_WATCH_BLOCK_ID, idx, block);
+		break;
+	case xive_cache_nxc:
+		sreg = PC_NXC_WATCH0_SPEC;
+		sregx = X_PC_NXC_WATCH0_SPEC;
+		dreg0 = PC_NXC_WATCH0_DATA0;
+		dreg0x = X_PC_NXC_WATCH0_DATA0;
+		sval = SETFIELD(PC_NXC_WATCH_BLOCK_ID, idx, block);
+		break;
+	default:
+		return OPAL_INTERNAL_ERROR;
+	}
+
+	/* The full bit is in the same position for ENDC and NXC */
+	if (!light_watch)
+		sval |= VC_ENDC_WATCH_FULL;
+
+	for (;;) {
+		/* Write the cache watch spec */
+		__xive_regw(x, sreg, sregx, sval, NULL);
+
+		/* Load data0 register to populate the watch */
+		dval0 = __xive_regr(x, dreg0, dreg0x, NULL);
+
+		/* If new_data is NULL, this is a dummy watch used as a
+		 * workaround for a HW bug
+		 */
+		if (!new_data) {
+			__xive_regw(x, dreg0, dreg0x, dval0, NULL);
+			return 0;
+		}
+
+		/* Write the words into the watch facility. We write in reverse
+		 * order in case word 0 is part of it as it must be the last
+		 * one written.
+		 */
+		for (i = start_dword + dword_count - 1; i >= start_dword ;i--) {
+			uint64_t dw = be64_to_cpu(new_data[i - start_dword]);
+			__xive_regw(x, dreg0 + i * 8, dreg0x + i, dw, NULL);
+		}
+
+		/* Write data0 register to trigger the update if word 0 wasn't
+		 * written above
+		 */
+		if (start_dword > 0)
+			__xive_regw(x, dreg0, dreg0x, dval0, NULL);
+
+		/* This may not be necessary for light updates (it's possible
+		 * that a sync in sufficient, TBD). Ensure the above is
+		 * complete and check the status of the watch.
+		 */
+		status = __xive_regr(x, sreg, sregx, NULL);
+
+		/* Bits FULL and CONFLICT are in the same position in
+		 * ENDC and NXC
+		 */
+		if (!(status & VC_ENDC_WATCH_FULL) ||
+		    !(status & VC_ENDC_WATCH_CONFLICT))
+			break;
+		if (!synchronous)
+			return OPAL_BUSY;
+
+		if (++retries == XIVE_CACHE_WATCH_MAX_RETRIES) {
+			xive_err(x, "Reached maximum retries %d when doing "
+				 "a %s cache update\n", retries,
+				 ctype == xive_cache_endc ? "ENDC" : "NXC");
+			return OPAL_BUSY;
+		}
+	}
+
+	/* Perform a scrub with "want_invalidate" set to false to push the
+	 * cache updates to memory as well
+	 */
+	return __xive_cache_scrub(x, ctype, block, idx, false, false);
+}
+
+#ifdef XIVE_DEBUG_INIT_CACHE_UPDATES
+static bool xive_check_endc_update(struct xive *x, uint32_t idx, struct xive_end *end)
+{
+	struct xive_end *end_p = xive_get_end(x, idx);
+	struct xive_end end2;
+
+	assert(end_p);
+	end2 = *end_p;
+	if (memcmp(end, &end2, sizeof(struct xive_end)) != 0) {
+		xive_err(x, "END update mismatch idx %d\n", idx);
+		xive_err(x, "want: %08x %08x %08x %08x\n",
+			 end->w0, end->w1, end->w2, end->w3);
+		xive_err(x, "      %08x %08x %08x %08x\n",
+			 end->w4, end->w5, end->w6, end->w7);
+		xive_err(x, "got : %08x %08x %08x %08x\n",
+			 end2.w0, end2.w1, end2.w2, end2.w3);
+		xive_err(x, "      %08x %08x %08x %08x\n",
+			 end2.w4, end2.w5, end2.w6, end2.w7);
+		return false;
+	}
+	return true;
+}
+
+static bool xive_check_nxc_update(struct xive *x, uint32_t idx, struct xive_nvp *vp)
+{
+	struct xive_nvp *vp_p = xive_get_vp(x, idx);
+	struct xive_nvp vp2;
+
+	assert(vp_p);
+	vp2 = *vp_p;
+	if (memcmp(vp, &vp2, sizeof(struct xive_nvp)) != 0) {
+		xive_err(x, "VP update mismatch idx %d\n", idx);
+		xive_err(x, "want: %08x %08x %08x %08x\n",
+			 vp->w0, vp->w1, vp->w2, vp->w3);
+		xive_err(x, "      %08x %08x %08x %08x\n",
+			 vp->w4, vp->w5, vp->w6, vp->w7);
+		xive_err(x, "got : %08x %08x %08x %08x\n",
+			 vp2.w0, vp2.w1, vp2.w2, vp2.w3);
+		xive_err(x, "      %08x %08x %08x %08x\n",
+			 vp2.w4, vp2.w5, vp2.w6, vp2.w7);
+		return false;
+	}
+	return true;
+}
+#else
+static inline bool xive_check_endc_update(struct xive *x __unused,
+					uint32_t idx __unused,
+					struct xive_end *end __unused)
+{
+	return true;
+}
+
+static inline bool xive_check_nxc_update(struct xive *x __unused,
+					 uint32_t idx __unused,
+					 struct xive_nvp *vp __unused)
+{
+	return true;
+}
+#endif
+
+static int64_t xive_escalation_ive_cache_update(struct xive *x, uint64_t block,
+				     uint64_t idx, struct xive_eas *eas,
+				     bool synchronous)
+{
+	return __xive_cache_watch(x, xive_cache_endc, block, idx,
+				  2, 1, &eas->w, true, synchronous);
+}
+
+static int64_t xive_endc_cache_update(struct xive *x, uint64_t block,
+				     uint64_t idx, struct xive_end *end,
+				     bool synchronous)
+{
+	int64_t ret;
+
+	ret = __xive_cache_watch(x, xive_cache_endc, block, idx,
+				 0, 4, (beint64_t *)end, false, synchronous);
+	xive_check_endc_update(x, idx, end);
+	return ret;
+}
+
+static int64_t xive_nxc_cache_update(struct xive *x, uint64_t block,
+				     uint64_t idx, struct xive_nvp *vp,
+				     bool synchronous)
+{
+	int64_t ret;
+
+	ret = __xive_cache_watch(x, xive_cache_nxc, block, idx,
+				 0, 4, (beint64_t *)vp, false, synchronous);
+	xive_check_nxc_update(x, idx, vp);
+	return ret;
+}
+
+/*
+ * VSD
+ */
+static bool xive_set_vsd(struct xive *x, uint32_t tbl, uint32_t idx, uint64_t v)
+{
+	/* Set VC subengine */
+	xive_regw(x, VC_VSD_TABLE_ADDR,
+		  SETFIELD(VC_VSD_TABLE_SELECT, 0ull, tbl) |
+		  SETFIELD(VC_VSD_TABLE_ADDRESS, 0ull, idx));
+	if (x->last_reg_error)
+		return false;
+	xive_regw(x, VC_VSD_TABLE_DATA, v);
+	if (x->last_reg_error)
+		return false;
+
+	/* also set PC subengine if table is used */
+	if (tbl == VST_EAS || tbl == VST_ERQ || tbl == VST_IC)
+		return true;
+
+	xive_regw(x, PC_VSD_TABLE_ADDR,
+		  SETFIELD(PC_VSD_TABLE_SELECT, 0ull, tbl) |
+		  SETFIELD(PC_VSD_TABLE_ADDRESS, 0ull, idx));
+	if (x->last_reg_error)
+		return false;
+	xive_regw(x, PC_VSD_TABLE_DATA, v);
+	if (x->last_reg_error)
+		return false;
+	return true;
+}
+
+static bool xive_set_local_tables(struct xive *x)
+{
+	uint64_t base, i;
+
+	/* These have to be power of 2 sized */
+	assert(is_pow2(XIVE_ESB_SIZE));
+	assert(is_pow2(XIVE_EAT_SIZE));
+
+	/* All tables set as exclusive */
+	base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
+
+	/* ESB: direct mode */
+	if (!xive_set_vsd(x, VST_ESB, x->block_id, base |
+			  (((uint64_t)x->sbe_base) & VSD_ADDRESS_MASK) |
+			  SETFIELD(VSD_TSIZE, 0ull, ilog2(XIVE_ESB_SIZE) - 12)))
+		return false;
+
+	/* EAS: direct mode */
+	if (!xive_set_vsd(x, VST_EAS, x->block_id, base |
+			  (((uint64_t)x->eat_base) & VSD_ADDRESS_MASK) |
+			  SETFIELD(VSD_TSIZE, 0ull, ilog2(XIVE_EAT_SIZE) - 12)))
+		return false;
+
+	/* END: indirect mode with 64K subpages */
+	if (!xive_set_vsd(x, VST_END, x->block_id, base |
+			  (((uint64_t)x->end_ind_base) & VSD_ADDRESS_MASK) |
+			  VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull,
+						  ilog2(x->end_ind_size) - 12)))
+		return false;
+
+	/* NVP: indirect mode with 64K subpages */
+	if (!xive_set_vsd(x, VST_NVP, x->block_id, base |
+			  (((uint64_t)x->vp_ind_base) & VSD_ADDRESS_MASK) |
+			  VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull,
+						  ilog2(x->vp_ind_size) - 12)))
+		return false;
+
+	/* NVG: not used  */
+	/* NVC: not used */
+
+	/* INT and SYNC: indexed with the Topology# */
+	if (!xive_set_vsd(x, VST_IC, x->chip_id, base |
+			  (((uint64_t)x->ic_base) & VSD_ADDRESS_MASK) |
+			  SETFIELD(VSD_TSIZE, 0ull, ilog2(x->ic_size) - 12)))
+		return false;
+
+	if (!xive_set_vsd(x, VST_SYNC, x->chip_id, base |
+			  (((uint64_t)x->sync_inject) & VSD_ADDRESS_MASK) |
+			  SETFIELD(VSD_TSIZE, 0ull, ilog2(x->sync_inject_size) - 12)))
+		return false;
+
+	/*
+	 * ERQ: one 64K page for each queue overflow. Indexed with :
+	 *
+	 * 0:IPI, 1:HWD, 2:NxC, 3:INT, 4:OS-Queue, 5:Pool-Queue, 6:Hard-Queue
+	 */
+	for (i = 0; i < VC_QUEUE_COUNT; i++) {
+		u64 addr = ((uint64_t)x->q_ovf) + i * PAGE_SIZE;
+		u64 cfg, sreg, sregx;
+
+		if (!xive_set_vsd(x, VST_ERQ, i, base |
+				  (addr & VSD_ADDRESS_MASK) |
+			  SETFIELD(VSD_TSIZE, 0ull, 4)))
+			return false;
+
+		sreg = VC_QUEUES_CFG_REM0 + i * 8;
+		sregx = X_VC_QUEUES_CFG_REM0 + i;
+		cfg = __xive_regr(x, sreg, sregx, NULL);
+		cfg |= VC_QUEUES_CFG_MEMB_EN;
+		cfg = SETFIELD(VC_QUEUES_CFG_MEMB_SZ, cfg, 4);
+		__xive_regw(x, sreg, sregx, cfg, NULL);
+	}
+
+	return true;
+}
+
+
+/*
+ * IC BAR layout
+ *
+ * Page 0:		Internal CQ register accesses (reads & writes)
+ * Page 1:		Internal PC register accesses (reads & writes)
+ * Page 2:		Internal VC register accesses (reads & writes)
+ * Page 3:		Internal TCTXT (TIMA) reg accesses (read & writes)
+ * Page 4:		Notify Port page (writes only, w/data),
+ * Page 5:		Reserved
+ * Page 6:		Sync Poll page (writes only, dataless)
+ * Page 7:		Sync Inject page (writes only, dataless)
+ * Page 8:		LSI Trigger page (writes only, dataless)
+ * Page 9:		LSI SB Management page (reads & writes dataless)
+ * Pages 10-255:	Reserved
+ * Pages 256-383: 	Direct mapped Thread Context Area (reads & writes)
+ *                	covering the 128 threads in P10.
+ * Pages 384-511: 	Reserved
+ */
+
+#define XIVE_IC_CQ_PGOFF	0
+#define XIVE_IC_PC_PGOFF	1
+#define XIVE_IC_VC_PGOFF	2
+#define XIVE_IC_TCTXT_PGOFF	3
+#define XIVE_NOTIFY_PGOFF	4
+#define XIVE_SYNC_POLL_PGOFF	6
+#define XIVE_SYNC_INJECT_PGOFF	7
+#define XIVE_LSI_TRIGGER_PGOFF	8
+#define XIVE_LSI_MGMT_PGOFF	9
+#define XIVE_IC_TM_DIRECT_PGOFF 256
+
+static bool xive_configure_ic_bars(struct xive *x)
+{
+	uint64_t chip_id = x->chip_id;
+	uint64_t val;
+
+	/* Reset all bars to zero */
+	xive_regwx(x, CQ_RST_CTL, CQ_RST_PB_BAR_RESET);
+
+	/* IC BAR */
+	phys_map_get(chip_id, XIVE_IC, 0, (uint64_t *)&x->ic_base, &x->ic_size);
+	val = (uint64_t)x->ic_base | CQ_IC_BAR_VALID | CQ_IC_BAR_64K;
+	x->ic_shift = 16;
+
+	xive_regwx(x, CQ_IC_BAR, val);
+	if (x->last_reg_error)
+		return false;
+
+	/*
+	 * TM BAR, same address for each chip. Hence we create a fake
+	 * chip 0 and use that for all phys_map_get(XIVE_TM) calls.
+	 */
+	phys_map_get(0, XIVE_TM, 0, (uint64_t *)&x->tm_base, &x->tm_size);
+	val = (uint64_t)x->tm_base | CQ_TM_BAR_VALID | CQ_TM_BAR_64K;
+	x->tm_shift = 16;
+
+	xive_regwx(x, CQ_TM_BAR, val);
+	if (x->last_reg_error)
+		return false;
+
+	/* IC BAR sub-pages shortcuts */
+	x->ic_tm_direct_base = x->ic_base +
+		(XIVE_IC_TM_DIRECT_PGOFF << x->ic_shift);
+
+	return true;
+}
+
+/*
+ * NVPG, NVC, ESB, END BARs have common attributes: 64k page and only
+ * one set covering the whole BAR.
+ */
+static bool xive_configure_bars(struct xive *x)
+{
+	uint64_t chip_id = x->chip_id;
+	uint64_t val;
+	uint64_t esb_size;
+	uint64_t end_size;
+	uint64_t nvp_size;
+
+	x->nvp_size = XIVE_VP_COUNT(x) << XIVE_NVP_SHIFT;
+	x->esb_size = XIVE_INT_COUNT << XIVE_ESB_SHIFT;
+	x->end_size = XIVE_END_COUNT << XIVE_END_SHIFT;
+
+	/*
+	 * NVC BAR is not configured because we do not use the XIVE2
+	 * Crowd capability.
+	 */
+
+	/* NVPG BAR: two pages, even NVP, odd NVG */
+	phys_map_get(chip_id, XIVE_NVPG, 0, (uint64_t *)&x->nvp_base, &nvp_size);
+	if (x->nvp_size > nvp_size) {
+		xive_err(x, "NVP table is larger than default: "
+			 "0x%012llx > 0x%012llx\n", x->nvp_size, nvp_size);
+		return false;
+	}
+
+	val = (uint64_t)x->nvp_base | CQ_BAR_VALID | CQ_BAR_64K |
+		SETFIELD(CQ_BAR_RANGE, 0ull, ilog2(x->nvp_size) - 24);
+	xive_regwx(x, CQ_NVPG_BAR, val);
+	if (x->last_reg_error)
+		return false;
+
+	/* ESB BAR */
+	phys_map_get(chip_id, XIVE_ESB, 0, (uint64_t *)&x->esb_base, &esb_size);
+	if (x->esb_size > esb_size) {
+		xive_err(x, "ESB table is larger than default: "
+			 "0x%012llx > 0x%012llx\n", x->esb_size, esb_size);
+		return false;
+	}
+
+	val = (uint64_t)x->esb_base | CQ_BAR_VALID | CQ_BAR_64K |
+		SETFIELD(CQ_BAR_RANGE, 0ull, ilog2(x->esb_size) - 24);
+	xive_regwx(x, CQ_ESB_BAR, val);
+	if (x->last_reg_error)
+		return false;
+
+	/* END BAR */
+	phys_map_get(chip_id, XIVE_END, 0, (uint64_t *)&x->end_base, &end_size);
+	if (x->end_size > end_size) {
+		xive_err(x, "END table is larger than default: "
+			 "0x%012llx > 0x%012llx\n", x->end_size, end_size);
+		return false;
+	}
+
+	val = (uint64_t)x->end_base | CQ_BAR_VALID | CQ_BAR_64K |
+		SETFIELD(CQ_BAR_RANGE, 0ull, ilog2(x->end_size) - 24);
+	xive_regwx(x, CQ_END_BAR, val);
+	if (x->last_reg_error)
+		return false;
+
+	xive_dbg(x, "IC:  %14p [0x%012llx]\n", x->ic_base, x->ic_size);
+	xive_dbg(x, "TM:  %14p [0x%012llx]\n", x->tm_base, x->tm_size);
+	xive_dbg(x, "NVP: %14p [0x%012llx]\n", x->nvp_base, x->nvp_size);
+	xive_dbg(x, "ESB: %14p [0x%012llx]\n", x->esb_base, x->esb_size);
+	xive_dbg(x, "END: %14p [0x%012llx]\n", x->end_base, x->end_size);
+
+	return true;
+}
+
+static void xive_dump_mmio(struct xive *x)
+{
+	prlog(PR_DEBUG, " CQ_CFG_PB_GEN = %016llx\n",
+	      in_be64(x->ic_base + CQ_CFG_PB_GEN));
+	prlog(PR_DEBUG, " CQ_MSGSND     = %016llx\n",
+	      in_be64(x->ic_base + CQ_MSGSND));
+}
+
+static const struct {
+	uint64_t bitmask;
+	const char *name;
+} xive_capabilities[] = {
+};
+
+static void xive_dump_capabilities(struct xive *x, uint64_t cap_val)
+{
+	int i;
+
+	xive_dbg(x, "capabilities: %016llx\n", cap_val);
+	xive_dbg(x, "\tVersion: %lld\n",
+		 GETFIELD(CQ_XIVE_CAP_VERSION, cap_val));
+	xive_dbg(x, "\tUser interrupt priorities: [ 1 - %d ]\n",
+		 1 << GETFIELD(CQ_XIVE_CAP_USER_INT_PRIO, cap_val));
+	xive_dbg(x, "\tVP interrupt priorities: [ %d - 8 ]\n",
+		 1 << GETFIELD(CQ_XIVE_CAP_VP_INT_PRIO, cap_val));
+	xive_dbg(x, "\tExtended Blockid bits: %lld\n",
+		 4 + GETFIELD(CQ_XIVE_CAP_BLOCK_ID_WIDTH, cap_val));
+
+	for (i = 0; i < ARRAY_SIZE(xive_capabilities); i++) {
+		if (xive_capabilities[i].bitmask & cap_val)
+			xive_dbg(x, "\t%s\n", xive_capabilities[i].name);
+	}
+}
+
+static const struct {
+	uint64_t bitmask;
+	const char *name;
+} xive_configs[] = {
+	{ CQ_XIVE_CFG_GEN1_TIMA_OS, "Gen1 mode TIMA OS" },
+	{ CQ_XIVE_CFG_GEN1_TIMA_HYP, "Gen1 mode TIMA Hyp" },
+	{ CQ_XIVE_CFG_GEN1_TIMA_HYP_BLK0, "Gen1 mode TIMA General Hypervisor Block0" },
+	{ CQ_XIVE_CFG_GEN1_TIMA_CROWD_DIS, "Gen1 mode TIMA Crowd disable" },
+	{ CQ_XIVE_CFG_GEN1_END_ESX, "Gen1 mode END ESx" },
+};
+
+static void xive_dump_configuration(struct xive *x, const char *prefix,
+				    uint64_t cfg_val)
+{
+	int i ;
+
+	xive_dbg(x, "%s configuration: %016llx\n", prefix, cfg_val);
+	xive_dbg(x, "\tHardwired Thread Id range: %lld bits\n",
+		 7 + GETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, cfg_val));
+	xive_dbg(x, "\tUser Interrupt priorities: [ 1 - %d ]\n",
+		 1 << GETFIELD(CQ_XIVE_CFG_USER_INT_PRIO, cfg_val));
+	xive_dbg(x, "\tVP Interrupt priorities: [ 0 - %d ]\n", xive_max_prio(x));
+	xive_dbg(x, "\tBlockId bits: %lld bits\n",
+		 4 + GETFIELD(CQ_XIVE_CFG_BLOCK_ID_WIDTH, cfg_val));
+	if (CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE & cfg_val)
+		xive_dbg(x, "\tHardwired BlockId: %lld\n",
+			 GETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, cfg_val));
+
+	for (i = 0; i < ARRAY_SIZE(xive_configs); i++) {
+		if (xive_configs[i].bitmask & cfg_val)
+			xive_dbg(x, "\t%s\n", xive_configs[i].name);
+	}
+}
+
+/*
+ * Default XIVE configuration
+ */
+#define XIVE_CONFIGURATION                                        \
+	(SETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, 0ull, CQ_XIVE_CFG_THREADID_8BITS) | \
+	 SETFIELD(CQ_XIVE_CFG_VP_INT_PRIO, 0ull, CQ_XIVE_CFG_INT_PRIO_8))
+
+/*
+ * Gen1 configuration for tests (QEMU)
+ */
+#define XIVE_CONFIGURATION_GEN1						\
+	(SETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, 0ull, CQ_XIVE_CFG_THREADID_7BITS) | \
+	 SETFIELD(CQ_XIVE_CFG_VP_INT_PRIO, 0ull, CQ_XIVE_CFG_INT_PRIO_8) | \
+	 CQ_XIVE_CFG_GEN1_TIMA_OS |					\
+	 CQ_XIVE_CFG_GEN1_TIMA_HYP |					\
+	 CQ_XIVE_CFG_GEN1_TIMA_HYP_BLK0 |				\
+	 CQ_XIVE_CFG_GEN1_TIMA_CROWD_DIS |				\
+	 CQ_XIVE_CFG_GEN1_END_ESX)
+
+static void xive_config_reduced_priorities_fixup(struct xive *x)
+{
+	if (xive_cfg_vp_prio_shift(x) < CQ_XIVE_CFG_INT_PRIO_8 &&
+	    x->quirks & XIVE_QUIRK_BROKEN_PRIO_CHECK) {
+		uint64_t val = xive_regr(x, PC_ERR1_CFG1);
+
+		val &= ~PC_ERR1_CFG1_INTERRUPT_INVALID_PRIO;
+		xive_dbg(x, "workaround for reduced priorities. "
+			 "PC_ERR1_CFG1=%016llx\n", val);
+		xive_regw(x, PC_ERR1_CFG1, val);
+	}
+}
+
+static bool xive_config_init(struct xive *x)
+{
+	uint64_t cap_val;
+
+	cap_val = xive_regr(x, CQ_XIVE_CAP);
+	xive_dump_capabilities(x, cap_val);
+
+	x->generation = GETFIELD(CQ_XIVE_CAP_VERSION, cap_val);
+
+	/*
+	 * Allow QEMU to override version for tests
+	 */
+	if (x->generation != XIVE_GEN2 && !chip_quirk(QUIRK_QEMU)) {
+		xive_err(x, "Invalid XIVE controller version %d\n",
+			 x->generation);
+		return false;
+	}
+
+	x->config = xive_regr(x, CQ_XIVE_CFG);
+	xive_dump_configuration(x, "default", x->config);
+
+	/* Start with default settings */
+	x->config = x->generation == XIVE_GEN1 ? XIVE_CONFIGURATION_GEN1 :
+		XIVE_CONFIGURATION;
+
+	if (x->quirks & XIVE_QUIRK_THREADID_7BITS)
+		x->config = SETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, x->config,
+				     CQ_XIVE_CFG_THREADID_7BITS);
+
+	/*
+	 * Hardwire the block ID. The default value is the topology ID
+	 * of the chip which is different from the block.
+	 */
+	x->config |= CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE |
+		SETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, 0ull, x->block_id);
+
+	xive_dump_configuration(x, "new", x->config);
+	xive_regw(x, CQ_XIVE_CFG, x->config);
+	if (xive_regr(x, CQ_XIVE_CFG) != x->config) {
+		xive_err(x, "configuration setting failed\n");
+	}
+
+	/*
+	 * Disable error reporting in the FIR for info errors from the VC.
+	 */
+	xive_regw(x, CQ_FIRMASK_OR, CQ_FIR_VC_INFO_ERROR_0_2);
+
+	/*
+	 * Mask CI Load and Store to bad location, as IPI trigger
+	 * pages may be mapped to user space, and a read on the
+	 * trigger page causes a checkstop
+	 */
+	xive_regw(x, CQ_FIRMASK_OR, CQ_FIR_PB_RCMDX_CI_ERR1);
+
+	/*
+	 * VP space settings. P9 mode is 19bits.
+	 */
+	x->vp_shift = x->generation == XIVE_GEN1 ?
+		VP_SHIFT_GEN1 : VP_SHIFT_GEN2;
+
+	/*
+	 * VP ids for HW threads. These values are hardcoded in the
+	 * CAM line of the HW context
+	 *
+	 *     POWER10     |chip|0000000000000001|threadid|
+	 *     28bits        4           16          8
+	 *
+	 *     POWER9           |chip|000000000001|thrdid |
+	 *     23bits              4      12          7
+	 */
+
+	/* TODO (cosmetic): set VP ids for HW threads only once */
+	xive_threadid_shift = 7 + GETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE,
+					   x->config);
+
+	xive_hw_vp_base  = 1 << xive_threadid_shift;
+	xive_hw_vp_count = 1 << xive_threadid_shift;
+
+	xive_dbg(x, "store EOI is %savailable\n",
+		 XIVE_CAN_STORE_EOI(x) ? "" : "not ");
+
+	xive_config_reduced_priorities_fixup(x);
+
+	return true;
+}
+
+/* Set Translation tables : 1 block per chip */
+static bool xive_setup_set_xlate(struct xive *x)
+{
+	unsigned int i;
+
+	/* Configure ESBs */
+	xive_regw(x, CQ_TAR,
+		  CQ_TAR_AUTOINC | SETFIELD(CQ_TAR_SELECT, 0ull, CQ_TAR_ESB));
+	if (x->last_reg_error)
+		return false;
+	for (i = 0; i < XIVE_MAX_BLOCKS; i++) {
+		xive_regw(x, CQ_TDR, CQ_TDR_VALID |
+			  SETFIELD(CQ_TDR_BLOCK_ID, 0ull, x->block_id));
+		if (x->last_reg_error)
+			return false;
+	}
+
+	/* Configure ENDs */
+	xive_regw(x, CQ_TAR,
+		  CQ_TAR_AUTOINC | SETFIELD(CQ_TAR_SELECT, 0ull, CQ_TAR_END));
+	if (x->last_reg_error)
+		return false;
+	for (i = 0; i < XIVE_MAX_BLOCKS; i++) {
+		xive_regw(x, CQ_TDR, CQ_TDR_VALID |
+			  SETFIELD(CQ_TDR_BLOCK_ID, 0ull, x->block_id));
+		if (x->last_reg_error)
+			return false;
+	}
+
+	/* Configure NVPs */
+	xive_regw(x, CQ_TAR,
+		  CQ_TAR_AUTOINC | SETFIELD(CQ_TAR_SELECT, 0ull, CQ_TAR_NVPG));
+	if (x->last_reg_error)
+		return false;
+	for (i = 0; i < XIVE_MAX_BLOCKS; i++) {
+		xive_regw(x, CQ_TDR, CQ_TDR_VALID |
+			  SETFIELD(CQ_TDR_BLOCK_ID, 0ull, x->block_id));
+		if (x->last_reg_error)
+			return false;
+	}
+	return true;
+}
+
+static bool xive_prealloc_tables(struct xive *x)
+{
+	uint32_t i;
+	uint32_t pbase, pend;
+
+	/* ESB has 4 entries per byte */
+	x->sbe_base = local_alloc(x->chip_id, XIVE_ESB_SIZE, XIVE_ESB_SIZE);
+	if (!x->sbe_base) {
+		xive_err(x, "Failed to allocate SBE\n");
+		return false;
+	}
+
+	/* PQs are initialized to 0b01 which corresponds to "ints off" */
+	memset(x->sbe_base, 0x55, XIVE_ESB_SIZE);
+	xive_dbg(x, "SBE  at %p size 0x%lx\n", x->sbe_base, XIVE_ESB_SIZE);
+
+	/* EAS entries are 8 bytes */
+	x->eat_base = local_alloc(x->chip_id, XIVE_EAT_SIZE, XIVE_EAT_SIZE);
+	if (!x->eat_base) {
+		xive_err(x, "Failed to allocate EAS\n");
+		return false;
+	}
+
+	/*
+	 * We clear the entries (non-valid). They will be initialized
+	 * when actually used
+	 */
+	memset(x->eat_base, 0, XIVE_EAT_SIZE);
+	xive_dbg(x, "EAT  at %p size 0x%lx\n", x->eat_base, XIVE_EAT_SIZE);
+
+	/* Indirect END table. Limited to one top page. */
+	x->end_ind_size = ALIGN_UP(XIVE_END_TABLE_SIZE, PAGE_SIZE);
+	if (x->end_ind_size > PAGE_SIZE) {
+		xive_err(x, "END indirect table is too big !\n");
+		return false;
+	}
+	x->end_ind_base = local_alloc(x->chip_id, x->end_ind_size,
+				      x->end_ind_size);
+	if (!x->end_ind_base) {
+		xive_err(x, "Failed to allocate END indirect table\n");
+		return false;
+	}
+	memset(x->end_ind_base, 0, x->end_ind_size);
+	xive_dbg(x, "ENDi at %p size 0x%llx #%ld entries\n", x->end_ind_base,
+		 x->end_ind_size, XIVE_END_COUNT);
+	x->end_ind_count = XIVE_END_TABLE_SIZE / XIVE_VSD_SIZE;
+
+	/* Indirect VP table. Limited to one top page. */
+	x->vp_ind_size = ALIGN_UP(XIVE_VP_TABLE_SIZE(x), PAGE_SIZE);
+	if (x->vp_ind_size > PAGE_SIZE) {
+		xive_err(x, "VP indirect table is too big !\n");
+		return false;
+	}
+	x->vp_ind_base = local_alloc(x->chip_id, x->vp_ind_size,
+				     x->vp_ind_size);
+	if (!x->vp_ind_base) {
+		xive_err(x, "Failed to allocate VP indirect table\n");
+		return false;
+	}
+	xive_dbg(x, "VPi  at %p size 0x%llx #%ld entries\n", x->vp_ind_base,
+		 x->vp_ind_size, XIVE_VP_COUNT(x));
+	x->vp_ind_count = XIVE_VP_TABLE_SIZE(x) / XIVE_VSD_SIZE;
+	memset(x->vp_ind_base, 0, x->vp_ind_size);
+
+	/* Allocate pages for the VP ids representing HW threads */
+	pbase = xive_hw_vp_base / VP_PER_PAGE;
+	pend  = (xive_hw_vp_base + xive_hw_vp_count) / VP_PER_PAGE;
+
+	xive_dbg(x, "Allocating pages %d to %d of VPs (for %d VPs)\n",
+		 pbase, pend, xive_hw_vp_count);
+	for (i = pbase; i <= pend; i++) {
+		void *page;
+		u64 vsd;
+
+		/* Indirect entries have a VSD format */
+		page = local_alloc(x->chip_id, PAGE_SIZE, PAGE_SIZE);
+		if (!page) {
+			xive_err(x, "Failed to allocate VP page\n");
+			return false;
+		}
+		xive_dbg(x, "VP%d at %p size 0x%x\n", i, page, PAGE_SIZE);
+		memset(page, 0, PAGE_SIZE);
+		vsd = ((uint64_t)page) & VSD_ADDRESS_MASK;
+
+		vsd |= SETFIELD(VSD_TSIZE, 0ull, 4);
+		vsd |= SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
+		vsd |= VSD_FIRMWARE;
+		x->vp_ind_base[i] = cpu_to_be64(vsd);
+	}
+
+	/*
+	 * Allocate page for cache and sync injection (512 * 128 hw
+	 * threads) + one extra page for future use
+	 */
+	x->sync_inject_size = PAGE_SIZE + PAGE_SIZE;
+	x->sync_inject = local_alloc(x->chip_id, x->sync_inject_size,
+				     x->sync_inject_size);
+	if (!x->sync_inject) {
+		xive_err(x, "Failed to allocate sync pages\n");
+		return false;
+	}
+
+	/* Allocate the queue overflow pages */
+	x->q_ovf = local_alloc(x->chip_id, VC_QUEUE_COUNT * PAGE_SIZE, PAGE_SIZE);
+	if (!x->q_ovf) {
+		xive_err(x, "Failed to allocate queue overflow\n");
+		return false;
+	}
+	return true;
+}
+
+static void xive_add_provisioning_properties(void)
+{
+	beint32_t chips[XIVE_MAX_CHIPS];
+	uint32_t i, count;
+
+	dt_add_property_cells(xive_dt_node,
+			      "ibm,xive-provision-page-size", PAGE_SIZE);
+
+	count = 1 << xive_chips_alloc_bits;
+	for (i = 0; i < count; i++)
+		chips[i] = cpu_to_be32(xive_block_to_chip[i]);
+	dt_add_property(xive_dt_node, "ibm,xive-provision-chips",
+			chips, 4 * count);
+}
+
+static void xive_create_mmio_dt_node(struct xive *x)
+{
+	uint64_t tb = (uint64_t)x->tm_base;
+	uint32_t stride = 1u << x->tm_shift;
+
+	xive_dt_node = dt_new_addr(dt_root, "interrupt-controller", tb);
+	assert(xive_dt_node);
+
+	dt_add_property_u64s(xive_dt_node, "reg",
+			     tb + 0 * stride, stride,
+			     tb + 1 * stride, stride,
+			     tb + 2 * stride, stride,
+			     tb + 3 * stride, stride);
+
+	dt_add_property_strings(xive_dt_node, "compatible",
+				"ibm,opal-xive-pe", "ibm,opal-intc");
+
+	dt_add_property_cells(xive_dt_node, "ibm,xive-eq-sizes",
+			      12, 16, 21, 24);
+
+	dt_add_property_cells(xive_dt_node, "ibm,xive-#priorities",
+			      xive_cfg_vp_prio(x));
+
+	dt_add_property(xive_dt_node, "single-escalation-support", NULL, 0);
+
+	if (XIVE_CAN_STORE_EOI(x))
+		dt_add_property(xive_dt_node, "store-eoi", NULL, 0);
+
+	xive_add_provisioning_properties();
+
+}
+
+static void xive_setup_forward_ports(struct xive *x, struct proc_chip *remote_chip)
+{
+	struct xive *remote_xive = remote_chip->xive;
+	uint64_t base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_FORWARD);
+
+	if (!xive_set_vsd(x, VST_ESB, remote_xive->block_id,
+			  base | ((uint64_t)remote_xive->esb_base) |
+			  SETFIELD(VSD_TSIZE, 0ull, ilog2(x->esb_size) - 12)))
+		goto error;
+
+	/* EAS: No remote */
+
+	if (!xive_set_vsd(x, VST_END, remote_xive->block_id,
+			  base | ((uint64_t)remote_xive->end_base) |
+			  SETFIELD(VSD_TSIZE, 0ull, ilog2(x->end_size) - 12)))
+		goto error;
+
+	if (!xive_set_vsd(x, VST_NVP, remote_xive->block_id,
+			  base | ((uint64_t)remote_xive->nvp_base) |
+			  SETFIELD(VSD_TSIZE, 0ull, ilog2(x->nvp_size) - 12)))
+		goto error;
+
+	/* NVG: not used */
+	/* NVC: not used */
+
+	if (!xive_set_vsd(x, VST_IC, remote_xive->chip_id,
+			  base | ((uint64_t)remote_xive->ic_base) |
+			  SETFIELD(VSD_TSIZE, 0ull, ilog2(x->ic_size) - 12)))
+		goto error;
+
+	if (!xive_set_vsd(x, VST_SYNC, remote_xive->chip_id,
+			  base | ((uint64_t)remote_xive->sync_inject) |
+			  SETFIELD(VSD_TSIZE, 0ull, ilog2(x->sync_inject_size) - 12)))
+		goto error;
+
+	/* ERQ: No remote */
+
+	return;
+
+ error:
+	xive_err(x, "Failure configuring forwarding ports\n");
+}
+
+static void late_init_one_xive(struct xive *x)
+{
+	struct proc_chip *chip;
+
+	/* We need to setup the cross-chip forward ports. Let's
+	 * iterate all chip and set them up accordingly
+	 */
+	for_each_chip(chip) {
+		/* We skip ourselves or chips without a xive */
+		if (chip->xive == x || !chip->xive)
+			continue;
+
+		/* Setup our forward ports to that chip */
+		xive_setup_forward_ports(x, chip);
+	}
+}
+
+static bool xive_check_ipi_free(struct xive *x, uint32_t irq, uint32_t count)
+{
+	uint32_t i, idx = GIRQ_TO_IDX(irq);
+
+	for (i = 0; i < count; i++)
+		if (bitmap_tst_bit(*x->ipi_alloc_map, idx + i))
+			return false;
+	return true;
+}
+
+uint32_t xive2_alloc_hw_irqs(uint32_t chip_id, uint32_t count,
+				      uint32_t align)
+{
+	struct proc_chip *chip = get_chip(chip_id);
+	struct xive *x;
+	uint32_t base, i;
+
+	assert(chip);
+	assert(is_pow2(align));
+
+	x = chip->xive;
+	assert(x);
+
+	lock(&x->lock);
+
+	/* Allocate the HW interrupts */
+	base = x->int_hw_bot - count;
+	base &= ~(align - 1);
+	if (base < x->int_ipi_top) {
+		xive_err(x,
+			 "HW alloc request for %d interrupts aligned to %d failed\n",
+			 count, align);
+		unlock(&x->lock);
+		return XIVE_IRQ_ERROR;
+	}
+	if (!xive_check_ipi_free(x, base, count)) {
+		xive_err(x, "HWIRQ boot allocator request overlaps dynamic allocator\n");
+		unlock(&x->lock);
+		return XIVE_IRQ_ERROR;
+	}
+
+	x->int_hw_bot = base;
+
+	/* Initialize the corresponding EAS entries to sane defaults,
+	 * IE entry is valid, not routed and masked, EQ data is set
+	 * to the GIRQ number.
+	 */
+	for (i = 0; i < count; i++) {
+		struct xive_eas *eas = xive_get_eas(x, base + i);
+
+		eas->w = xive_set_field64(EAS_VALID, 0, 1) |
+			 xive_set_field64(EAS_MASKED, 0, 1) |
+			 xive_set_field64(EAS_END_DATA, 0, base + i);
+	}
+
+	unlock(&x->lock);
+	return base;
+}
+
+uint32_t xive2_alloc_ipi_irqs(uint32_t chip_id, uint32_t count,
+				       uint32_t align)
+{
+	struct proc_chip *chip = get_chip(chip_id);
+	struct xive *x;
+	uint32_t base, i;
+
+	assert(chip);
+	assert(is_pow2(align));
+
+	x = chip->xive;
+	assert(x);
+
+	lock(&x->lock);
+
+	/* Allocate the IPI interrupts */
+	base = x->int_ipi_top + (align - 1);
+	base &= ~(align - 1);
+	if (base >= x->int_hw_bot) {
+		xive_err(x,
+			 "IPI alloc request for %d interrupts aligned to %d failed\n",
+			 count, align);
+		unlock(&x->lock);
+		return XIVE_IRQ_ERROR;
+	}
+	if (!xive_check_ipi_free(x, base, count)) {
+		xive_err(x, "IPI boot allocator request overlaps dynamic allocator\n");
+		unlock(&x->lock);
+		return XIVE_IRQ_ERROR;
+	}
+
+	x->int_ipi_top = base + count;
+
+	/* Initialize the corresponding EAS entries to sane defaults,
+	 * IE entry is valid, not routed and masked, END data is set
+	 * to the GIRQ number.
+	 */
+	for (i = 0; i < count; i++) {
+		struct xive_eas *eas = xive_get_eas(x, base + i);
+
+		eas->w = xive_set_field64(EAS_VALID, 0, 1) |
+			 xive_set_field64(EAS_MASKED, 0, 1) |
+			 xive_set_field64(EAS_END_DATA, 0, base + i);
+	}
+
+	unlock(&x->lock);
+	return base;
+}
+
+void *xive2_get_trigger_port(uint32_t girq)
+{
+	uint32_t idx = GIRQ_TO_IDX(girq);
+	struct xive *x;
+
+	/* Find XIVE on which the EAS resides */
+	x = xive_from_isn(girq);
+	if (!x)
+		return NULL;
+
+	if (GIRQ_IS_ESCALATION(girq)) {
+		/* There is no trigger page for escalation interrupts */
+		return NULL;
+	} else {
+		/* Make sure it's an IPI on that chip */
+		if (girq < x->int_base ||
+		    girq >= x->int_ipi_top)
+			return NULL;
+
+		return x->esb_base + idx * XIVE_ESB_PAGE_SIZE;
+	}
+}
+
+/*
+ *  Notify Port page (writes only, w/data), separated into two
+ *  categories, both sent to VC:
+ *   - IPI queue (Addr bit 52 = 0) (for NPU)
+ *   - HW queue (Addr bit 52 = 1)
+ */
+uint64_t xive2_get_notify_port(uint32_t chip_id, uint32_t ent)
+{
+	struct proc_chip *chip = get_chip(chip_id);
+	struct xive *x;
+	uint32_t offset = 0;
+
+	assert(chip);
+	x = chip->xive;
+	assert(x);
+
+	/* This is where we can assign a different HW queue to a different
+	 * source by offsetting into the cache lines of the notify port
+	 *
+	 * For now we keep it very basic, this will have to be looked at
+	 * again on real HW with some proper performance analysis.
+	 *
+	 * Here's what Florian says on the matter:
+	 *
+	 * <<
+	 * The first 2k of the notify port page can all be used for PCIe triggers
+	 *
+	 * However the idea would be that we try to use the first 4 cache lines to
+	 * balance the PCIe Interrupt requests to use the least used snoop buses
+	 * (we went from 2 to 4 snoop buses for P9). snoop 0 is heavily used
+	 * (I think TLBIs are using that in addition to the normal addresses),
+	 * snoop 3 is used for all Int commands, so I think snoop 2 (CL 2 in the
+	 * page) is the least used overall. So we probably should that one for
+	 * the Int commands from PCIe.
+	 *
+	 * In addition, our EAS cache supports hashing to provide "private" cache
+	 * areas for the PHBs in the shared 1k EAS cache. This allows e.g. to avoid
+	 * that one "thrashing" PHB thrashes the EAS cache for everyone, or provide
+	 * a PHB with a private area that would allow high cache hits in case of a
+	 * device using very few interrupts. The hashing is based on the offset within
+	 * the cache line. So using that, you can e.g. set the EAS cache up so that
+	 * IPIs use 512 entries, the x16 PHB uses 256 entries and the x8 PHBs 128
+	 * entries each - or IPIs using all entries and sharing with PHBs, so PHBs
+	 * would use 512 entries and 256 entries respectively.
+	 *
+	 * This is a tuning we would probably do later in the lab, but as a "prep"
+	 * we should set up the different PHBs such that they are using different
+	 * 8B-aligned offsets within the cache line, so e.g.
+	 * PH4_0  addr        0x100        (CL 2 DW0
+	 * PH4_1  addr        0x108        (CL 2 DW1)
+	 * PH4_2  addr        0x110        (CL 2 DW2)
+	 * etc.
+	 * >>
+	 *
+	 * I'm using snoop1 for PHB0 and snoop2 for everybody else.
+	 */
+
+	/* Florian adds :
+	 *
+	 * we just set them up for a start to have different offsets
+	 * within the cache line so that we could use the allocation
+	 * restrictions that can be enforced in the interrupt
+	 * controller
+	 *
+	 * P10 might now be randomizing the cache line bits in HW to
+	 * balance snoop bus usage
+	 *
+	 * TODO (phb5) : implement "address based triggers" (DD2.0?)
+	 *
+	 * The PHBs would no longer target the notify port page but
+	 * the "base ESB MMIO address" of the ESB/EAS range they are
+	 * allocated. Needs a XIVE API change for the PHBs.
+	 */
+	switch(ent) {
+	case XIVE_HW_SRC_PHBn(0):
+		offset = 0x800;
+		break;
+	case XIVE_HW_SRC_PHBn(1):
+		offset = 0x908;
+		break;
+	case XIVE_HW_SRC_PHBn(2):
+		offset = 0x910;
+		break;
+	case XIVE_HW_SRC_PHBn(3):
+		offset = 0x918;
+		break;
+	case XIVE_HW_SRC_PHBn(4):
+		offset = 0x920;
+		break;
+	case XIVE_HW_SRC_PHBn(5):
+		offset = 0x928;
+		break;
+	case XIVE_HW_SRC_PSI:
+		offset = 0x930;
+		break;
+	default:
+		assert(false);
+		return 0;
+	}
+
+	return ((uint64_t)x->ic_base) +
+		(XIVE_NOTIFY_PGOFF << x->ic_shift) + offset;
+}
+
+/* Manufacture the powerbus packet bits 32:63 */
+__attrconst uint32_t xive2_get_notify_base(uint32_t girq)
+{
+	return (GIRQ_TO_BLK(girq) << 28)  | GIRQ_TO_IDX(girq);
+}
+
+static bool xive_get_irq_targetting(uint32_t isn, uint32_t *out_target,
+				    uint8_t *out_prio, uint32_t *out_lirq)
+{
+	struct xive_eas *eas;
+	struct xive *x, *end_x;
+	struct xive_end *end;
+	uint32_t end_blk, end_idx;
+	uint32_t vp_blk, vp_idx;
+	uint32_t prio, server;
+	bool is_escalation = GIRQ_IS_ESCALATION(isn);
+
+	/* Find XIVE on which the EAS resides */
+	x = xive_from_isn(isn);
+	if (!x)
+		return false;
+	/* Grab the EAS */
+	eas = xive_get_eas(x, isn);
+	if (!eas)
+		return false;
+	if (!xive_get_field64(EAS_VALID, eas->w) && !is_escalation) {
+		xive_err(x, "ISN %x lead to invalid EAS !\n", isn);
+		return false;
+	}
+
+	if (out_lirq)
+		*out_lirq = xive_get_field64(EAS_END_DATA, eas->w);
+
+	/* Find the END and its xive instance */
+	end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
+	end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
+	end_x = xive_from_vc_blk(end_blk);
+
+	/* This can fail if the interrupt hasn't been initialized yet
+	 * but it should also be masked, so fail silently
+	 */
+	if (!end_x)
+		goto pick_default;
+	end = xive_get_end(end_x, end_idx);
+	if (!end)
+		goto pick_default;
+
+	/* XXX Check valid and format 0 */
+
+	/* No priority conversion, return the actual one ! */
+	if (xive_get_field64(EAS_MASKED, eas->w))
+		prio = 0xff;
+	else
+		prio = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
+	if (out_prio)
+		*out_prio = prio;
+
+	vp_blk = xive_get_field32(END_W6_VP_BLOCK, end->w6);
+	vp_idx = xive_get_field32(END_W6_VP_OFFSET, end->w6);
+	server = VP2PIR(vp_blk, vp_idx);
+
+	if (out_target)
+		*out_target = server;
+
+	xive_vdbg(end_x, "END info for ISN %x: prio=%d, server=0x%x (VP %x/%x)\n",
+		  isn, prio, server, vp_blk, vp_idx);
+	return true;
+
+pick_default:
+	xive_vdbg(end_x, "END info for ISN %x: Using masked defaults\n", isn);
+
+	if (out_prio)
+		*out_prio = 0xff;
+	/* Pick a random default, me will be fine ... */
+	if (out_target)
+		*out_target = mfspr(SPR_PIR);
+	return true;
+}
+
+static inline bool xive_end_for_target(uint32_t target, uint8_t prio,
+				      uint32_t *out_end_blk,
+				      uint32_t *out_end_idx)
+{
+	struct xive *x;
+	struct xive_nvp *vp;
+	uint32_t vp_blk, vp_idx;
+	uint32_t end_blk, end_idx;
+
+	if (prio > xive_max_prio(one_xive))
+		return false;
+
+	/* Get the VP block/index from the target word */
+	if (!xive_decode_vp(target, &vp_blk, &vp_idx, NULL, NULL))
+		return false;
+
+	/* Grab the target VP's XIVE */
+	x = xive_from_pc_blk(vp_blk);
+	if (!x)
+		return false;
+
+	/* Find the VP structrure where we stashed the END number */
+	vp = xive_get_vp(x, vp_idx);
+	if (!vp)
+		return false;
+
+	end_blk = xive_get_field32(NVP_W5_VP_END_BLOCK, vp->w5);
+	end_idx = xive_get_field32(NVP_W5_VP_END_INDEX, vp->w5);
+
+	/* Currently the END block and VP block should be the same */
+	if (end_blk != vp_blk) {
+		xive_err(x, "end_blk != vp_blk (%d vs. %d) for target 0x%08x/%d\n",
+			 end_blk, vp_blk, target, prio);
+		assert(false);
+	}
+
+	if (out_end_blk)
+		*out_end_blk = end_blk;
+	if (out_end_idx)
+		*out_end_idx = end_idx + prio;
+
+	return true;
+}
+
+static int64_t xive_set_irq_targetting(uint32_t isn, uint32_t target,
+				       uint8_t prio, uint32_t lirq,
+				       bool synchronous)
+{
+	struct xive *x;
+	struct xive_eas *eas, new_eas;
+	uint32_t end_blk, end_idx;
+	bool is_escalation = GIRQ_IS_ESCALATION(isn);
+	int64_t rc;
+
+	/* Find XIVE on which the EAS resides */
+	x = xive_from_isn(isn);
+	if (!x)
+		return OPAL_PARAMETER;
+	/* Grab the EAS */
+	eas = xive_get_eas(x, isn);
+	if (!eas)
+		return OPAL_PARAMETER;
+	if (!xive_get_field64(EAS_VALID, eas->w) && !is_escalation) {
+		xive_err(x, "ISN %x lead to invalid EAS !\n", isn);
+		return OPAL_PARAMETER;
+	}
+
+	lock(&x->lock);
+
+	/* Read existing EAS */
+	new_eas = *eas;
+
+	/* Are we masking ? */
+	if (prio == 0xff && !is_escalation) {
+		new_eas.w = xive_set_field64(EAS_MASKED, new_eas.w, 1);
+		xive_vdbg(x, "ISN %x masked !\n", isn);
+
+		/* Put prio 7 in the END */
+		prio = xive_max_prio(x);
+	} else {
+		/* Unmasking */
+		new_eas.w = xive_set_field64(EAS_MASKED, new_eas.w, 0);
+		xive_vdbg(x, "ISN %x unmasked !\n", isn);
+
+		/* For normal interrupt sources, keep track of which ones
+		 * we ever enabled since the last reset
+		 */
+		if (!is_escalation)
+			bitmap_set_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn));
+	}
+
+	/* If prio isn't 0xff, re-target the EAS. First find the END
+	 * correponding to the target
+	 */
+	if (prio != 0xff) {
+		if (!xive_end_for_target(target, prio, &end_blk, &end_idx)) {
+			xive_err(x, "Can't find END for target/prio 0x%x/%d\n",
+				 target, prio);
+			unlock(&x->lock);
+			return OPAL_PARAMETER;
+		}
+
+		/* Try to update it atomically to avoid an intermediary
+		 * stale state
+		 */
+		new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
+		new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
+	}
+	new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, lirq);
+
+	xive_vdbg(x,"ISN %x routed to end %x/%x lirq=%08x EAS=%016llx !\n",
+		  isn, end_blk, end_idx, lirq, new_eas.w);
+
+	/* Updating the cache differs between real EAS and escalation
+	 * EAS inside an END
+	 */
+	if (is_escalation) {
+		rc = xive_escalation_ive_cache_update(x, x->block_id,
+				GIRQ_TO_IDX(isn), &new_eas, synchronous);
+	} else {
+		sync();
+		*eas = new_eas;
+		rc = xive_easc_scrub(x, x->block_id, GIRQ_TO_IDX(isn));
+	}
+
+	unlock(&x->lock);
+	return rc;
+}
+
+static void xive_update_irq_mask(struct xive_src *s, uint32_t idx, bool masked)
+{
+	void *mmio_base = s->esb_mmio + (1ul << s->esb_shift) * idx;
+	uint32_t offset;
+
+	/* XXX FIXME: A quick mask/umask can make us shoot an interrupt
+	 * more than once to a queue. We need to keep track better
+	 */
+	if (s->flags & XIVE_SRC_EOI_PAGE1)
+		mmio_base += 1ull << (s->esb_shift - 1);
+	if (masked)
+		offset = XIVE_ESB_SET_PQ_01;
+	else
+		offset = XIVE_ESB_SET_PQ_00;
+
+	in_be64(mmio_base + offset);
+}
+
+#define XIVE_SYNC_IPI      0x000
+#define XIVE_SYNC_HW       0x080
+#define XIVE_SYNC_NxC      0x100
+#define XIVE_SYNC_INT      0x180
+#define XIVE_SYNC_OS_ESC   0x200
+#define XIVE_SYNC_POOL_ESC 0x280
+#define XIVE_SYNC_HARD_ESC 0x300
+
+static int64_t xive_sync(struct xive *x __unused)
+{
+	uint64_t r;
+	void *sync_base;
+
+	lock(&x->lock);
+
+	sync_base = x->ic_base + (XIVE_SYNC_POLL_PGOFF << x->ic_shift);
+
+	out_be64(sync_base + XIVE_SYNC_IPI, 0);
+	out_be64(sync_base + XIVE_SYNC_HW, 0);
+	out_be64(sync_base + XIVE_SYNC_NxC, 0);
+	out_be64(sync_base + XIVE_SYNC_INT, 0);
+	out_be64(sync_base + XIVE_SYNC_OS_ESC, 0);
+	out_be64(sync_base + XIVE_SYNC_POOL_ESC, 0);
+	out_be64(sync_base + XIVE_SYNC_HARD_ESC, 0);
+
+	/* XXX Add timeout */
+	for (;;) {
+		r = xive_regr(x, VC_ENDC_SYNC_DONE);
+		if ((r & VC_ENDC_SYNC_POLL_DONE) == VC_ENDC_SYNC_POLL_DONE)
+			break;
+		cpu_relax();
+	}
+	xive_regw(x, VC_ENDC_SYNC_DONE, r & ~VC_ENDC_SYNC_POLL_DONE);
+
+	/*
+	 * Do a read after clearing the sync done bit to prevent any
+	 * race between CI write and next sync command
+	 */
+	xive_regr(x, VC_ENDC_SYNC_DONE);
+
+	unlock(&x->lock);
+	return 0;
+}
+
+static int64_t __xive_set_irq_config(struct irq_source *is, uint32_t girq,
+				     uint64_t vp, uint8_t prio, uint32_t lirq,
+				     bool update_esb, bool sync)
+{
+	struct xive_src *s = container_of(is, struct xive_src, is);
+	uint32_t old_target, vp_blk;
+	u8 old_prio;
+	int64_t rc;
+
+	/* Grab existing target */
+	if (!xive_get_irq_targetting(girq, &old_target, &old_prio, NULL))
+		return OPAL_PARAMETER;
+
+	/* Let XIVE configure the END. We do the update without the
+	 * synchronous flag, thus a cache update failure will result
+	 * in us returning OPAL_BUSY
+	 */
+	rc = xive_set_irq_targetting(girq, vp, prio, lirq, false);
+	if (rc)
+		return rc;
+
+	/* Do we need to update the mask ? */
+	if (old_prio != prio && (old_prio == 0xff || prio == 0xff)) {
+		/* The source has special variants of masking/unmasking */
+		if (update_esb) {
+			/* Ensure it's enabled/disabled in the source
+			 * controller
+			 */
+			xive_update_irq_mask(s, girq - s->esb_base,
+					     prio == 0xff);
+		}
+	}
+
+	/*
+	 * Synchronize the source and old target XIVEs to ensure that
+	 * all pending interrupts to the old target have reached their
+	 * respective queue.
+	 *
+	 * WARNING: This assumes the VP and it's queues are on the same
+	 *          XIVE instance !
+	 */
+	if (!sync)
+		return OPAL_SUCCESS;
+	xive_sync(s->xive);
+	if (xive_decode_vp(old_target, &vp_blk, NULL, NULL, NULL)) {
+		struct xive *x = xive_from_pc_blk(vp_blk);
+		if (x)
+			xive_sync(x);
+	}
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t xive_set_irq_config(uint32_t girq, uint64_t vp, uint8_t prio,
+				   uint32_t lirq, bool update_esb)
+{
+	struct irq_source *is = irq_find_source(girq);
+
+	return __xive_set_irq_config(is, girq, vp, prio, lirq, update_esb,
+				     true);
+}
+
+static void xive_source_interrupt(struct irq_source *is, uint32_t isn)
+{
+	struct xive_src *s = container_of(is, struct xive_src, is);
+
+	if (!s->orig_ops || !s->orig_ops->interrupt)
+		return;
+	s->orig_ops->interrupt(is, isn);
+}
+
+static uint64_t xive_source_attributes(struct irq_source *is, uint32_t isn)
+{
+	struct xive_src *s = container_of(is, struct xive_src, is);
+
+	if (!s->orig_ops || !s->orig_ops->attributes)
+		return IRQ_ATTR_TARGET_LINUX;
+	return s->orig_ops->attributes(is, isn);
+}
+
+static char *xive_source_name(struct irq_source *is, uint32_t isn)
+{
+	struct xive_src *s = container_of(is, struct xive_src, is);
+
+	if (!s->orig_ops || !s->orig_ops->name)
+		return NULL;
+	return s->orig_ops->name(is, isn);
+}
+
+static const struct irq_source_ops xive_irq_source_ops = {
+	.interrupt = xive_source_interrupt,
+	.attributes = xive_source_attributes,
+	.name = xive_source_name,
+};
+
+static void __xive_register_source(struct xive *x, struct xive_src *s,
+				   uint32_t base, uint32_t count,
+				   uint32_t shift, void *mmio, uint32_t flags,
+				   bool secondary, void *data,
+				   const struct irq_source_ops *orig_ops)
+{
+	s->esb_base = base;
+	s->esb_shift = shift;
+	s->esb_mmio = mmio;
+	s->flags = flags;
+	s->orig_ops = orig_ops;
+	s->xive = x;
+	s->is.start = base;
+	s->is.end = base + count;
+	s->is.ops = &xive_irq_source_ops;
+	s->is.data = data;
+
+	__register_irq_source(&s->is, secondary);
+}
+
+void xive2_register_hw_source(uint32_t base, uint32_t count, uint32_t shift,
+			     void *mmio, uint32_t flags, void *data,
+			     const struct irq_source_ops *ops)
+{
+	struct xive_src *s;
+	struct xive *x = xive_from_isn(base);
+
+	assert(x);
+
+	s = malloc(sizeof(struct xive_src));
+	assert(s);
+	__xive_register_source(x, s, base, count, shift, mmio, flags,
+			       false, data, ops);
+}
+
+void xive2_register_ipi_source(uint32_t base, uint32_t count, void *data,
+			      const struct irq_source_ops *ops)
+{
+	struct xive_src *s;
+	struct xive *x = xive_from_isn(base);
+	uint32_t base_idx = GIRQ_TO_IDX(base);
+	void *mmio_base;
+	uint32_t flags = XIVE_SRC_EOI_PAGE1 | XIVE_SRC_TRIGGER_PAGE;
+
+	assert(x);
+	assert(base >= x->int_base && (base + count) <= x->int_ipi_top);
+
+	s = malloc(sizeof(struct xive_src));
+	assert(s);
+
+	if (XIVE_CAN_STORE_EOI(x))
+		flags |= XIVE_SRC_STORE_EOI;
+
+	/* Callbacks assume the MMIO base corresponds to the first
+	 * interrupt of that source structure so adjust it
+	 */
+	mmio_base = x->esb_base + (1ul << XIVE_ESB_SHIFT) * base_idx;
+	__xive_register_source(x, s, base, count, XIVE_ESB_SHIFT, mmio_base,
+			       flags, false, data, ops);
+}
+
+static void xive_set_quirks(struct xive *x, struct proc_chip *chip __unused)
+{
+	uint64_t quirks = 0;
+
+	/* This extension is dropped for P10 */
+	if (proc_gen == proc_gen_p10)
+		quirks |= XIVE_QUIRK_THREADID_7BITS;
+
+	/* Broken check on invalid priority when reduced priorities is in use */
+	if (proc_gen == proc_gen_p10)
+		quirks |= XIVE_QUIRK_BROKEN_PRIO_CHECK;
+
+	xive_dbg(x, "setting XIVE quirks to %016llx\n", quirks);
+	x->quirks = quirks;
+}
+
+static struct xive *init_one_xive(struct dt_node *np)
+{
+	struct xive *x;
+	struct proc_chip *chip;
+	uint32_t flags;
+
+	x = zalloc(sizeof(struct xive));
+	assert(x);
+	x->x_node = np;
+	x->xscom_base = dt_get_address(np, 0, NULL);
+	x->chip_id = dt_get_chip_id(np);
+
+	/* "Allocate" a new block ID for the chip */
+	x->block_id = xive_block_count++;
+	assert (x->block_id < XIVE_MAX_CHIPS);
+	xive_block_to_chip[x->block_id] = x->chip_id;
+	init_lock(&x->lock);
+
+	chip = get_chip(x->chip_id);
+	assert(chip);
+
+	xive_notice(x, "Initializing XIVE block ID %d...\n", x->block_id);
+	chip->xive = x;
+
+	xive_set_quirks(x, chip);
+
+	list_head_init(&x->donated_pages);
+
+	/* Base interrupt numbers and allocator init */
+
+	x->int_base	= BLKIDX_TO_GIRQ(x->block_id, 0);
+	x->int_count	= x->int_base + XIVE_INT_COUNT;
+	x->int_hw_bot	= x->int_count;
+	x->int_ipi_top	= x->int_base;
+
+	if (x->int_ipi_top < XIVE_INT_FIRST)
+		x->int_ipi_top = XIVE_INT_FIRST;
+
+	/* Allocate a few bitmaps */
+	x->end_map = local_alloc(x->chip_id, BITMAP_BYTES(xive_end_bitmap_size(x)), PAGE_SIZE);
+	assert(x->end_map);
+	memset(x->end_map, 0, BITMAP_BYTES(xive_end_bitmap_size(x)));
+
+	/*
+	 * Allocate END index 0 to make sure it can not be used as an
+	 * END base for a VP. This is the criteria to know if a VP was
+	 * allocated.
+	 */
+	bitmap_set_bit(*x->end_map, 0);
+
+	x->int_enabled_map = local_alloc(x->chip_id, BITMAP_BYTES(XIVE_INT_COUNT), PAGE_SIZE);
+	assert(x->int_enabled_map);
+	memset(x->int_enabled_map, 0, BITMAP_BYTES(XIVE_INT_COUNT));
+	x->ipi_alloc_map = local_alloc(x->chip_id, BITMAP_BYTES(XIVE_INT_COUNT), PAGE_SIZE);
+	assert(x->ipi_alloc_map);
+	memset(x->ipi_alloc_map, 0, BITMAP_BYTES(XIVE_INT_COUNT));
+
+	xive_dbg(x, "Handling interrupts [%08x..%08x]\n",
+		 x->int_base, x->int_count - 1);
+
+	/* Setup the IC BARs */
+	if (!xive_configure_ic_bars(x))
+		goto fail;
+
+	/* Some basic global inits such as page sizes etc... */
+	if (!xive_config_init(x))
+		goto fail;
+
+	/* Configure the set translations for MMIO */
+	if (!xive_setup_set_xlate(x))
+		goto fail;
+
+	/* Dump some MMIO registers for diagnostics */
+	xive_dump_mmio(x);
+
+	/* Pre-allocate a number of tables */
+	if (!xive_prealloc_tables(x))
+		goto fail;
+
+	/* Setup the XIVE structures BARs */
+	if (!xive_configure_bars(x))
+		goto fail;
+
+	/*
+	 * Configure local tables in VSDs (forward ports will be
+	 * handled later)
+	 */
+	if (!xive_set_local_tables(x))
+		goto fail;
+
+	/* Register built-in source controllers (aka IPIs) */
+	flags = XIVE_SRC_EOI_PAGE1 | XIVE_SRC_TRIGGER_PAGE;
+	if (XIVE_CAN_STORE_EOI(x))
+		flags |= XIVE_SRC_STORE_EOI;
+	__xive_register_source(x, &x->ipis, x->int_base,
+			       x->int_hw_bot - x->int_base, XIVE_ESB_SHIFT,
+			       x->esb_base, flags, true, NULL, NULL);
+
+	/* Register escalation sources (ENDs)
+	 *
+	 * The ESe PQ bits are used for coalescing and the END ESB for
+	 * interrupt management. The word 4&5 of the END is the EAS
+	 * for the escalation source and the indexing is the same as
+	 * the END.
+	 *
+	 * This is an OPAL primary source, IPIs are secondary.
+	 */
+	__xive_register_source(x, &x->esc_irqs,
+			       MAKE_ESCALATION_GIRQ(x->block_id, 0),
+			       XIVE_END_COUNT, XIVE_END_SHIFT,
+			       x->end_base, XIVE_SRC_EOI_PAGE1,
+			       false, NULL, NULL);
+
+
+	return x;
+ fail:
+	xive_err(x, "Initialization failed...\n");
+
+	/* Should this be fatal ? */
+	//assert(false);
+	return NULL;
+}
+
+static void xive_reset_enable_thread(struct cpu_thread *c)
+{
+	struct proc_chip *chip = get_chip(c->chip_id);
+	struct xive *x = chip->xive;
+	uint32_t fc, bit;
+	uint64_t enable;
+
+	/* Get fused core number */
+	fc = (c->pir >> 3) & 0xf;
+
+	/* Get bit in register */
+	bit = c->pir & 0x3f;
+
+	/* Get which register to access */
+	if (fc < 8) {
+		xive_regw(x, TCTXT_EN0_RESET, PPC_BIT(bit));
+		xive_regw(x, TCTXT_EN0_SET, PPC_BIT(bit));
+
+		enable = xive_regr(x, TCTXT_EN0);
+		if (!(enable & PPC_BIT(bit)))
+			xive_cpu_err(c, "Failed to enable thread\n");
+	} else {
+		xive_regw(x, TCTXT_EN1_RESET, PPC_BIT(bit));
+		xive_regw(x, TCTXT_EN1_SET, PPC_BIT(bit));
+
+		enable = xive_regr(x, TCTXT_EN1);
+		if (!(enable & PPC_BIT(bit)))
+			xive_cpu_err(c, "Failed to enable thread\n");
+	}
+}
+
+void xive2_cpu_callin(struct cpu_thread *cpu)
+{
+	struct xive_cpu_state *xs = cpu->xstate;
+	uint8_t old_w2 __unused, w2 __unused;
+
+	if (!xs)
+		return;
+
+	/* Reset the HW thread context and enable it */
+	xive_reset_enable_thread(cpu);
+
+	/* Set VT to 1 */
+	old_w2 = in_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2);
+	out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2, 0x80);
+	w2 = in_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2);
+
+	xive_cpu_vdbg(cpu, "Initialized TIMA VP=%x/%x W01=%016llx W2=%02x->%02x\n",
+		      xs->vp_blk, xs->vp_idx,
+		      in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS),
+		      old_w2, w2);
+}
+
+#ifdef XIVE_EXTRA_CHECK_INIT_CACHE
+#define CHECK_INIT_CACHE_LOOP 0x100
+static void xive_special_cache_check(struct xive *x, uint32_t blk, uint32_t idx)
+{
+	struct xive_nvp vp = {0};
+	uint32_t i;
+
+	/*
+	 * SIMICS checks the value of reserved fields
+	 */
+	if (chip_quirk(QUIRK_SIMICS))
+		return;
+
+	for (i = 0; i < CHECK_INIT_CACHE_LOOP; i++) {
+		struct xive_nvp *vp_m = xive_get_vp(x, idx);
+
+		memset(vp_m, (~i) & 0xff, sizeof(*vp_m));
+		sync();
+		vp.w1 = (i << 16) | i;
+		assert(!xive_nxc_cache_update(x, blk, idx, &vp, true));
+		if (!xive_check_nxc_update(x, idx, &vp)) {
+			xive_dbg(x, "NXC update test failed at %d iterations\n", i);
+			return;
+		}
+	}
+	xive_dbg(x, "NXC update test passed for %d/0x%x\n", blk, idx);
+}
+#else
+static inline void xive_special_cache_check(struct xive *x __unused,
+					    uint32_t blk __unused,
+					    uint32_t idx __unused)
+{
+}
+#endif
+
+static void xive_init_cpu_exploitation(struct xive_cpu_state *xs)
+{
+	struct xive_end end;
+	struct xive_nvp vp;
+	struct xive *x_vp, *x_end;
+	int i;
+
+	/* Grab the XIVE where the VP resides. It could be different from
+	 * the local chip XIVE if not using block group mode
+	 */
+	x_vp = xive_from_pc_blk(xs->vp_blk);
+	assert(x_vp);
+
+	/* Grab the XIVE where the END resides. It should be the same
+	 * as the VP.
+	 */
+	x_end = xive_from_vc_blk(xs->end_blk);
+	assert(x_end);
+
+	xive_init_hw_end(&end);
+
+	/* Use the cache watch to update all ENDs reserved for HW VPs */
+	lock(&x_end->lock);
+	for (i = 0; i < xive_cfg_vp_prio(x_end); i++)
+		xive_endc_cache_update(x_end, xs->end_blk, xs->end_idx + i,
+				       &end, true);
+	unlock(&x_end->lock);
+
+	/* Initialize/enable the VP */
+	xive_init_default_vp(&vp, xs->end_blk, xs->end_idx);
+
+	/* Use the cache watch to write it out */
+	lock(&x_vp->lock);
+	xive_special_cache_check(x_vp, xs->vp_blk, xs->vp_idx);
+	xive_nxc_cache_update(x_vp, xs->vp_blk, xs->vp_idx, &vp, true);
+	unlock(&x_vp->lock);
+}
+
+static void xive_configure_ex_special_bar(struct xive *x, struct cpu_thread *c)
+{
+	uint64_t xa, val;
+	int64_t rc;
+
+	xive_cpu_vdbg(c, "Setting up special BAR\n");
+	xa = XSCOM_ADDR_P10_NCU(pir_to_core_id(c->pir), P10_NCU_SPEC_BAR);
+	val = (uint64_t)x->tm_base | P10_NCU_SPEC_BAR_ENABLE;
+	if (x->tm_shift == 16)
+		val |= P10_NCU_SPEC_BAR_256K;
+	xive_cpu_vdbg(c, "NCU_SPEC_BAR_XA[%08llx]=%016llx\n", xa, val);
+	rc = xscom_write(c->chip_id, xa, val);
+	if (rc) {
+		xive_cpu_err(c, "Failed to setup NCU_SPEC_BAR\n");
+		/* XXXX  what do do now ? */
+	}
+}
+
+void xive2_late_init(void)
+{
+	prlog(PR_INFO, "SLW: Configuring self-restore for NCU_SPEC_BAR\n");
+	/*
+	 * TODO (p10): need P10 stop state engine and fix for STOP11
+	 */
+}
+
+static void xive_provision_cpu(struct xive_cpu_state *xs, struct cpu_thread *c)
+{
+	struct xive *x;
+
+	/* VP ids for HW threads are pre-allocated */
+	xs->vp_blk = PIR2VP_BLK(c->pir);
+	xs->vp_idx = PIR2VP_IDX(c->pir);
+
+	/* For now we use identical block IDs for VC and PC but that might
+	 * change. We allocate the ENDs on the same XIVE as the VP.
+	 */
+	xs->end_blk = xs->vp_blk;
+
+	/* Grab the XIVE where the END resides. It could be different from
+	 * the local chip XIVE if not using block group mode
+	 */
+	x = xive_from_vc_blk(xs->end_blk);
+	assert(x);
+
+	/* Allocate a set of ENDs for that VP */
+	xs->end_idx = xive_alloc_end_set(x, true);
+	assert(!XIVE_ALLOC_IS_ERR(xs->end_idx));
+}
+
+static void xive_init_cpu(struct cpu_thread *c)
+{
+	struct proc_chip *chip = get_chip(c->chip_id);
+	struct xive *x = chip->xive;
+	struct xive_cpu_state *xs;
+
+	if (!x)
+		return;
+
+	/*
+	 * Each core pair (EX) needs this special BAR setup to have the
+	 * right powerbus cycle for the TM area (as it has the same address
+	 * on all chips so it's somewhat special).
+	 *
+	 * Because we don't want to bother trying to figure out which core
+	 * of a pair is present we just do the setup for each of them, which
+	 * is harmless.
+	 */
+	if (cpu_is_thread0(c))
+		xive_configure_ex_special_bar(x, c);
+
+	/* Initialize the state structure */
+	c->xstate = xs = local_alloc(c->chip_id, sizeof(struct xive_cpu_state), 1);
+	assert(xs);
+	memset(xs, 0, sizeof(struct xive_cpu_state));
+	xs->xive = x;
+
+	init_lock(&xs->lock);
+
+	/* Shortcut to TM HV ring */
+	xs->tm_ring1 = x->tm_base + (1u << x->tm_shift);
+
+	/* Provision a VP id and some ENDs for a HW thread */
+	xive_provision_cpu(xs, c);
+
+	xive_init_cpu_exploitation(xs);
+}
+
+static uint64_t xive_convert_irq_flags(uint64_t iflags)
+{
+	uint64_t oflags = 0;
+
+	if (iflags & XIVE_SRC_STORE_EOI)
+		oflags |= OPAL_XIVE_IRQ_STORE_EOI;
+
+	/* OPAL_XIVE_IRQ_TRIGGER_PAGE is only meant to be set if
+	 * the interrupt has a *separate* trigger page.
+	 */
+	if ((iflags & XIVE_SRC_EOI_PAGE1) &&
+	    (iflags & XIVE_SRC_TRIGGER_PAGE))
+		oflags |= OPAL_XIVE_IRQ_TRIGGER_PAGE;
+
+	if (iflags & XIVE_SRC_LSI)
+		oflags |= OPAL_XIVE_IRQ_LSI;
+
+	return oflags;
+}
+
+static int64_t opal_xive_get_irq_info(uint32_t girq,
+				      beint64_t *out_flags,
+				      beint64_t *out_eoi_page,
+				      beint64_t *out_trig_page,
+				      beint32_t *out_esb_shift,
+				      beint32_t *out_src_chip)
+{
+	struct irq_source *is = irq_find_source(girq);
+	struct xive_src *s = container_of(is, struct xive_src, is);
+	uint32_t idx;
+	uint64_t mm_base;
+	uint64_t eoi_page = 0, trig_page = 0;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+	if (is == NULL || out_flags == NULL)
+		return OPAL_PARAMETER;
+	assert(is->ops == &xive_irq_source_ops);
+
+	if (out_flags)
+		*out_flags = cpu_to_be64(xive_convert_irq_flags(s->flags));
+
+	idx = girq - s->esb_base;
+
+	if (out_esb_shift)
+		*out_esb_shift = cpu_to_be32(s->esb_shift);
+
+	mm_base = (uint64_t)s->esb_mmio + (1ull << s->esb_shift) * idx;
+
+	/* The EOI page can either be the first or second page */
+	if (s->flags & XIVE_SRC_EOI_PAGE1) {
+		uint64_t p1off = 1ull << (s->esb_shift - 1);
+		eoi_page = mm_base + p1off;
+	} else
+		eoi_page = mm_base;
+
+	/* The trigger page, if it exists, is always the first page */
+	if (s->flags & XIVE_SRC_TRIGGER_PAGE)
+		trig_page = mm_base;
+
+	if (out_eoi_page)
+		*out_eoi_page = cpu_to_be64(eoi_page);
+	if (out_trig_page)
+		*out_trig_page = cpu_to_be64(trig_page);
+	if (out_src_chip)
+		*out_src_chip = cpu_to_be32(GIRQ_TO_CHIP(girq));
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_get_irq_config(uint32_t girq,
+					beint64_t *out_vp,
+					uint8_t *out_prio,
+					beint32_t *out_lirq)
+{
+	uint32_t vp;
+	uint32_t lirq;
+	uint8_t prio;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+               return OPAL_WRONG_STATE;
+
+	if (xive_get_irq_targetting(girq, &vp, &prio, &lirq)) {
+		*out_vp = cpu_to_be64(vp);
+		*out_prio = prio;
+		*out_lirq = cpu_to_be32(lirq);
+		return OPAL_SUCCESS;
+	} else
+		return OPAL_PARAMETER;
+}
+
+static int64_t opal_xive_set_irq_config(uint32_t girq,
+					uint64_t vp,
+					uint8_t prio,
+					uint32_t lirq)
+{
+	/*
+	 * This variant is meant for a XIVE-aware OS, thus it will
+	 * *not* affect the ESB state of the interrupt. If used with
+	 * a prio of FF, the EAS will be masked. In that case the
+	 * races have to be handled by the OS.
+	 */
+	if (xive_mode != XIVE_MODE_EXPL)
+               return OPAL_WRONG_STATE;
+
+	return xive_set_irq_config(girq, vp, prio, lirq, false);
+}
+
+static int64_t opal_xive_get_queue_info(uint64_t vp, uint32_t prio,
+					beint64_t *out_qpage,
+					beint64_t *out_qsize,
+					beint64_t *out_qeoi_page,
+					beint32_t *out_escalate_irq,
+					beint64_t *out_qflags)
+{
+	uint32_t blk, idx;
+	struct xive *x;
+	struct xive_end *end;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+               return OPAL_WRONG_STATE;
+
+	if (!xive_end_for_target(vp, prio, &blk, &idx))
+		return OPAL_PARAMETER;
+
+	x = xive_from_vc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+
+	end = xive_get_end(x, idx);
+	if (!end)
+		return OPAL_PARAMETER;
+
+	if (out_escalate_irq) {
+		uint32_t esc_idx = idx;
+
+		/* If escalations are routed to a single queue, fix up
+		 * the escalation interrupt number here.
+		 */
+		if (xive_get_field32(END_W0_UNCOND_ESCALATE, end->w0))
+			esc_idx |= xive_escalation_prio(x);
+		*out_escalate_irq =
+			cpu_to_be32(MAKE_ESCALATION_GIRQ(blk, esc_idx));
+	}
+
+	/* If this is a single-escalation gather queue, that's all
+	 * there is to return
+	 */
+	if (xive_get_field32(END_W0_SILENT_ESCALATE, end->w0)) {
+		if (out_qflags)
+			*out_qflags = 0;
+		if (out_qpage)
+			*out_qpage = 0;
+		if (out_qsize)
+			*out_qsize = 0;
+		if (out_qeoi_page)
+			*out_qeoi_page = 0;
+		return OPAL_SUCCESS;
+	}
+
+	if (out_qpage) {
+		if (xive_get_field32(END_W0_ENQUEUE, end->w0))
+			*out_qpage = cpu_to_be64(
+				((uint64_t)xive_get_field32(END_W2_EQ_ADDR_HI, end->w2) << 32) |
+				xive_get_field32(END_W3_EQ_ADDR_LO, end->w3));
+		else
+			*out_qpage = 0;
+	}
+	if (out_qsize) {
+		if (xive_get_field32(END_W0_ENQUEUE, end->w0))
+			*out_qsize = cpu_to_be64(xive_get_field32(END_W3_QSIZE, end->w3) + 12);
+		else
+			*out_qsize = 0;
+	}
+	if (out_qeoi_page) {
+		*out_qeoi_page = cpu_to_be64(
+			(uint64_t)x->end_base + idx * XIVE_ESB_PAGE_SIZE);
+	}
+	if (out_qflags) {
+		*out_qflags = 0;
+		if (xive_get_field32(END_W0_VALID, end->w0))
+			*out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ENABLED);
+		if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0))
+			*out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ALWAYS_NOTIFY);
+		if (xive_get_field32(END_W0_ESCALATE_CTL, end->w0))
+			*out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ESCALATE);
+	}
+
+	return OPAL_SUCCESS;
+}
+
+static void xive_cleanup_end(struct xive_end *end)
+{
+	end->w0 = xive_set_field32(END_W0_FIRMWARE1, 0, xive_end_is_firmware1(end));
+	end->w1 = xive_set_field32(END_W1_ESe_Q, 0, 1) |
+		  xive_set_field32(END_W1_ESn_Q, 0, 1);
+	end->w2 = end->w3 = end->w4 = end->w5 = end->w6 = end->w7 = 0;
+}
+
+static int64_t opal_xive_set_queue_info(uint64_t vp, uint32_t prio,
+					uint64_t qpage,
+					uint64_t qsize,
+					uint64_t qflags)
+{
+	uint32_t blk, idx;
+	struct xive *x;
+	struct xive_end *old_end;
+	struct xive_end end;
+	uint32_t vp_blk, vp_idx;
+	bool group;
+	int64_t rc;
+
+	if (!xive_end_for_target(vp, prio, &blk, &idx))
+		return OPAL_PARAMETER;
+
+	x = xive_from_vc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+
+	old_end = xive_get_end(x, idx);
+	if (!old_end)
+		return OPAL_PARAMETER;
+
+	/* If this is a silent escalation queue, it cannot be
+	 * configured directly
+	 */
+	if (xive_get_field32(END_W0_SILENT_ESCALATE, old_end->w0))
+		return OPAL_PARAMETER;
+
+	/* This shouldn't fail or xive_end_for_target would have
+	 * failed already
+	 */
+	if (!xive_decode_vp(vp, &vp_blk, &vp_idx, NULL, &group))
+		return OPAL_PARAMETER;
+
+	/*
+	 * Make a local copy which we will later try to commit using
+	 * the cache watch facility
+	 */
+	end = *old_end;
+
+	if (qflags & OPAL_XIVE_EQ_ENABLED) {
+		switch(qsize) {
+			/* Supported sizes */
+		case 12:
+		case 16:
+		case 21:
+		case 24:
+			end.w3 = cpu_to_be32(qpage & END_W3_EQ_ADDR_LO);
+			end.w2 = cpu_to_be32((qpage >> 32) & END_W2_EQ_ADDR_HI);
+			end.w3 = xive_set_field32(END_W3_QSIZE, end.w3, qsize - 12);
+			end.w0 = xive_set_field32(END_W0_ENQUEUE, end.w0, 1);
+			break;
+		case 0:
+			end.w2 = end.w3 = 0;
+			end.w0 = xive_set_field32(END_W0_ENQUEUE, end.w0, 0);
+			break;
+		default:
+			return OPAL_PARAMETER;
+		}
+
+		/* Ensure the priority and target are correctly set (they will
+		 * not be right after allocation
+		 */
+		end.w6 = xive_set_field32(END_W6_VP_BLOCK, 0, vp_blk) |
+			xive_set_field32(END_W6_VP_OFFSET, 0, vp_idx);
+		end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0, prio);
+		/* XXX Handle group i bit when needed */
+
+		/* Always notify flag */
+		if (qflags & OPAL_XIVE_EQ_ALWAYS_NOTIFY)
+			end.w0 = xive_set_field32(END_W0_UCOND_NOTIFY, end.w0, 1);
+		else
+			end.w0 = xive_set_field32(END_W0_UCOND_NOTIFY, end.w0, 0);
+
+		/* Escalation flag */
+		if (qflags & OPAL_XIVE_EQ_ESCALATE)
+			end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 1);
+		else
+			end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 0);
+
+		/* Unconditionally clear the current queue pointer, set
+		 * generation to 1 and disable escalation interrupts.
+		 */
+		end.w1 = xive_set_field32(END_W1_GENERATION, 0, 1) |
+			 xive_set_field32(END_W1_ES, 0, xive_get_field32(END_W1_ES, old_end->w1));
+
+		/* Enable. We always enable backlog for an enabled queue
+		 * otherwise escalations won't work.
+		 */
+		end.w0 = xive_set_field32(END_W0_VALID, end.w0, 1);
+		end.w0 = xive_set_field32(END_W0_BACKLOG, end.w0, 1);
+	} else
+		xive_cleanup_end(&end);
+
+	/* Update END, non-synchronous */
+	lock(&x->lock);
+	rc = xive_endc_cache_update(x, blk, idx, &end, false);
+	unlock(&x->lock);
+
+	return rc;
+}
+
+static int64_t opal_xive_get_queue_state(uint64_t vp, uint32_t prio,
+					 beint32_t *out_qtoggle,
+					 beint32_t *out_qindex)
+{
+	uint32_t blk, idx;
+	struct xive *x;
+	struct xive_end *end;
+	int64_t rc;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+
+	if (!out_qtoggle || !out_qindex ||
+	    !xive_end_for_target(vp, prio, &blk, &idx))
+		return OPAL_PARAMETER;
+
+	x = xive_from_vc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+
+	end = xive_get_end(x, idx);
+	if (!end)
+		return OPAL_PARAMETER;
+
+	/* Scrub the queue */
+	lock(&x->lock);
+	rc = xive_endc_scrub(x, blk, idx);
+	unlock(&x->lock);
+	if (rc)
+		return rc;
+
+	/* We don't do disable queues */
+	if (!xive_get_field32(END_W0_VALID, end->w0))
+		return OPAL_WRONG_STATE;
+
+	*out_qtoggle = cpu_to_be32(xive_get_field32(END_W1_GENERATION, end->w1));
+	*out_qindex  = cpu_to_be32(xive_get_field32(END_W1_PAGE_OFF, end->w1));
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_set_queue_state(uint64_t vp, uint32_t prio,
+					 uint32_t qtoggle, uint32_t qindex)
+{
+	uint32_t blk, idx;
+	struct xive *x;
+	struct xive_end *end, new_end;
+	int64_t rc;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+
+	if (!xive_end_for_target(vp, prio, &blk, &idx))
+		return OPAL_PARAMETER;
+
+	x = xive_from_vc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+
+	end = xive_get_end(x, idx);
+	if (!end)
+		return OPAL_PARAMETER;
+
+	/* We don't do disable queues */
+	if (!xive_get_field32(END_W0_VALID, end->w0))
+		return OPAL_WRONG_STATE;
+
+	new_end = *end;
+
+	new_end.w1 = xive_set_field32(END_W1_GENERATION, new_end.w1, qtoggle);
+	new_end.w1 = xive_set_field32(END_W1_PAGE_OFF, new_end.w1, qindex);
+
+	lock(&x->lock);
+	rc = xive_endc_cache_update(x, blk, idx, &new_end, false);
+	unlock(&x->lock);
+
+	return rc;
+}
+
+static int64_t opal_xive_donate_page(uint32_t chip_id, uint64_t addr)
+{
+	struct proc_chip *c = get_chip(chip_id);
+	struct list_node *n;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+	if (!c)
+		return OPAL_PARAMETER;
+	if (!c->xive)
+		return OPAL_PARAMETER;
+	if (addr & 0xffff)
+		return OPAL_PARAMETER;
+
+	n = (struct list_node *)addr;
+	lock(&c->xive->lock);
+	list_add(&c->xive->donated_pages, n);
+	unlock(&c->xive->lock);
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_get_vp_info(uint64_t vp_id,
+				     beint64_t *out_flags,
+				     beint64_t *out_cam_value,
+				     beint64_t *out_report_cl_pair,
+				     beint32_t *out_chip_id)
+{
+	struct xive *x;
+	struct xive_nvp *vp;
+	uint32_t blk, idx;
+	bool group;
+
+	if (!xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
+		return OPAL_PARAMETER;
+	/* We don't do groups yet */
+	if (group)
+		return OPAL_PARAMETER;
+	x = xive_from_pc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+	vp = xive_get_vp(x, idx);
+	if (!vp)
+		return OPAL_PARAMETER;
+
+	if (out_flags) {
+		uint32_t end_blk, end_idx;
+		struct xive_end *end;
+		struct xive *end_x;
+		*out_flags = 0;
+
+		/*
+		 * We would like to a way to stash a SW bit in the VP
+		 * to know whether silent escalation is enabled or
+		 * not, but unlike what happens with ENDs, the PC
+		 * cache watch doesn't implement the reserved bit in
+		 * the VPs... so we have to go look at END 7 instead.
+		 */
+
+		/* Grab END for prio 7 to check for silent escalation */
+		if (!xive_end_for_target(vp_id, xive_escalation_prio(x),
+					 &end_blk, &end_idx))
+			return OPAL_PARAMETER;
+
+		end_x = xive_from_vc_blk(end_blk);
+		if (!end_x)
+			return OPAL_PARAMETER;
+
+		end = xive_get_end(x, end_idx);
+		if (!end)
+			return OPAL_PARAMETER;
+		if (xive_get_field32(NVP_W0_VALID, vp->w0))
+			*out_flags |= cpu_to_be64(OPAL_XIVE_VP_ENABLED);
+		if (xive_get_field32(END_W0_SILENT_ESCALATE, end->w0))
+			*out_flags |= cpu_to_be64(OPAL_XIVE_VP_SINGLE_ESCALATION);
+	}
+
+	if (out_cam_value) {
+		uint64_t cam_value;
+
+		cam_value = (blk << x->vp_shift) | idx;
+
+		*out_cam_value = cpu_to_be64(cam_value);
+	}
+
+	if (out_report_cl_pair) {
+		uint64_t report_cl_pair;
+
+		report_cl_pair = ((uint64_t)(be32_to_cpu(vp->w6) & 0x0fffffff)) << 32;
+		report_cl_pair |= be32_to_cpu(vp->w7) & 0xffffff00;
+
+		*out_report_cl_pair = cpu_to_be64(report_cl_pair);
+	}
+
+	if (out_chip_id)
+		*out_chip_id = cpu_to_be32(xive_block_to_chip[blk]);
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t xive_setup_silent_gather(uint64_t vp_id, bool enable)
+{
+	uint32_t blk, idx, i;
+	struct xive_end *end_orig;
+	struct xive_end end;
+	struct xive *x;
+	int64_t rc;
+
+	/* Get base END block */
+	if (!xive_end_for_target(vp_id, 0, &blk, &idx)) {
+		prlog(PR_ERR, "%s: Invalid VP 0x%08llx\n", __func__, vp_id);
+		return OPAL_PARAMETER;
+	}
+	x = xive_from_vc_blk(blk);
+	if (!x) {
+		prlog(PR_ERR, "%s: VP 0x%08llx has invalid block %d\n", __func__,
+		      vp_id, blk);
+		return OPAL_PARAMETER;
+	}
+
+	/* Grab prio 7 */
+	end_orig = xive_get_end(x, idx + xive_escalation_prio(x));
+	if (!end_orig) {
+		xive_err(x, "Failed to get silent gather END 0x%x for VP 0x%08llx\n",
+			 idx + xive_escalation_prio(x), vp_id);
+		return OPAL_PARAMETER;
+	}
+
+	/* If trying to enable silent gather, make sure prio 7 is not
+	 * already enabled as a normal queue
+	 */
+	if (enable && xive_get_field32(END_W0_VALID, end_orig->w0) &&
+	    !xive_get_field32(END_W0_SILENT_ESCALATE, end_orig->w0)) {
+		xive_err(x, "silent gather END 0x%x already in use\n",
+			 idx + xive_escalation_prio(x));
+		return OPAL_PARAMETER;
+	}
+
+	end = *end_orig;
+
+	if (enable) {
+		/* W0: Enabled and "s" set, no other bit */
+		end.w0 = xive_set_field32(END_W0_FIRMWARE1, end.w0, 0);
+		end.w0 = xive_set_field32(END_W0_VALID, end.w0, 1);
+		end.w0 = xive_set_field32(END_W0_SILENT_ESCALATE, end.w0, 1);
+		end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 1);
+		end.w0 = xive_set_field32(END_W0_BACKLOG, end.w0, 1);
+
+		/* Set new "N" for END escalation (vs. ESB)  */
+		end.w0 = xive_set_field32(END_W0_ESCALATE_END, end.w0, 1);
+
+		/* W1: Mark ESn as 01, ESe as 00 */
+		end.w1 = xive_set_field32(END_W1_ESn_P, end.w1, 0);
+		end.w1 = xive_set_field32(END_W1_ESn_Q, end.w1, 1);
+		end.w1 = xive_set_field32(END_W1_ESe, end.w1, 0);
+	} else if (xive_get_field32(END_W0_SILENT_ESCALATE, end.w0))
+		xive_cleanup_end(&end);
+
+	if (!memcmp(end_orig, &end, sizeof(end)))
+		rc = 0;
+	else
+		rc = xive_endc_cache_update(x, blk, idx + xive_escalation_prio(x),
+					    &end, false);
+	if (rc)
+		return rc;
+
+	/* Mark/unmark all other prios with the new "u" bit and update
+	 * escalation
+	 */
+	for (i = 0; i < xive_cfg_vp_prio(x); i++) {
+		if (i == xive_escalation_prio(x))
+			continue;
+		end_orig = xive_get_end(x, idx + i);
+		if (!end_orig)
+			continue;
+		end = *end_orig;
+		if (enable) {
+			/* Set "u" bit */
+			end.w0 = xive_set_field32(END_W0_UNCOND_ESCALATE, end.w0, 1);
+
+			/* Set new "N" for END escalation (vs. ESB)  */
+			/* TODO (Gen2+) : use ESB escalation configuration */
+			end.w0 = xive_set_field32(END_W0_ESCALATE_END, end.w0, 1);
+
+			/* Re-route escalation interrupt (previous
+			 * route is lost !) to the gather queue
+			 */
+			end.w4 = xive_set_field32(END_W4_END_BLOCK, end.w4, blk);
+			end.w4 = xive_set_field32(END_W4_ESC_END_INDEX,
+					  end.w4, idx + xive_escalation_prio(x));
+		} else if (xive_get_field32(END_W0_UNCOND_ESCALATE, end.w0)) {
+			/* Clear the "u" bit, disable escalations if it was set */
+			end.w0 = xive_set_field32(END_W0_UNCOND_ESCALATE, end.w0, 0);
+			end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 0);
+		}
+		if (!memcmp(end_orig, &end, sizeof(end)))
+			continue;
+		rc = xive_endc_cache_update(x, blk, idx + i, &end, false);
+		if (rc)
+			break;
+	}
+
+	return rc;
+}
+
+static int64_t opal_xive_set_vp_info(uint64_t vp_id,
+				     uint64_t flags,
+				     uint64_t report_cl_pair)
+{
+	struct xive *x;
+	struct xive_nvp *vp, vp_new;
+	uint32_t blk, idx;
+	bool group;
+	int64_t rc;
+
+	if (!xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
+		return OPAL_PARAMETER;
+	/* We don't do groups yet */
+	if (group)
+		return OPAL_PARAMETER;
+	if (report_cl_pair & 0xff)
+		return OPAL_PARAMETER;
+	x = xive_from_pc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+	vp = xive_get_vp(x, idx);
+	if (!vp)
+		return OPAL_PARAMETER;
+
+	lock(&x->lock);
+
+	vp_new = *vp;
+	if (flags & OPAL_XIVE_VP_ENABLED) {
+		vp_new.w0 = xive_set_field32(NVP_W0_VALID, vp_new.w0, 1);
+		vp_new.w6 = cpu_to_be32(report_cl_pair >> 32);
+		vp_new.w7 = cpu_to_be32(report_cl_pair & 0xffffffff);
+
+		if (flags & OPAL_XIVE_VP_SINGLE_ESCALATION)
+			rc = xive_setup_silent_gather(vp_id, true);
+		else
+			rc = xive_setup_silent_gather(vp_id, false);
+	} else {
+		/*
+		 * TODO (kvm): disabling a VP invalidates the associated ENDs.
+		 *
+		 * The loads then return all 1s which can be an issue for the
+		 * Linux code to handle.
+		 */
+
+		vp_new.w0 = vp_new.w6 = vp_new.w7 = 0;
+		rc = xive_setup_silent_gather(vp_id, false);
+	}
+
+	if (rc) {
+		if (rc != OPAL_BUSY)
+			xive_dbg(x, "Silent gather setup failed with err %lld\n", rc);
+		goto bail;
+	}
+
+	rc = xive_nxc_cache_update(x, blk, idx, &vp_new, false);
+	if (rc)
+		goto bail;
+
+	/* When disabling, we scrub clean (invalidate the entry) so
+	 * we can avoid cache ops in alloc/free
+	 */
+	if (!(flags & OPAL_XIVE_VP_ENABLED))
+		xive_nxc_scrub_clean(x, blk, idx);
+
+bail:
+	unlock(&x->lock);
+	return rc;
+}
+
+static int64_t opal_xive_get_vp_state(uint64_t vp_id, beint64_t *out_state)
+{
+	struct xive *x;
+	struct xive_nvp *vp;
+	uint32_t blk, idx;
+	int64_t rc;
+	bool group;
+
+	if (!out_state || !xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
+		return OPAL_PARAMETER;
+	if (group)
+		return OPAL_PARAMETER;
+	x = xive_from_pc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+	vp = xive_get_vp(x, idx);
+	if (!vp)
+		return OPAL_PARAMETER;
+
+	/* Scrub the vp */
+	lock(&x->lock);
+	rc = xive_nxc_scrub(x, blk, idx);
+	unlock(&x->lock);
+	if (rc)
+		return rc;
+
+	if (!xive_get_field32(NVP_W0_VALID, vp->w0))
+		return OPAL_WRONG_STATE;
+
+	/*
+	 * return a state matching the layout of WORD 0-1 of the TIMA
+	 * as this is expected by current implementation.
+	 */
+	*out_state = cpu_to_be64(((uint64_t) 0x0) << 54 |
+		(uint64_t)xive_get_field32(NVP_W2_CPPR, vp->w2)  << 48 |
+		(uint64_t)xive_get_field32(NVP_W2_IPB,  vp->w2)  << 40 |
+		(uint64_t)xive_get_field32(NVP_W2_LSMFB, vp->w2) << 32);
+
+	return OPAL_SUCCESS;
+}
+
+static void *xive_cpu_get_tima(struct cpu_thread *c)
+{
+	struct xive_cpu_state *xs = c->xstate;
+	struct xive *x = xs->xive;
+
+	return x->ic_tm_direct_base + ((c->pir & 0xff) << x->ic_shift);
+}
+
+static void xive_cleanup_cpu_tima(struct cpu_thread *c)
+{
+	struct xive_cpu_state *xs __unused = c->xstate;
+	void *cpu_tm_base = xive_cpu_get_tima(c);
+	uint8_t old_w2 __unused, w2 __unused;
+
+	/* Reset the HW context */
+	xive_reset_enable_thread(c);
+
+	/* Set VT to 1 */
+	old_w2 = in_8(cpu_tm_base + TM_QW3_HV_PHYS + TM_WORD2);
+	out_8(cpu_tm_base + TM_QW3_HV_PHYS + TM_WORD2, 0x80);
+	w2 = in_8(cpu_tm_base + TM_QW3_HV_PHYS + TM_WORD2);
+
+	/* Dump HV state */
+	xive_cpu_vdbg(c, "[reset] VP TIMA VP=%x/%x W01=%016llx W2=%02x->%02x\n",
+		      xs->vp_blk, xs->vp_idx,
+		      in_be64(cpu_tm_base + TM_QW3_HV_PHYS),
+		      old_w2, w2);
+}
+
+static int64_t xive_vc_ind_cache_kill(struct xive *x, uint64_t type)
+{
+	uint64_t val;
+
+	/* We clear the whole thing */
+	xive_regw(x, VC_AT_MACRO_KILL_MASK, 0);
+	xive_regw(x, VC_AT_MACRO_KILL, VC_AT_MACRO_KILL_VALID |
+		  SETFIELD(VC_AT_MACRO_KILL_VSD, 0ull, type));
+
+	/* XXX Add timeout */
+	for (;;) {
+		val = xive_regr(x, VC_AT_MACRO_KILL);
+		if (!(val & VC_AT_MACRO_KILL_VALID))
+			break;
+	}
+	return 0;
+}
+
+static int64_t xive_pc_ind_cache_kill(struct xive *x)
+{
+	uint64_t val;
+
+	/* We clear the whole thing */
+	xive_regw(x, PC_AT_KILL_MASK, 0);
+	xive_regw(x, PC_AT_KILL, PC_AT_KILL_VALID |
+		  SETFIELD(VC_AT_MACRO_KILL_VSD, 0ull, VST_NVP));
+
+	/* XXX Add timeout */
+	for (;;) {
+		val = xive_regr(x, PC_AT_KILL);
+		if (!(val & PC_AT_KILL_VALID))
+			break;
+	}
+	return 0;
+}
+
+static void xive_cleanup_vp_ind(struct xive *x)
+{
+	int i;
+
+	xive_dbg(x, "Cleaning up %d VP ind entries...\n", x->vp_ind_count);
+	for (i = 0; i < x->vp_ind_count; i++) {
+		if (be64_to_cpu(x->vp_ind_base[i]) & VSD_FIRMWARE) {
+			xive_dbg(x, " %04x ... skip (firmware)\n", i);
+			continue;
+		}
+		if (x->vp_ind_base[i] != 0) {
+			x->vp_ind_base[i] = 0;
+			xive_dbg(x, " %04x ... cleaned\n", i);
+		}
+	}
+	xive_pc_ind_cache_kill(x);
+}
+
+static void xive_cleanup_end_ind(struct xive *x)
+{
+	int i;
+
+	xive_dbg(x, "Cleaning up %d END ind entries...\n", x->end_ind_count);
+	for (i = 0; i < x->end_ind_count; i++) {
+		if (be64_to_cpu(x->end_ind_base[i]) & VSD_FIRMWARE) {
+			xive_dbg(x, " %04x ... skip (firmware)\n", i);
+			continue;
+		}
+		if (x->end_ind_base[i] != 0) {
+			x->end_ind_base[i] = 0;
+			xive_dbg(x, " %04x ... cleaned\n", i);
+		}
+	}
+	xive_vc_ind_cache_kill(x, VST_END);
+}
+
+static void xive_reset_one(struct xive *x)
+{
+	struct cpu_thread *c;
+	bool end_firmware;
+	int i;
+
+	xive_notice(x, "Resetting one xive...\n");
+
+	lock(&x->lock);
+
+	/* Check all interrupts are disabled */
+	i = bitmap_find_one_bit(*x->int_enabled_map, 0, XIVE_INT_COUNT);
+	if (i >= 0)
+		xive_warn(x, "Interrupt %d (and maybe more) not disabled"
+			  " at reset !\n", i);
+
+	/* Reset IPI allocation */
+	xive_dbg(x, "freeing alloc map %p/%p\n",
+		 x->ipi_alloc_map, *x->ipi_alloc_map);
+	memset(x->ipi_alloc_map, 0, BITMAP_BYTES(XIVE_INT_COUNT));
+
+	xive_dbg(x, "Resetting ENDs...\n");
+
+	/* Reset all allocated ENDs and free the user ones */
+	bitmap_for_each_one(*x->end_map, xive_end_bitmap_size(x), i) {
+		struct xive_end end0;
+		struct xive_end *end;
+		int j;
+
+		if (i == 0)
+			continue;
+		end_firmware = false;
+		for (j = 0; j < xive_cfg_vp_prio(x); j++) {
+			uint32_t idx = (i << xive_cfg_vp_prio_shift(x)) | j;
+
+			end = xive_get_end(x, idx);
+			if (!end)
+				continue;
+
+			/* We need to preserve the firmware bit, otherwise
+			 * we will incorrectly free the ENDs that are reserved
+			 * for the physical CPUs
+			 */
+			if (xive_get_field32(END_W0_VALID, end->w0)) {
+				if (!xive_end_is_firmware1(end))
+					xive_dbg(x, "END 0x%x:0x%x is valid at reset: %08x %08x\n",
+						 x->block_id, idx, end->w0, end->w1);
+				end0 = *end;
+				xive_cleanup_end(&end0);
+				xive_endc_cache_update(x, x->block_id, idx, &end0, true);
+			}
+			if (xive_end_is_firmware1(end))
+				end_firmware = true;
+		}
+		if (!end_firmware)
+			bitmap_clr_bit(*x->end_map, i);
+	}
+
+	/* Take out all VPs from HW and reset all CPPRs to 0 */
+	for_each_present_cpu(c) {
+		if (c->chip_id != x->chip_id)
+			continue;
+		if (!c->xstate)
+			continue;
+		xive_cleanup_cpu_tima(c);
+	}
+
+	/* Reset all user-allocated VPs. This is inefficient, we should
+	 * either keep a bitmap of allocated VPs or add an iterator to
+	 * the buddy which is trickier but doable.
+	 */
+	for (i = 0; i < XIVE_VP_COUNT(x); i++) {
+		struct xive_nvp *vp;
+		struct xive_nvp vp0 = {0};
+
+		/* Ignore the physical CPU VPs */
+		if (i >= xive_hw_vp_count &&
+		    i < (xive_hw_vp_base + xive_hw_vp_count))
+			continue;
+
+		/* Is the VP valid ? */
+		vp = xive_get_vp(x, i);
+		if (!vp || !xive_get_field32(NVP_W0_VALID, vp->w0))
+			continue;
+
+		/* Clear it */
+		xive_dbg(x, "VP 0x%x:0x%x is valid at reset\n", x->block_id, i);
+		xive_nxc_cache_update(x, x->block_id, i, &vp0, true);
+	}
+
+	/* Forget about remaining donated pages */
+	list_head_init(&x->donated_pages);
+
+	/* And cleanup donated indirect VP and END pages */
+	xive_cleanup_vp_ind(x);
+	xive_cleanup_end_ind(x);
+
+	/* The rest must not be called with the lock held */
+	unlock(&x->lock);
+
+	/* Re-configure VPs */
+	for_each_present_cpu(c) {
+		struct xive_cpu_state *xs = c->xstate;
+
+		if (c->chip_id != x->chip_id || !xs)
+			continue;
+
+		xive_init_cpu_exploitation(xs);
+	}
+}
+
+static void xive_reset_mask_source_cb(struct irq_source *is,
+				      void *data __unused)
+{
+	struct xive_src *s = container_of(is, struct xive_src, is);
+	struct xive *x;
+	uint32_t isn;
+
+	if (is->ops != &xive_irq_source_ops)
+		return;
+
+	/* Skip escalation sources */
+	if (GIRQ_IS_ESCALATION(is->start))
+		return;
+
+	x = s->xive;
+
+	/* Iterate all interrupts */
+	for (isn = is->start; isn < is->end; isn++) {
+		/* Has it ever been enabled ? */
+		if (!bitmap_tst_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn)))
+			continue;
+		/* Mask it and clear the enabled map bit */
+		xive_vdbg(x, "[reset] disabling source 0x%x\n", isn);
+		__xive_set_irq_config(is, isn, 0, 0xff, isn, true, false);
+		bitmap_clr_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn));
+	}
+}
+
+void xive2_cpu_reset(void)
+{
+	struct cpu_thread *c = this_cpu();
+	struct xive_cpu_state *xs = c->xstate;
+
+	out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, 0);
+
+	in_be64(xs->tm_ring1 + TM_SPC_PULL_POOL_CTX);
+}
+
+static int64_t __xive_reset(uint64_t version)
+{
+	struct proc_chip *chip;
+
+	xive_mode = version;
+
+	/* Mask all interrupt sources */
+	irq_for_each_source(xive_reset_mask_source_cb, NULL);
+
+	/* For each XIVE do a sync... */
+	for_each_chip(chip) {
+		if (!chip->xive)
+			continue;
+		xive_sync(chip->xive);
+	}
+
+	/* For each XIVE reset everything else... */
+	for_each_chip(chip) {
+		if (!chip->xive)
+			continue;
+		xive_reset_one(chip->xive);
+	}
+
+	/* Cleanup global VP allocator */
+	buddy_reset(xive_vp_buddy);
+
+	/*
+	 * We reserve the whole range of VP ids for HW threads.
+	 */
+	assert(buddy_reserve(xive_vp_buddy, xive_hw_vp_base, xive_threadid_shift));
+
+	return OPAL_SUCCESS;
+}
+
+/* Called by fast reboot */
+int64_t xive2_reset(void)
+{
+	if (xive_mode == XIVE_MODE_NONE)
+		return OPAL_SUCCESS;
+	return __xive_reset(XIVE_MODE_EXPL);
+}
+
+static int64_t opal_xive_reset(uint64_t version)
+{
+	prlog(PR_DEBUG, "XIVE reset, version: %d...\n", (int)version);
+
+	if (version != XIVE_MODE_EXPL) {
+		prerror("ignoring version %lld at reset. "
+			"XIVE exploitation mode is the default\n", version);
+	}
+
+	return __xive_reset(XIVE_MODE_EXPL);
+}
+
+static int64_t opal_xive_free_vp_block(uint64_t vp_base)
+{
+	uint32_t blk, idx, i, j, count;
+	uint8_t order;
+	bool group;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+
+	if (!xive_decode_vp(vp_base, &blk, &idx, &order, &group))
+		return OPAL_PARAMETER;
+	if (group)
+		return OPAL_PARAMETER;
+	if (blk)
+		return OPAL_PARAMETER;
+	if (order < (xive_chips_alloc_bits + 1))
+		return OPAL_PARAMETER;
+	if (idx & ((1 << (order - xive_chips_alloc_bits)) - 1))
+		return OPAL_PARAMETER;
+
+	count = 1 << order;
+	for (i = 0; i < count; i++) {
+		uint32_t vp_id = vp_base + i;
+		uint32_t blk, idx, end_blk, end_idx;
+		struct xive *x;
+		struct xive_nvp *vp;
+
+		if (!xive_decode_vp(vp_id, &blk, &idx, NULL, NULL)) {
+			prerror("Couldn't decode VP id %u\n", vp_id);
+			return OPAL_INTERNAL_ERROR;
+		}
+		x = xive_from_pc_blk(blk);
+		if (!x) {
+			prerror("Instance not found for deallocated VP"
+				" block %d\n", blk);
+			return OPAL_INTERNAL_ERROR;
+		}
+		vp = xive_get_vp(x, idx);
+		if (!vp) {
+			prerror("VP not found for deallocation !");
+			return OPAL_INTERNAL_ERROR;
+		}
+
+		/* VP must be disabled */
+		if (xive_get_field32(NVP_W0_VALID, vp->w0)) {
+			prlog(PR_ERR, "freeing active VP %d\n", vp_id);
+			return OPAL_XIVE_FREE_ACTIVE;
+		}
+
+		/* Not populated */
+		if (vp->w5 == 0)
+			continue;
+
+		end_blk = xive_get_field32(NVP_W5_VP_END_BLOCK, vp->w5);
+		end_idx = xive_get_field32(NVP_W5_VP_END_INDEX, vp->w5);
+
+		lock(&x->lock);
+
+		/* Ensure ENDs are disabled and cleaned up. Ideally the caller
+		 * should have done it but we double check it here
+		 */
+		for (j = 0; j < xive_cfg_vp_prio(x); j++) {
+			struct xive *end_x = xive_from_vc_blk(end_blk);
+			struct xive_end end, *orig_end = xive_get_end(end_x, end_idx + j);
+
+			if (!xive_get_field32(END_W0_VALID, orig_end->w0))
+				continue;
+
+			prlog(PR_WARNING, "freeing VP %d with queue %d active\n",
+			      vp_id, j);
+			end = *orig_end;
+			xive_cleanup_end(&end);
+			xive_endc_cache_update(x, end_blk, end_idx + j, &end, true);
+		}
+
+		/* Mark it not populated so we don't try to free it again */
+		vp->w5 = 0;
+
+		if (end_blk != blk) {
+			prerror("Block mismatch trying to free ENDs\n");
+			unlock(&x->lock);
+			return OPAL_INTERNAL_ERROR;
+		}
+
+		xive_free_end_set(x, end_idx);
+		unlock(&x->lock);
+	}
+
+	xive_free_vps(vp_base);
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_alloc_vp_block(uint32_t alloc_order)
+{
+	uint32_t vp_base, ends, count, i;
+	int64_t rc;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+
+	prlog(PR_TRACE, "opal_xive_alloc_vp_block(%d)\n", alloc_order);
+
+	vp_base = xive_alloc_vps(alloc_order);
+	if (XIVE_ALLOC_IS_ERR(vp_base)) {
+		if (vp_base == XIVE_ALLOC_NO_IND)
+			return OPAL_XIVE_PROVISIONING;
+		return OPAL_RESOURCE;
+	}
+
+	/* Allocate ENDs and initialize VPs */
+	count = 1 << alloc_order;
+	for (i = 0; i < count; i++) {
+		uint32_t vp_id = vp_base + i;
+		uint32_t blk, idx;
+		struct xive *x;
+		struct xive_nvp *vp;
+
+		if (!xive_decode_vp(vp_id, &blk, &idx, NULL, NULL)) {
+			prerror("Couldn't decode VP id %u\n", vp_id);
+			return OPAL_INTERNAL_ERROR;
+		}
+		x = xive_from_pc_blk(blk);
+		if (!x) {
+			prerror("Instance not found for allocated VP"
+				" block %d\n", blk);
+			rc = OPAL_INTERNAL_ERROR;
+			goto fail;
+		}
+		vp = xive_get_vp(x, idx);
+		if (!vp) {
+			prerror("VP not found after allocation !");
+			rc = OPAL_INTERNAL_ERROR;
+			goto fail;
+		}
+
+		/* Allocate ENDs, if fails, free the VPs and return */
+		lock(&x->lock);
+		ends = xive_alloc_end_set(x, false);
+		unlock(&x->lock);
+		if (XIVE_ALLOC_IS_ERR(ends)) {
+			if (ends == XIVE_ALLOC_NO_IND)
+				rc = OPAL_XIVE_PROVISIONING;
+			else
+				rc = OPAL_RESOURCE;
+			goto fail;
+		}
+
+		/* Initialize the VP structure. We don't use a cache watch
+		 * as we have made sure when freeing the entries to scrub
+		 * it out of the cache.
+		 */
+		memset(vp, 0, sizeof(*vp));
+
+		/* Store the END base of the VP in W5 (new in p10) */
+		xive_vp_set_end_base(vp, blk, ends);
+	}
+	return vp_base;
+ fail:
+	opal_xive_free_vp_block(vp_base);
+
+	return rc;
+}
+
+static int64_t xive_try_allocate_irq(struct xive *x)
+{
+	int idx, base_idx, max_count, girq;
+	struct xive_eas *eas;
+
+	lock(&x->lock);
+
+	base_idx = x->int_ipi_top - x->int_base;
+	max_count = x->int_hw_bot - x->int_ipi_top;
+
+	idx = bitmap_find_zero_bit(*x->ipi_alloc_map, base_idx, max_count);
+	if (idx < 0) {
+		unlock(&x->lock);
+		return OPAL_RESOURCE;
+	}
+	bitmap_set_bit(*x->ipi_alloc_map, idx);
+	girq = x->int_base + idx;
+
+	/* Mark the EAS valid. Don't bother with the HW cache, it's
+	 * still masked anyway, the cache will be updated when unmasked
+	 * and configured.
+	 */
+	eas = xive_get_eas(x, girq);
+	if (!eas) {
+		bitmap_clr_bit(*x->ipi_alloc_map, idx);
+		unlock(&x->lock);
+		return OPAL_PARAMETER;
+	}
+	eas->w = xive_set_field64(EAS_VALID, 0, 1) |
+		 xive_set_field64(EAS_MASKED, 0, 1) |
+		 xive_set_field64(EAS_END_DATA, 0, girq);
+	unlock(&x->lock);
+
+	return girq;
+}
+
+static int64_t opal_xive_allocate_irq(uint32_t chip_id)
+{
+	struct proc_chip *chip;
+	bool try_all = false;
+	int64_t rc;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+
+	if (chip_id == OPAL_XIVE_ANY_CHIP) {
+		try_all = true;
+		chip_id = this_cpu()->chip_id;
+	}
+	chip = get_chip(chip_id);
+	if (!chip)
+		return OPAL_PARAMETER;
+
+	/* Try initial target chip */
+	if (!chip->xive)
+		rc = OPAL_PARAMETER;
+	else
+		rc = xive_try_allocate_irq(chip->xive);
+	if (rc >= 0 || !try_all)
+		return rc;
+
+	/* Failed and we try all... do so */
+	for_each_chip(chip) {
+		if (!chip->xive)
+			continue;
+		rc = xive_try_allocate_irq(chip->xive);
+		if (rc >= 0)
+			break;
+	}
+	return rc;
+}
+
+static int64_t opal_xive_free_irq(uint32_t girq)
+{
+	struct irq_source *is = irq_find_source(girq);
+	struct xive_src *s = container_of(is, struct xive_src, is);
+	struct xive *x = xive_from_isn(girq);
+	struct xive_eas *eas;
+	uint32_t idx;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+               return OPAL_WRONG_STATE;
+	if (!x || !is)
+		return OPAL_PARAMETER;
+
+	idx = GIRQ_TO_IDX(girq);
+
+	lock(&x->lock);
+
+	eas = xive_get_eas(x, girq);
+	if (!eas) {
+		unlock(&x->lock);
+		return OPAL_PARAMETER;
+	}
+
+	/* Mask the interrupt source */
+	xive_update_irq_mask(s, girq - s->esb_base, true);
+
+	/* Mark the EAS masked and invalid */
+	eas->w = xive_set_field64(EAS_VALID, 0, 1) |
+		 xive_set_field64(EAS_MASKED, 0, 1);
+	xive_easc_scrub(x, x->block_id, idx);
+
+	/* Free it */
+	if (!bitmap_tst_bit(*x->ipi_alloc_map, idx)) {
+		unlock(&x->lock);
+		return OPAL_PARAMETER;
+	}
+	bitmap_clr_bit(*x->ipi_alloc_map, idx);
+	bitmap_clr_bit(*x->int_enabled_map, idx);
+	unlock(&x->lock);
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_dump_tm(uint32_t offset, const char *n, uint32_t pir)
+{
+	struct cpu_thread *c = find_cpu_by_pir(pir);
+	struct xive_cpu_state *xs;
+	struct xive *x;
+	void *cpu_tm_base;
+	uint64_t v0,v1;
+
+	if (!c)
+		return OPAL_PARAMETER;
+	xs = c->xstate;
+	if (!xs || !xs->tm_ring1)
+		return OPAL_INTERNAL_ERROR;
+	x = xs->xive;
+	cpu_tm_base = xive_cpu_get_tima(c);
+
+	lock(&x->lock);
+	v0 = in_be64(cpu_tm_base + offset);
+	if (offset == TM_QW3_HV_PHYS) {
+		v1 = in_8(cpu_tm_base + offset + 8);
+		v1 <<= 56;
+	} else {
+		v1 = in_be32(cpu_tm_base + offset + 8);
+		v1 <<= 32;
+	}
+	prlog(PR_INFO, "CPU[%04x]: TM state for QW %s\n", pir, n);
+	prlog(PR_INFO, "CPU[%04x]: NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
+	      " W2       W3\n", pir);
+	prlog(PR_INFO, "CPU[%04x]: %02x  %02x   %02x  %02x    %02x   "
+	       "%02x  %02x  %02x   %08x %08x\n", pir,
+	      (uint8_t)(v0 >> 58) & 0xff, (uint8_t)(v0 >> 48) & 0xff,
+	      (uint8_t)(v0 >> 40) & 0xff, (uint8_t)(v0 >> 32) & 0xff,
+	      (uint8_t)(v0 >> 24) & 0xff, (uint8_t)(v0 >> 16) & 0xff,
+	      (uint8_t)(v0 >>  8) & 0xff, (uint8_t)(v0      ) & 0xff,
+	      (uint32_t)(v1 >> 32) & 0xffffffff,
+	      (uint32_t)(v1 & 0xffffffff));
+	unlock(&x->lock);
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_dump_vp(uint32_t vp_id)
+{
+	uint32_t blk, idx;
+	uint8_t order;
+	bool group;
+	struct xive *x;
+	struct xive_nvp *vp;
+	uint32_t *vpw;
+
+	if (!xive_decode_vp(vp_id, &blk, &idx, &order, &group))
+		return OPAL_PARAMETER;
+
+	x = xive_from_vc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+	vp = xive_get_vp(x, idx);
+	if (!vp)
+		return OPAL_PARAMETER;
+	lock(&x->lock);
+
+	xive_nxc_scrub_clean(x, blk, idx);
+
+	vpw = ((uint32_t *)vp) + (group ? 8 : 0);
+	prlog(PR_INFO, "VP[%08x]: 0..3: %08x %08x %08x %08x\n", vp_id,
+	      vpw[0], vpw[1], vpw[2], vpw[3]);
+	prlog(PR_INFO, "VP[%08x]: 4..7: %08x %08x %08x %08x\n", vp_id,
+	      vpw[4], vpw[5], vpw[6], vpw[7]);
+	unlock(&x->lock);
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_sync_irq_src(uint32_t girq)
+{
+	struct xive *x = xive_from_isn(girq);
+
+	if (!x)
+		return OPAL_PARAMETER;
+	return xive_sync(x);
+}
+
+static int64_t opal_xive_sync_irq_target(uint32_t girq)
+{
+	uint32_t target, vp_blk;
+	struct xive *x;
+
+	if (!xive_get_irq_targetting(girq, &target, NULL, NULL))
+		return OPAL_PARAMETER;
+	if (!xive_decode_vp(target, &vp_blk, NULL, NULL, NULL))
+		return OPAL_PARAMETER;
+	x = xive_from_pc_blk(vp_blk);
+	if (!x)
+		return OPAL_PARAMETER;
+	return xive_sync(x);
+}
+
+static int64_t opal_xive_sync(uint32_t type, uint32_t id)
+{
+	int64_t rc = OPAL_SUCCESS;;
+
+	if (type & XIVE_SYNC_EAS)
+		rc = opal_xive_sync_irq_src(id);
+	if (rc)
+		return rc;
+	if (type & XIVE_SYNC_QUEUE)
+		rc = opal_xive_sync_irq_target(id);
+	if (rc)
+		return rc;
+
+	/* Add more ... */
+
+	return rc;
+}
+
+static int64_t opal_xive_dump(uint32_t type, uint32_t id)
+{
+	switch (type) {
+	case XIVE_DUMP_TM_HYP:
+		return opal_xive_dump_tm(TM_QW3_HV_PHYS, "PHYS", id);
+	case XIVE_DUMP_TM_POOL:
+		return opal_xive_dump_tm(TM_QW2_HV_POOL, "POOL", id);
+	case XIVE_DUMP_TM_OS:
+		return opal_xive_dump_tm(TM_QW1_OS, "OS  ", id);
+	case XIVE_DUMP_TM_USER:
+		return opal_xive_dump_tm(TM_QW0_USER, "USER", id);
+	case XIVE_DUMP_VP:
+		return opal_xive_dump_vp(id);
+	default:
+		return OPAL_PARAMETER;
+	}
+}
+
+static void xive_init_globals(void)
+{
+	uint32_t i;
+
+	for (i = 0; i < XIVE_MAX_CHIPS; i++)
+		xive_block_to_chip[i] = XIVE_INVALID_CHIP;
+}
+
+void xive2_init(void)
+{
+	struct dt_node *np;
+	struct proc_chip *chip;
+	struct cpu_thread *cpu;
+	bool first = true;
+
+	/* Look for xive nodes and do basic inits */
+	dt_for_each_compatible(dt_root, np, "ibm,power10-xive-x") {
+		struct xive *x;
+
+		/* Initialize some global stuff */
+		if (first)
+			xive_init_globals();
+
+		/* Create/initialize the xive instance */
+		x = init_one_xive(np);
+		if (first)
+			one_xive = x;
+		first = false;
+	}
+	if (first)
+		return;
+
+	/*
+	 * P8 emulation is not supported on P10 anymore. Exploitation
+	 * is the default XIVE mode. We might introduce a GEN2 mode.
+	 */
+	xive_mode = XIVE_MODE_EXPL;
+
+	/* Init VP allocator */
+	xive_init_vp_allocator();
+
+	/* Create a device-tree node for Linux use */
+	xive_create_mmio_dt_node(one_xive);
+
+	/* Some inits must be done after all xive have been created
+	 * such as setting up the forwarding ports
+	 */
+	for_each_chip(chip) {
+		if (chip->xive)
+			late_init_one_xive(chip->xive);
+	}
+
+	/* Initialize per-cpu structures */
+	for_each_present_cpu(cpu) {
+		xive_init_cpu(cpu);
+	}
+
+	/* Calling boot CPU */
+	xive2_cpu_callin(this_cpu());
+
+	/* Register XIVE exploitation calls */
+	opal_register(OPAL_XIVE_RESET, opal_xive_reset, 1);
+	opal_register(OPAL_XIVE_GET_IRQ_INFO, opal_xive_get_irq_info, 6);
+	opal_register(OPAL_XIVE_GET_IRQ_CONFIG, opal_xive_get_irq_config, 4);
+	opal_register(OPAL_XIVE_SET_IRQ_CONFIG, opal_xive_set_irq_config, 4);
+	opal_register(OPAL_XIVE_GET_QUEUE_INFO, opal_xive_get_queue_info, 7);
+	opal_register(OPAL_XIVE_SET_QUEUE_INFO, opal_xive_set_queue_info, 5);
+	opal_register(OPAL_XIVE_DONATE_PAGE, opal_xive_donate_page, 2);
+	opal_register(OPAL_XIVE_ALLOCATE_IRQ, opal_xive_allocate_irq, 1);
+	opal_register(OPAL_XIVE_FREE_IRQ, opal_xive_free_irq, 1);
+	opal_register(OPAL_XIVE_ALLOCATE_VP_BLOCK, opal_xive_alloc_vp_block, 1);
+	opal_register(OPAL_XIVE_FREE_VP_BLOCK, opal_xive_free_vp_block, 1);
+	opal_register(OPAL_XIVE_GET_VP_INFO, opal_xive_get_vp_info, 5);
+	opal_register(OPAL_XIVE_SET_VP_INFO, opal_xive_set_vp_info, 3);
+	opal_register(OPAL_XIVE_SYNC, opal_xive_sync, 2);
+	opal_register(OPAL_XIVE_DUMP, opal_xive_dump, 2);
+	opal_register(OPAL_XIVE_GET_QUEUE_STATE, opal_xive_get_queue_state, 4);
+	opal_register(OPAL_XIVE_SET_QUEUE_STATE, opal_xive_set_queue_state, 4);
+	opal_register(OPAL_XIVE_GET_VP_STATE, opal_xive_get_vp_state, 2);
+}
diff --git a/include/xive.h b/include/xive.h
index 477d3801d..dc1b25d03 100644
--- a/include/xive.h
+++ b/include/xive.h
@@ -63,4 +63,33 @@ void xive_source_mask(struct irq_source *is, uint32_t isn);
 void xive_cpu_reset(void);
 void xive_late_init(void);
 
+/*
+ * POWER10
+ */
+
+/*
+ * StoreEOI requires the OS to enforce load-after-store ordering and
+ * the PHB5 should be configured in Address-based trigger mode with PQ
+ * state bit offloading.
+ */
+#define XIVE2_STORE_EOI_ENABLED 1
+
+void xive2_init(void);
+int64_t xive2_reset(void);
+
+uint32_t xive2_alloc_hw_irqs(uint32_t chip_id, uint32_t count, uint32_t align);
+uint32_t xive2_alloc_ipi_irqs(uint32_t chip_id, uint32_t count, uint32_t align);
+uint64_t xive2_get_notify_port(uint32_t chip_id, uint32_t ent);
+__attrconst uint32_t xive2_get_notify_base(uint32_t girq);
+void xive2_register_hw_source(uint32_t base, uint32_t count, uint32_t shift,
+			     void *mmio, uint32_t flags, void *data,
+			     const struct irq_source_ops *ops);
+void xive2_register_ipi_source(uint32_t base, uint32_t count, void *data,
+			      const struct irq_source_ops *ops);
+void xive2_cpu_callin(struct cpu_thread *cpu);
+void *xive2_get_trigger_port(uint32_t girq);
+
+void xive2_cpu_reset(void);
+void xive2_late_init(void);
+
 #endif /* XIVE_H */
diff --git a/include/xive2-regs.h b/include/xive2-regs.h
new file mode 100644
index 000000000..6697f036e
--- /dev/null
+++ b/include/xive2-regs.h
@@ -0,0 +1,549 @@
+// SPDX-License-Identifier: Apache-2.0
+/*
+ * XIVE2: eXternal Interrupt Virtualization Engine. POWER10 interrupt
+ * controller
+ *
+ * Copyright (c) 2019, IBM Corporation.
+ */
+
+#ifndef XIVE2_REGS_H
+#define XIVE2_REGS_H
+
+#include <xive-regs.h>
+
+/*
+ * CQ Common Queue (PowerBus bridge) Registers
+ */
+
+/* XIVE Capabilities */
+#define X_CQ_XIVE_CAP                           0x02
+#define CQ_XIVE_CAP                             0x010
+#define    CQ_XIVE_CAP_VERSION                  PPC_BITMASK(0,3)
+/* 4:6 reserved */
+#define    CQ_XIVE_CAP_USER_INT_PRIO            PPC_BITMASK(8,9)
+#define       CQ_XIVE_CAP_USER_INT_PRIO_1       0
+#define       CQ_XIVE_CAP_USER_INT_PRIO_1_2     1
+#define       CQ_XIVE_CAP_USER_INT_PRIO_1_4     2
+#define       CQ_XIVE_CAP_USER_INT_PRIO_1_8     3
+#define    CQ_XIVE_CAP_VP_INT_PRIO              PPC_BITMASK(10,11)
+#define       CQ_XIVE_CAP_VP_INT_PRIO_1_8       0
+#define       CQ_XIVE_CAP_VP_INT_PRIO_2_8       1
+#define       CQ_XIVE_CAP_VP_INT_PRIO_4_8       2
+#define       CQ_XIVE_CAP_VP_INT_PRIO_8         3
+#define    CQ_XIVE_CAP_BLOCK_ID_WIDTH           PPC_BITMASK(12,13)
+
+/* XIVE Configuration */
+#define X_CQ_XIVE_CFG                           0x03
+#define CQ_XIVE_CFG                             0x018
+
+/* 0:7 reserved */
+#define    CQ_XIVE_CFG_USER_INT_PRIO            PPC_BITMASK(8,9)
+#define    CQ_XIVE_CFG_VP_INT_PRIO              PPC_BITMASK(10,11)
+#define       CQ_XIVE_CFG_INT_PRIO_1            0
+#define       CQ_XIVE_CFG_INT_PRIO_2            1
+#define       CQ_XIVE_CFG_INT_PRIO_4            2
+#define       CQ_XIVE_CFG_INT_PRIO_8            3
+#define    CQ_XIVE_CFG_BLOCK_ID_WIDTH           PPC_BITMASK(12,13)
+#define       CQ_XIVE_CFG_BLOCK_ID_4BITS        0
+#define       CQ_XIVE_CFG_BLOCK_ID_5BITS        1
+#define       CQ_XIVE_CFG_BLOCK_ID_6BITS        2
+#define       CQ_XIVE_CFG_BLOCK_ID_7BITS        3
+#define    CQ_XIVE_CFG_HYP_HARD_RANGE           PPC_BITMASK(14,15)
+#define       CQ_XIVE_CFG_THREADID_7BITS        0
+#define       CQ_XIVE_CFG_THREADID_8BITS        1
+#define       CQ_XIVE_CFG_THREADID_9BITS        2
+#define       CQ_XIVE_CFG_THREADID_10BITs       3
+#define    CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE  PPC_BIT(16)
+#define    CQ_XIVE_CFG_HYP_HARD_BLOCK_ID        PPC_BITMASK(17,23)
+
+#define    CQ_XIVE_CFG_GEN1_TIMA_OS             PPC_BIT(24)
+#define    CQ_XIVE_CFG_GEN1_TIMA_HYP            PPC_BIT(25)
+#define    CQ_XIVE_CFG_GEN1_TIMA_HYP_BLK0       PPC_BIT(26) /* 0 if bit[25]=0 */
+#define    CQ_XIVE_CFG_GEN1_TIMA_CROWD_DIS      PPC_BIT(27) /* 0 if bit[25]=0 */
+#define    CQ_XIVE_CFG_GEN1_END_ESX             PPC_BIT(28) /* END ESx stores
+                                                               are dropped */
+
+/* Interrupt Controller Base Address Register - 512 pages (32M) */
+#define X_CQ_IC_BAR				0x08
+#define CQ_IC_BAR				0x040
+#define    CQ_IC_BAR_VALID			PPC_BIT(0)
+#define    CQ_IC_BAR_64K			PPC_BIT(1)
+/* 2:7 reserved */
+#define    CQ_IC_BAR_ADDR			PPC_BITMASK(8,42)
+/* 43:63 reserved */
+
+/* Thread Management Base Address Register - 4 pages */
+#define X_CQ_TM_BAR				0x09
+#define CQ_TM_BAR				0x048
+#define    CQ_TM_BAR_VALID			PPC_BIT(0)
+#define    CQ_TM_BAR_64K			PPC_BIT(1)
+#define    CQ_TM_BAR_ADDR			PPC_BITMASK(8,49)
+
+/* ESB Base Address Register */
+#define X_CQ_ESB_BAR				0x0A
+#define CQ_ESB_BAR				0x050
+#define    CQ_BAR_VALID				PPC_BIT(0)
+#define    CQ_BAR_64K				PPC_BIT(1)
+/* 2:7 reserved */
+#define    CQ_BAR_ADDR				PPC_BITMASK(8,39)
+#define    CQ_BAR_SET_DIV			PPC_BITMASK(56,58)
+#define    CQ_BAR_RANGE				PPC_BITMASK(59,63)
+						/* 0 (16M) - 16 (16T) */
+
+/* END Base Address Register */
+#define X_CQ_END_BAR				0x0B
+#define CQ_END_BAR				0x058
+
+/* NVPG Base Address Register */
+#define X_CQ_NVPG_BAR				0x0C
+#define CQ_NVPG_BAR				0x060
+
+/* NVC Base Address Register */
+#define X_CQ_NVC_BAR				0x0D
+#define CQ_NVC_BAR				0x068
+
+/* Table Address Register */
+#define X_CQ_TAR				0x0E
+#define CQ_TAR					0x070
+#define   CQ_TAR_AUTOINC			PPC_BIT(0)
+#define   CQ_TAR_SELECT				PPC_BITMASK(12,15)
+#define   CQ_TAR_ESB				0	/* 0 - 15 */
+#define   CQ_TAR_END				2	/* 0 - 15 */
+#define   CQ_TAR_NVPG				3	/* 0 - 15 */
+#define   CQ_TAR_NVC				5	/* 0 - 15 */
+#define   CQ_TAR_ENTRY_SELECT			PPC_BITMASK(28,31)
+
+/* Table Data Register */
+#define X_CQ_TDR				0x0F
+#define CQ_TDR					0x078
+/* for the NVPG, NVC, ESB, END Set Translation Tables */
+#define   CQ_TDR_VALID                          PPC_BIT(0)
+#define   CQ_TDR_BLOCK_ID                       PPC_BITMASK(60,63)
+
+/*
+ * Processor Cores Enabled for MsgSnd
+ * Identifies which of the 32 possible core chiplets are enabled and
+ * available to receive the MsgSnd command
+ */
+#define X_CQ_MSGSND				0x10
+#define CQ_MSGSND				0x080
+
+/* Interrupt Unit Reset Control */
+#define X_CQ_RST_CTL				0x12
+#define CQ_RST_CTL				0x090
+#define     CQ_RST_SYNC_RESET			PPC_BIT(0)	/* Write Only */
+#define     CQ_RST_QUIESCE_PB			PPC_BIT(1)	/* RW */
+#define     CQ_RST_MASTER_IDLE			PPC_BIT(2)	/* Read Only */
+#define     CQ_RST_SAVE_IDLE			PPC_BIT(3)	/* Read Only */
+#define     CQ_RST_PB_BAR_RESET			PPC_BIT(4)	/* Write Only */
+
+/* PowerBus General Configuration */
+#define X_CQ_CFG_PB_GEN				0x14
+#define CQ_CFG_PB_GEN				0x0A0
+
+/* FIR
+ *     (And-Mask)
+ *     (Or-Mask)
+ */
+#define X_CQ_FIR				0x30
+#define X_CQ_FIR_AND				0x31
+#define X_CQ_FIR_OR				0x32
+#define CQ_FIR					0x180
+#define CQ_FIR_AND				0x188
+#define CQ_FIR_OR				0x190
+#define  CQ_FIR_PB_RCMDX_CI_ERR1		PPC_BIT(19)
+#define  CQ_FIR_VC_INFO_ERROR_0_2		PPC_BITMASK(61,63)
+
+/* FIR Mask
+ *     (And-Mask)
+ *     (Or-Mask)
+ */
+#define X_CQ_FIRMASK				0x33
+#define X_CQ_FIRMASK_AND			0x34
+#define X_CQ_FIRMASK_OR				0x35
+#define CQ_FIRMASK				0x198
+#define CQ_FIRMASK_AND				0x1A0
+#define CQ_FIRMASK_OR				0x1A8
+
+/*
+ * VC0
+ */
+
+/* VSD table address */
+#define X_VC_VSD_TABLE_ADDR			0x100
+#define VC_VSD_TABLE_ADDR			0x000
+#define   VC_VSD_TABLE_AUTOINC			PPC_BIT(0)
+#define   VC_VSD_TABLE_SELECT			PPC_BITMASK(12,15)
+#define   VC_VSD_TABLE_ADDRESS			PPC_BITMASK(28,31)
+
+/* VSD table data */
+#define X_VC_VSD_TABLE_DATA			0x101
+#define VC_VSD_TABLE_DATA			0x008
+
+/* AIB AT macro indirect kill */
+#define X_VC_AT_MACRO_KILL			0x102
+#define VC_AT_MACRO_KILL			0x010
+#define  VC_AT_MACRO_KILL_VALID			PPC_BIT(0)
+#define  VC_AT_MACRO_KILL_VSD			PPC_BITMASK(12,15)
+#define  VC_AT_MACRO_KILL_BLOCK_ID		PPC_BITMASK(28,31)
+#define  VC_AT_MACRO_KILL_OFFSET		PPC_BITMASK(48,60)
+
+/* AIB AT macro indirect kill mask (same bit definitions) */
+#define X_VC_AT_MACRO_KILL_MASK			0x103
+#define VC_AT_MACRO_KILL_MASK			0x018
+
+/* Remote IRQs and ERQs configuration [n] (n = 0:6) */
+#define X_VC_QUEUES_CFG_REM0			0x117
+
+#define VC_QUEUES_CFG_REM0			0x0B8
+#define  VC_QUEUES_CFG_MEMB_EN		 	PPC_BIT(38)
+#define  VC_QUEUES_CFG_MEMB_SZ			PPC_BITMASK(42,47)
+
+/*
+ * VC1
+ */
+
+/* ESBC cache flush control trigger */
+#define X_VC_ESBC_FLUSH_CTRL			0x140
+#define VC_ESBC_FLUSH_CTRL			0x200
+#define  VC_ESBC_FLUSH_CTRL_POLL_VALID		PPC_BIT(0)
+#define  VC_ESBC_FLUSH_CTRL_WANT_CACHE_DISABLE	PPC_BIT(2)
+
+/* ESBC cache flush poll trigger */
+#define X_VC_ESBC_FLUSH_POLL			0x141
+#define VC_ESBC_FLUSH_POLL			0x208
+#define  VC_ESBC_FLUSH_POLL_BLOCK_ID		PPC_BITMASK(0,3)
+#define  VC_ESBC_FLUSH_POLL_OFFSET		PPC_BITMASK(4,31)  /* 28-bit */
+#define  VC_ESBC_FLUSH_POLL_BLOCK_ID_MASK	PPC_BITMASK(32,35)
+#define  VC_ESBC_FLUSH_POLL_OFFSET_MASK		PPC_BITMASK(36,63) /* 28-bit */
+
+/* EASC flush control register */
+#define X_VC_EASC_FLUSH_CTRL			0x160
+#define VC_EASC_FLUSH_CTRL			0x300
+#define  VC_EASC_FLUSH_CTRL_POLL_VALID		PPC_BIT(0)
+#define  VC_EASC_FLUSH_CTRL_WANT_CACHE_DISABLE	PPC_BIT(2)
+
+/* EASC flush poll register */
+#define X_VC_EASC_FLUSH_POLL			0x161
+#define VC_EASC_FLUSH_POLL			0x308
+#define  VC_EASC_FLUSH_POLL_BLOCK_ID		PPC_BITMASK(0,3)
+#define  VC_EASC_FLUSH_POLL_OFFSET		PPC_BITMASK(4,31)  /* 28-bit */
+#define  VC_EASC_FLUSH_POLL_BLOCK_ID_MASK	PPC_BITMASK(32,35)
+#define  VC_EASC_FLUSH_POLL_OFFSET_MASK		PPC_BITMASK(36,63) /* 28-bit */
+
+/*
+ * VC2
+ */
+
+/* ENDC flush control register */
+#define X_VC_ENDC_FLUSH_CTRL			0x180
+#define VC_ENDC_FLUSH_CTRL			0x400
+#define  VC_ENDC_FLUSH_CTRL_POLL_VALID		PPC_BIT(0)
+#define  VC_ENDC_FLUSH_CTRL_WANT_CACHE_DISABLE	PPC_BIT(2)
+#define  VC_ENDC_FLUSH_CTRL_WANT_INVALIDATE	PPC_BIT(3)
+#define  VC_ENDC_FLUSH_CTRL_INJECT_INVALIDATE	PPC_BIT(7)
+
+/* ENDC flush poll register */
+#define X_VC_ENDC_FLUSH_POLL			0x181
+#define VC_ENDC_FLUSH_POLL			0x408
+#define  VC_ENDC_FLUSH_POLL_BLOCK_ID		PPC_BITMASK(4,7)
+#define  VC_ENDC_FLUSH_POLL_OFFSET		PPC_BITMASK(8,31)  /* 24-bit */
+#define  VC_ENDC_FLUSH_POLL_BLOCK_ID_MASK	PPC_BITMASK(36,39)
+#define  VC_ENDC_FLUSH_POLL_OFFSET_MASK		PPC_BITMASK(40,63) /* 24-bit */
+
+/* ENDC Sync done */
+#define X_VC_ENDC_SYNC_DONE			0x184
+#define VC_ENDC_SYNC_DONE			0x420
+#define   VC_ENDC_SYNC_POLL_DONE		PPC_BITMASK(0,6)
+#define   VC_ENDC_SYNC_QUEUE_IPI		PPC_BIT(0)
+#define   VC_ENDC_SYNC_QUEUE_HWD		PPC_BIT(1)
+#define   VC_ENDC_SYNC_QUEUE_NXC		PPC_BIT(2)
+#define   VC_ENDC_SYNC_QUEUE_INT		PPC_BIT(3)
+#define   VC_ENDC_SYNC_QUEUE_OS			PPC_BIT(4)
+#define   VC_ENDC_SYNC_QUEUE_POOL		PPC_BIT(5)
+#define   VC_ENDC_SYNC_QUEUE_HARD		PPC_BIT(6)
+#define   VC_QUEUE_COUNT                        7
+
+/* ENDC cache watch specification 0  */
+#define X_VC_ENDC_WATCH0_SPEC			0x1A0
+#define VC_ENDC_WATCH0_SPEC			0x500
+#define   VC_ENDC_WATCH_CONFLICT                PPC_BIT(0)
+#define   VC_ENDC_WATCH_FULL                    PPC_BIT(8)
+#define   VC_ENDC_WATCH_BLOCK_ID                PPC_BITMASK(28, 31)
+#define   VC_ENDC_WATCH_INDEX                   PPC_BITMASK(40, 63)
+
+/* ENDC cache watch data 0 */
+#define X_VC_ENDC_WATCH0_DATA0			0x1A4
+
+#define VC_ENDC_WATCH0_DATA0			0x520
+
+/*
+ * PC LSB1
+ */
+
+/* VSD table address register */
+#define X_PC_VSD_TABLE_ADDR			0x200
+#define PC_VSD_TABLE_ADDR			0x000
+#define   PC_VSD_TABLE_AUTOINC			PPC_BIT(0)
+#define   PC_VSD_TABLE_SELECT			PPC_BITMASK(12,15)
+#define   PC_VSD_TABLE_ADDRESS			PPC_BITMASK(28,31)
+
+/* VSD table data register */
+#define X_PC_VSD_TABLE_DATA			0x201
+#define PC_VSD_TABLE_DATA			0x008
+
+/* AT indirect kill register */
+#define X_PC_AT_KILL				0x202
+#define PC_AT_KILL				0x010
+#define     PC_AT_KILL_VALID			PPC_BIT(0)
+#define     PC_AT_KILL_VSD_TYPE			PPC_BITMASK(24,27)
+/* Only NVP, NVG, NVC */
+#define     PC_AT_KILL_BLOCK_ID			PPC_BITMASK(28,31)
+#define     PC_AT_KILL_OFFSET			PPC_BITMASK(48,60)
+
+/* AT indirect kill mask register */
+#define X_PC_AT_KILL_MASK			0x203
+#define PC_AT_KILL_MASK				0x018
+#define     PC_AT_KILL_MASK_VSD_TYPE		PPC_BITMASK(24,27)
+#define     PC_AT_KILL_MASK_BLOCK_ID		PPC_BITMASK(28,31)
+#define     PC_AT_KILL_MASK_OFFSET		PPC_BITMASK(48,60)
+
+/* Error1 configuration register 0 */
+#define X_PC_ERR1_CFG0                          0x2C8
+#define PC_ERR1_CFG0                            0x640
+
+/* Error1 configuration register 1 */
+#define X_PC_ERR1_CFG1                          0x2C9
+#define PC_ERR1_CFG1                            0x648
+#define    PC_ERR1_CFG1_INTERRUPT_INVALID_PRIO  PPC_BIT(3)
+/*
+ * PC LSB2
+ */
+
+/* NxC Cache flush control */
+#define X_PC_NXC_FLUSH_CTRL			0x280
+#define PC_NXC_FLUSH_CTRL			0x400
+#define  PC_NXC_FLUSH_CTRL_POLL_VALID		PPC_BIT(0)
+#define  PC_NXC_FLUSH_CTRL_WANT_CACHE_DISABLE	PPC_BIT(2)
+#define  PC_NXC_FLUSH_CTRL_WANT_INVALIDATE	PPC_BIT(3)
+#define  PC_NXC_FLUSH_CTRL_INJECT_INVALIDATE	PPC_BIT(7)
+
+/* NxC Cache flush poll */
+#define X_PC_NXC_FLUSH_POLL			0x281
+#define PC_NXC_FLUSH_POLL			0x408
+#define  PC_NXC_FLUSH_POLL_NXC_TYPE		PPC_BITMASK(2,3)
+#define    PC_NXC_FLUSH_POLL_NXC_TYPE_NVP	0
+#define    PC_NXC_FLUSH_POLL_NXC_TYPE_NVG	2
+#define    PC_NXC_FLUSH_POLL_NXC_TYPE_NVC	3
+#define  PC_NXC_FLUSH_POLL_BLOCK_ID		PPC_BITMASK(4,7)
+#define  PC_NXC_FLUSH_POLL_OFFSET		PPC_BITMASK(8,31)  /* 24-bit */
+#define  PC_NXC_FLUSH_POLL_NXC_TYPE_MASK	PPC_BITMASK(34,35) /* 0: Ignore */
+#define  PC_NXC_FLUSH_POLL_BLOCK_ID_MASK	PPC_BITMASK(36,39)
+#define  PC_NXC_FLUSH_POLL_OFFSET_MASK		PPC_BITMASK(40,63) /* 24-bit */
+
+/* NxC Cache Watch 0 Specification */
+#define X_PC_NXC_WATCH0_SPEC			0x2A0
+#define PC_NXC_WATCH0_SPEC			0x500
+#define   PC_NXC_WATCH_CONFLICT                 PPC_BIT(0)
+#define   PC_NXC_WATCH_FULL                     PPC_BIT(8)
+#define   PC_NXC_WATCH_NXC_TYPE                 PPC_BITMASK(26, 27)
+#define     PC_NXC_WATCH_NXC_NVP                0
+#define     PC_NXC_WATCH_NXC_NVG                2
+#define     PC_NXC_WATCH_NXC_NVC                3
+#define   PC_NXC_WATCH_BLOCK_ID                 PPC_BITMASK(28, 31)
+#define   PC_NXC_WATCH_INDEX                    PPC_BITMASK(40, 63)
+
+/* NxC Cache Watch 0 Data */
+#define X_PC_NXC_WATCH0_DATA0			0x2A4
+
+#define PC_NXC_WATCH0_DATA0			0x520
+
+/*
+ * TCTXT Registers
+ */
+
+/* Physical Thread Enable0 register */
+#define X_TCTXT_EN0				0x300
+#define TCTXT_EN0				0x000
+
+/* Physical Thread Enable0 Set register */
+#define X_TCTXT_EN0_SET				0x302
+#define TCTXT_EN0_SET				0x010
+
+/* Physical Thread Enable0 Reset register */
+#define X_TCTXT_EN0_RESET			0x303
+#define TCTXT_EN0_RESET				0x018
+
+/* Physical Thread Enable1 register */
+#define X_TCTXT_EN1				0x304
+#define TCTXT_EN1				0x020
+
+/* Physical Thread Enable1 Set register */
+#define X_TCTXT_EN1_SET				0x306
+#define TCTXT_EN1_SET				0x030
+
+/* Physical Thread Enable1 Reset register */
+#define X_TCTXT_EN1_RESET			0x307
+#define TCTXT_EN1_RESET				0x038
+
+/*
+ * VSD Tables
+ */
+#define VST_ESB                  0
+#define VST_EAS                  1 /* No used by PC */
+#define VST_END                  2
+#define VST_NVP                  3
+#define VST_NVG                  4
+#define VST_NVC                  5
+#define VST_IC                   6 /* No used by PC */
+#define VST_SYNC                 7
+#define VST_ERQ                  8 /* No used by PC */
+
+/* Bits in a VSD entry.
+ *
+ * Note: the address is naturally aligned, we don't use a PPC_BITMASK,
+ *       but just a mask to apply to the address before OR'ing it in.
+ *
+ * Note: VSD_FIRMWARE is a SW bit ! It hijacks an unused bit in the
+ *       VSD and is only meant to be used in indirect mode !
+ */
+#define VSD_MODE		PPC_BITMASK(0,1)
+#define  VSD_MODE_SHARED	1
+#define  VSD_MODE_EXCLUSIVE	2
+#define  VSD_MODE_FORWARD	3
+#define VSD_FIRMWARE		PPC_BIT(2) /* Read warning */
+#define VSD_FIRMWARE2		PPC_BIT(3) /* unused */
+#define VSD_RESERVED		PPC_BITMASK(4,7) /* P10 reserved */
+#define VSD_ADDRESS_MASK	0x00fffffffffff000ull
+#define VSD_MIGRATION_REG	PPC_BITMASK(52,55)
+#define VSD_INDIRECT		PPC_BIT(56)
+#define VSD_TSIZE		PPC_BITMASK(59,63)
+
+/* EAS
+ *
+ * One per interrupt source. Targets that interrupt to a given END
+ * and provides the corresponding logical interrupt number (END data)
+ *
+ * We also map this structure to the escalation descriptor inside
+ * an END, though in that case the valid and masked bits are not used.
+ */
+struct xive_eas {
+	beint64_t	w;
+#define EAS_VALID	PPC_BIT(0)
+#define EAS_END_BLOCK	PPC_BITMASK(4,7)	/* Destination END block# */
+#define EAS_END_INDEX	PPC_BITMASK(8,31)	/* Destination END index */
+#define EAS_MASKED	PPC_BIT(32)		/* Masked */
+#define EAS_END_DATA	PPC_BITMASK(33,63)	/* Data written to the EQ */
+};
+
+/* EQ */
+struct xive_end {
+	beint32_t	w0;
+#define END_W0_VALID			PPC_BIT32(0)	/* "v" bit */
+#define END_W0_ENQUEUE			PPC_BIT32(5)	/* "q" bit */
+#define END_W0_UCOND_NOTIFY		PPC_BIT32(6)	/* "n" bit */
+#define END_W0_SILENT_ESCALATE		PPC_BIT32(7)	/* "s" bit */
+#define END_W0_BACKLOG			PPC_BIT32(8)	/* "b" bit */
+#define END_W0_UNCOND_ESCALATE		PPC_BIT32(10)	/* "u" bit */
+#define END_W0_ESCALATE_CTL		PPC_BIT32(11)	/* "e" bit */
+#define END_W0_ESCALATE_END		PPC_BIT32(13)	/* "N" bit */
+#define END_W0_FIRMWARE1		PPC_BIT32(16)	/* Owned by FW */
+#define END_W0_FIRMWARE2		PPC_BIT32(17)	/* Owned by FW */
+	beint32_t	w1;
+#define END_W1_ES			PPC_BITMASK32(0,3)
+#define END_W1_ESn			PPC_BITMASK32(0,1)
+#define END_W1_ESn_P			PPC_BIT32(0)
+#define END_W1_ESn_Q			PPC_BIT32(1)
+#define END_W1_ESe			PPC_BITMASK32(2,3)
+#define END_W1_ESe_P			PPC_BIT32(2)
+#define END_W1_ESe_Q			PPC_BIT32(3)
+#define END_W1_GEN_FLIPPED		PPC_BIT32(8)
+#define END_W1_GENERATION		PPC_BIT32(9)
+#define END_W1_PAGE_OFF			PPC_BITMASK32(10,31)
+	beint32_t	w2;
+#define END_W2_RESERVED			PPC_BITMASK32(4,7)
+#define END_W2_EQ_ADDR_HI		PPC_BITMASK32(8,31)
+	beint32_t	w3;
+#define END_W3_EQ_ADDR_LO		PPC_BITMASK32(0,24)
+#define END_W3_QSIZE			PPC_BITMASK32(28,31)
+	beint32_t	w4;
+#define END_W4_END_BLOCK		PPC_BITMASK32(4,7)   /* N:1 */
+#define END_W4_ESC_END_INDEX		PPC_BITMASK32(8,31)  /* N:1 */
+#define END_W4_ESB_BLOCK		PPC_BITMASK32(0,3)   /* N:0 */
+#define END_W4_ESC_ESB_INDEX		PPC_BITMASK32(4,31)  /* N:0 */
+	beint32_t	w5;
+#define END_W5_ESC_END_DATA		PPC_BITMASK32(1,31)
+	beint32_t	w6;
+#define END_W6_FORMAT_BIT		PPC_BIT32(0)
+#define END_W6_VP_BLOCK			PPC_BITMASK32(4,7)
+#define END_W6_VP_OFFSET		PPC_BITMASK32(8,31)
+#define END_W6_VP_OFFSET_GEN1		PPC_BITMASK32(13,31)
+	beint32_t	w7;
+#define END_W7_TOPO			PPC_BITMASK32(0,3)	/* Owned by HW */
+#define END_W7_F0_PRIORITY		PPC_BITMASK32(8,15)
+#define END_W7_F1_LOG_SERVER_ID		PPC_BITMASK32(4,31)
+};
+#define xive_end_is_firmware1(end)      \
+	xive_get_field32(END_W0_FIRMWARE1, (end)->w0)
+
+/* Notification Virtual Processor (NVP) */
+struct xive_nvp {
+	beint32_t	w0;
+#define NVP_W0_VALID			PPC_BIT32(0)
+#define NVP_W0_ESC_END			PPC_BIT32(25)	/* 'N' bit 0:ESB  1:END */
+	beint32_t	w1;
+	beint32_t	w2;
+#define NVP_W2_CPPR			PPC_BITMASK32(0, 7)
+#define NVP_W2_IPB			PPC_BITMASK32(8, 15)
+#define NVP_W2_LSMFB			PPC_BITMASK32(16, 23)
+	beint32_t	w3;
+	beint32_t	w4;
+#define NVP_W4_ESC_ESB_BLOCK		PPC_BITMASK32(0, 3)	/* N:0 */
+#define NVP_W4_ESC_ESB_INDEX		PPC_BITMASK32(4, 31)	/* N:0 */
+#define NVP_W4_ESC_END_BLOCK		PPC_BITMASK32(4, 7)	/* N:1 */
+#define NVP_W4_ESC_END_INDEX		PPC_BITMASK32(8, 31)	/* N:1 */
+	beint32_t	w5;
+#define NVP_W5_PSIZE			PPC_BITMASK32(0, 1)
+#define NVP_W5_VP_END_BLOCK		PPC_BITMASK32(4, 7)
+#define NVP_W5_VP_END_INDEX		PPC_BITMASK32(8, 31)
+	beint32_t	w6;
+	beint32_t	w7;
+};
+
+/* Notification Virtual Group or Crowd (NVG/NVC) */
+struct xive_nvgc {
+	beint32_t	w0;
+#define NVGC_W0_VALID            PPC_BIT32(0)
+	beint32_t	w1;
+	beint32_t	w2;
+	beint32_t	w3;
+	beint32_t	w4;
+	beint32_t	w5;
+	beint32_t	w6;
+	beint32_t	w7;
+};
+
+/*
+ * Thread Interrupt Management Area
+ *
+ * In Gen1 mode (P9 compat mode) word 2 is the same. However in Gen2
+ * mode (P10), the CAM line is slightly different as the VP space was
+ * increased.
+ */
+#define   TM10_QW0W2_VU           PPC_BIT32(0)
+#define   TM10_QW0W2_LOGIC_SERV   PPC_BITMASK32(4, 31)
+#define   TM10_QW1W2_VO           PPC_BIT32(0)
+#define   TM10_QW1W2_HO           PPC_BIT32(1)
+#define   TM10_QW1W2_NO           PPC_BIT32(2)
+#define   TM10_QW1W2_OS_CAM       PPC_BITMASK32(4, 31)
+#define   TM10_QW2W2_VP           PPC_BIT32(0)
+#define   TM10_QW2W2_HP           PPC_BIT32(1)
+#define   TM10_QW2W2_NP           PPC_BIT32(2)
+#define   TM10_QW2W2_POOL_CAM     PPC_BITMASK32(4, 31)
+#define   TM10_QW3W2_VT           PPC_BIT32(0)
+#define   TM10_QW3W2_HT           PPC_BIT32(1)
+#define   TM10_QW3W2_NT           PPC_BIT32(2)
+#define   TM10_QW3W2_LP           PPC_BIT32(6)
+#define   TM10_QW3W2_LE           PPC_BIT32(7)
+
+#endif /* XIVE2_REGS_H */
-- 
2.31.1



More information about the Skiboot mailing list