[Skiboot] [PATCH 05/22] xive/p9: add a new driver

Cédric Le Goater clg at kaod.org
Wed Sep 4 03:03:56 AEST 2019


It provides a way to cleanup up the existing code which kept many
workarounds and to experiment new settings. It's activated by default
and replaces the old driver, which we should remove someday. Finding
away to activate the new or the legacy driver at runtime would be a
plus. Unfortunately, NVRAM is not available when XIVE is probed.

No functional change.

Signed-off-by: Cédric Le Goater <clg at kaod.org>
---
 include/xive.h  |    1 +
 hw/xive-p9.c    | 5503 +++++++++++++++++++++++++++++++++++++++++++++++
 hw/xive.c       |    5 +-
 hw/Makefile.inc |    2 +-
 4 files changed, 5508 insertions(+), 3 deletions(-)
 create mode 100644 hw/xive-p9.c

diff --git a/include/xive.h b/include/xive.h
index 8cc98bfdaaf3..27dbaee6df5f 100644
--- a/include/xive.h
+++ b/include/xive.h
@@ -77,6 +77,7 @@ struct xive_ops {
 	void *(*get_trigger_port)(uint32_t girq);
 };
 
+extern struct xive_ops xive_legacy_ops;
 extern struct xive_ops xive_p9_ops;
 
 #endif /* __XIVE_H__ */
diff --git a/hw/xive-p9.c b/hw/xive-p9.c
new file mode 100644
index 000000000000..38664e89e4ee
--- /dev/null
+++ b/hw/xive-p9.c
@@ -0,0 +1,5503 @@
+/* Copyright 2016-2019 IBM Corp.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * 	http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ * implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include <skiboot.h>
+#include <xscom.h>
+#include <chip.h>
+#include <io.h>
+#include <xive.h>
+#include <xive-p9-regs.h>
+#include <xscom-p9-regs.h>
+#include <interrupts.h>
+#include <timebase.h>
+#include <bitmap.h>
+#include <buddy.h>
+#include <phys-map.h>
+#include <p9_stop_api.H>
+
+/* Use Block group mode to move chip_id into block .... */
+#define USE_BLOCK_GROUP_MODE
+
+/* Indirect mode */
+#define USE_INDIRECT
+
+/* Always notify from EQ to VP (no EOI on EQs). Will speed up
+ * EOIs at the expense of potentially higher powerbus traffic.
+ */
+#define EQ_ALWAYS_NOTIFY
+
+/* Verbose debug */
+#undef XIVE_VERBOSE_DEBUG
+
+/* Extra debug options used in debug builds */
+#ifdef DEBUG
+#define XIVE_DEBUG_DUPLICATES
+#define XIVE_PERCPU_LOG
+#define XIVE_DEBUG_INIT_CACHE_UPDATES
+#define XIVE_EXTRA_CHECK_INIT_CACHE
+#undef XIVE_CHECK_MISROUTED_IPI
+#define XIVE_CHECK_LOCKS
+#define XIVE_INT_SAFETY_GAP 0x1000
+#else
+#undef  XIVE_DEBUG_DUPLICATES
+#undef  XIVE_PERCPU_LOG
+#undef  XIVE_DEBUG_INIT_CACHE_UPDATES
+#undef  XIVE_EXTRA_CHECK_INIT_CACHE
+#undef  XIVE_CHECK_MISROUTED_IPI
+#undef  XIVE_CHECK_LOCKS
+#define XIVE_INT_SAFETY_GAP 0x10
+#endif
+
+/*
+ *
+ * VSDs, blocks, set translation etc...
+ *
+ * This stuff confused me to no end so here's an attempt at explaining
+ * my understanding of it and how I use it in OPAL & Linux
+ *
+ * For the following data structures, the XIVE use a mechanism called
+ * Virtualization Structure Tables (VST) to manage the memory layout
+ * and access: ESBs (Event State Buffers, aka IPI sources), EAS/IVT
+ * (Event assignment structures), END/EQs (Notification descriptors
+ * aka event queues) and NVT/VPD (Notification Virtual Targets).
+ *
+ * These structures divide those tables into 16 "blocks". Each XIVE
+ * instance has a definition for all 16 blocks that can either represent
+ * an actual table in memory or a remote XIVE MMIO port to access a
+ * block that is owned by that remote XIVE.
+ *
+ * Our SW design will consist of allocating one block per chip (and thus
+ * per XIVE instance) for now, thus giving us up to 16 supported chips in
+ * the system. We may have to revisit that if we ever support systems with
+ * more than 16 chips but that isn't on our radar at the moment or if we
+ * want to do like pHyp on some machines and dedicate 2 blocks per chip
+ * for some structures.
+ *
+ * Thus we need to be careful that we never expose to Linux the concept
+ * of block and block boundaries, but instead we provide full number ranges
+ * so that consecutive blocks can be supported.
+ *
+ * We will pre-allocate some of the tables in order to support a "fallback"
+ * mode operations where an old-style XICS is emulated via OPAL calls. This
+ * is achieved by having a default of one VP per physical thread associated
+ * with one EQ and one IPI. There is also enought EATs to cover all the PHBs.
+ *
+ * Similarily, for MMIO access, the BARs support what is called "set
+ * translation" which allows tyhe BAR to be devided into a certain
+ * number of sets. The VC BAR (ESBs, ENDs, ...) supports 64 sets and
+ * the PC BAT supports 16. Each "set" can be routed to a specific
+ * block and offset within a block.
+ *
+ * For now, we will not use much of that functionality. We will use a
+ * fixed split between ESB and ENDs for the VC BAR as defined by the
+ * constants below and we will allocate all the PC BARs set to the
+ * local block of that chip
+ */
+
+
+/* BAR default values (should be initialized by HostBoot but for
+ * now we do it). Based on the memory map document by Dave Larson
+ *
+ * Fixed IC and TM BARs first.
+ */
+/* Use 64K for everything by default */
+#define IC_PAGE_SIZE	0x10000
+#define TM_PAGE_SIZE	0x10000
+#define IPI_ESB_SHIFT	(16 + 1)
+#define EQ_ESB_SHIFT	(16 + 1)
+
+/* VC BAR contains set translations for the ESBs and the EQs.
+ *
+ * It's divided in 64 sets, each of which can be either ESB pages or EQ pages.
+ * The table configuring this is the EDT
+ *
+ * Additionally, the ESB pages come in pair of Linux_Trig_Mode isn't enabled
+ * (which we won't enable for now as it assumes write-only permission which
+ * the MMU doesn't support).
+ *
+ * To get started we just hard wire the following setup:
+ *
+ * VC_BAR size is 512G. We split it into 384G of ESBs (48 sets) and 128G
+ * of ENDs (16 sets) for the time being. IE. Each set is thus 8GB
+ */
+
+#define VC_ESB_SETS	48
+#define VC_END_SETS	16
+#define VC_MAX_SETS	64
+
+/* The table configuring the PC set translation (16 sets) is the VDT */
+#define PC_MAX_SETS	16
+
+/* XXX This is the currently top limit of number of ESB/SBE entries
+ * and EAS/IVT entries pre-allocated per chip. This should probably
+ * turn into a device-tree property or NVRAM setting, or maybe
+ * calculated from the amount of system RAM...
+ *
+ * This is currently set to 1M
+ *
+ * This is independent of the sizing of the MMIO space.
+ *
+ * WARNING: Due to how XICS emulation works, we cannot support more
+ * interrupts per chip at this stage as the full interrupt number
+ * (block + index) has to fit in a 24-bit number.
+ *
+ * That gives us a pre-allocated space of 256KB per chip for the state
+ * bits and 8M per chip for the EAS/IVT.
+ *
+ * Note: The HW interrupts from PCIe and similar other entities that
+ * use their own state bit array will have to share that IVT space,
+ * so we could potentially make the IVT size twice as big, but for now
+ * we will simply share it and ensure we don't hand out IPIs that
+ * overlap the HW interrupts.
+ */
+#define MAX_INT_ENTRIES		(1 * 1024 * 1024)
+
+/* Corresponding direct table sizes */
+#define SBE_SIZE	(MAX_INT_ENTRIES / 4)
+#define IVT_SIZE	(MAX_INT_ENTRIES * 8)
+
+/* Max number of EQs. We allocate an indirect table big enough so
+ * that when fully populated we can have that many EQs.
+ *
+ * The max number of EQs we support in our MMIO space is 128G/128K
+ * ie. 1M. Since one EQ is 8 words (32 bytes), a 64K page can hold
+ * 2K EQs. We need 512 pointers, ie, 4K of memory for the indirect
+ * table.
+ *
+ * XXX Adjust that based on BAR value ?
+ */
+#ifdef USE_INDIRECT
+#define MAX_EQ_COUNT		(1 * 1024 * 1024)
+#define EQ_PER_PAGE		(0x10000 / 32) // Use sizeof ?
+#define IND_EQ_TABLE_SIZE	((MAX_EQ_COUNT / EQ_PER_PAGE) * 8)
+#else
+#define MAX_EQ_COUNT		(4 * 1024 * 64)
+#define EQT_SIZE		(MAX_EQ_COUNT * 32)
+#endif
+
+/* Number of priorities (and thus EQDs) we allocate for each VP */
+#define NUM_INT_PRIORITIES	8
+
+/* Priority used for the one queue in XICS emulation */
+#define XIVE_EMULATION_PRIO	7
+
+/* Max number of VPs. We allocate an indirect table big enough so
+ * that when fully populated we can have that many VPs.
+ *
+ * The max number of VPs we support in our MMIO space is 64G/64K
+ * ie. 1M. Since one VP is 16 words (64 bytes), a 64K page can hold
+ * 1K EQ. We need 1024 pointers, ie, 8K of memory for the indirect
+ * table.
+ *
+ * HOWEVER: A block supports only up to 512K VPs (19 bits of target
+ * in the EQ). Since we currently only support 1 block per chip,
+ * we will allocate half of the above. We might add support for
+ * 2 blocks per chip later if necessary.
+ *
+ * XXX Adjust that based on BAR value ?
+ */
+#ifdef USE_INDIRECT
+#define MAX_VP_ORDER		19	/* 512k */
+#define MAX_VP_COUNT		(1ul << MAX_VP_ORDER)
+#define VP_PER_PAGE		(0x10000 / 64) // Use sizeof ?
+#define IND_VP_TABLE_SIZE	((MAX_VP_COUNT / VP_PER_PAGE) * 8)
+#else
+#define MAX_VP_ORDER		13	/* 8k */
+#define MAX_VP_COUNT		(1ul << MAX_VP_ORDER)
+#define VPT_SIZE		(MAX_VP_COUNT * 64)
+#endif
+
+#ifdef USE_BLOCK_GROUP_MODE
+
+/* Initial number of VPs (XXX Make it a variable ?). Round things
+ * up to a max of 32 cores per chip
+ */
+#define INITIAL_VP_BASE		0x80
+#define INITIAL_VP_COUNT	0x80
+
+#else
+
+/* Initial number of VPs on block 0 only */
+#define INITIAL_BLK0_VP_BASE	0x800
+#define INITIAL_BLK0_VP_COUNT  	0x800
+
+#endif
+
+/* The xive operation mode indicates the active "API" and corresponds
+ * to the "mode" parameter of the opal_xive_reset() call
+ */
+static enum {
+	XIVE_MODE_EMU	= OPAL_XIVE_MODE_EMU,
+	XIVE_MODE_EXPL	= OPAL_XIVE_MODE_EXPL,
+	XIVE_MODE_NONE,
+} xive_mode = XIVE_MODE_NONE;
+
+
+/* Each source controller has one of these. There's one embedded
+ * in the XIVE struct for IPIs
+ */
+struct xive_src {
+	struct irq_source		is;
+	const struct irq_source_ops	*orig_ops;
+	struct xive			*xive;
+	void				*esb_mmio;
+	uint32_t			esb_base;
+	uint32_t			esb_shift;
+	uint32_t			flags;
+};
+
+#define LOG_TYPE_XIRR	0
+#define LOG_TYPE_XIRR2	1
+#define LOG_TYPE_POPQ	2
+#define LOG_TYPE_EOI	3
+#define LOG_TYPE_EQD	4
+
+struct xive_log_ent {
+	uint8_t type;
+	uint8_t cnt;
+	uint64_t tb;
+#define MAX_LOG_DATA	8
+	uint32_t data[MAX_LOG_DATA];
+};
+#define MAX_LOG_ENT	32
+
+struct xive_cpu_state {
+	struct xive	*xive;
+	void		*tm_ring1;
+
+#ifdef XIVE_PERCPU_LOG
+	struct xive_log_ent log[MAX_LOG_ENT];
+	uint32_t	log_pos;
+#endif
+	/* Base HW VP and associated queues */
+	uint32_t	vp_blk;
+	uint32_t	vp_idx;
+	uint32_t	eq_blk;
+	uint32_t	eq_idx; /* Base eq index of a block of 8 */
+	void		*eq_page;
+
+	/* Pre-allocated IPI */
+	uint32_t	ipi_irq;
+
+	/* Use for XICS emulation */
+	struct lock	lock;
+	uint8_t		cppr;
+	uint8_t		mfrr;
+	uint8_t		pending;
+	uint8_t		prev_cppr;
+	uint32_t	*eqbuf;
+	uint32_t	eqptr;
+	uint32_t	eqmsk;
+	uint8_t		eqgen;
+	void		*eqmmio;
+	uint64_t	total_irqs;
+};
+
+#ifdef XIVE_PERCPU_LOG
+
+static void log_add(struct xive_cpu_state *xs, uint8_t type,
+		    uint8_t count, ...)
+{
+	struct xive_log_ent *e = &xs->log[xs->log_pos];
+	va_list args;
+	int i;
+
+	e->type = type;
+	e->cnt = count;
+	e->tb = mftb();
+	va_start(args, count);
+	for (i = 0; i < count; i++)
+		e->data[i] = va_arg(args, u32);
+	va_end(args);
+	xs->log_pos = xs->log_pos + 1;
+	if (xs->log_pos == MAX_LOG_ENT)
+		xs->log_pos = 0;
+}
+
+static void log_print(struct xive_cpu_state *xs)
+{
+	uint32_t pos = xs->log_pos;
+	uint8_t buf[256];
+	int i, j;
+	static const char *lts[] = {
+		">XIRR",
+		"<XIRR",
+		" POPQ",
+		"  EOI",
+		"  EQD"
+	};
+	for (i = 0; i < MAX_LOG_ENT; i++) {
+		struct xive_log_ent *e = &xs->log[pos];
+		uint8_t *b = buf, *eb = &buf[255];
+
+		b += snprintf(b, eb-b, "%08llx %s ", e->tb,
+			      lts[e->type]);
+		for (j = 0; j < e->cnt && b < eb; j++)
+			b += snprintf(b, eb-b, "%08x ", e->data[j]);
+		printf("%s\n", buf);
+		pos = pos + 1;
+		if (pos == MAX_LOG_ENT)
+			pos = 0;
+	}
+}
+
+#else /* XIVE_PERCPU_LOG */
+
+static inline void log_add(struct xive_cpu_state *xs __unused,
+			   uint8_t type __unused,
+			   uint8_t count __unused, ...) { }
+static inline void log_print(struct xive_cpu_state *xs __unused) { }
+
+#endif /* XIVE_PERCPU_LOG */
+
+enum xive_generation {
+	XIVE_GEN_1 = 1,
+	XIVE_GEN_2 = 2,
+};
+
+struct xive {
+	uint32_t	chip_id;
+	uint32_t	block_id;
+	struct dt_node	*x_node;
+
+	enum xive_generation generation;
+
+	uint64_t	xscom_base;
+
+	/* MMIO regions */
+	void		*ic_base;
+	uint64_t	ic_size;
+	uint32_t	ic_shift;
+	void		*tm_base;
+	uint64_t	tm_size;
+	uint32_t	tm_shift;
+	void		*pc_base;
+	uint64_t	pc_size;
+	void		*vc_base;
+	uint64_t	vc_size;
+
+	void		*esb_mmio;
+	void		*eq_mmio;
+
+	/* Set on XSCOM register access error */
+	bool		last_reg_error;
+
+	/* Per-XIVE mutex */
+	struct lock	lock;
+
+	/* Pre-allocated tables.
+	 *
+	 * We setup all the VDS for actual tables (ie, by opposition to
+	 * forwarding ports) as either direct pre-allocated or indirect
+	 * and partially populated.
+	 *
+	 * Currently, the ESB/SBE and the EAS/IVT tables are direct and
+	 * fully pre-allocated based on MAX_INT_ENTRIES.
+	 *
+	 * The other tables are indirect, we thus pre-allocate the indirect
+	 * table (ie, pages of pointers) and populate enough of the pages
+	 * for our basic setup using 64K pages.
+	 *
+	 * The size of the indirect tables are driven by MAX_VP_COUNT and
+	 * MAX_EQ_COUNT. The number of pre-allocated ones are driven by
+	 * INITIAL_VP_COUNT (number of EQ depends on number of VP) in block
+	 * mode, otherwise we only preallocate INITIAL_BLK0_VP_COUNT on
+	 * block 0.
+	 */
+
+	/* Direct SBE and IVT tables */
+	void		*sbe_base;
+	void		*ivt_base;
+
+#ifdef USE_INDIRECT
+	/* Indirect END/EQ table. NULL entries are unallocated, count is
+	 * the numbre of pointers (ie, sub page placeholders).
+	 */
+	uint64_t	*eq_ind_base;
+	uint32_t	eq_ind_count;
+#else
+	void		*eq_base;
+#endif
+	/* EQ allocation bitmap. Each bit represent 8 EQs */
+	bitmap_t	*eq_map;
+
+#ifdef USE_INDIRECT
+	/* Indirect NVT/VP table. NULL entries are unallocated, count is
+	 * the numbre of pointers (ie, sub page placeholders).
+	 */
+	uint64_t	*vp_ind_base;
+	uint32_t	vp_ind_count;
+#else
+	void		*vp_base;
+#endif
+
+#ifndef USE_BLOCK_GROUP_MODE
+	/* VP allocation buddy when not using block group mode */
+	struct buddy	*vp_buddy;
+#endif
+
+#ifdef USE_INDIRECT
+	/* Pool of donated pages for provisioning indirect EQ and VP pages */
+	struct list_head donated_pages;
+#endif
+
+	/* To ease a possible change to supporting more than one block of
+	 * interrupts per chip, we store here the "base" global number
+	 * and max number of interrupts for this chip. The global number
+	 * encompass the block number and index.
+	 */
+	uint32_t	int_base;
+	uint32_t	int_max;
+
+	/* Due to the overlap between IPIs and HW sources in the IVT table,
+	 * we keep some kind of top-down allocator. It is used for HW sources
+	 * to "allocate" interrupt entries and will limit what can be handed
+	 * out as IPIs. Of course this assumes we "allocate" all HW sources
+	 * before we start handing out IPIs.
+	 *
+	 * Note: The numbers here are global interrupt numbers so that we can
+	 * potentially handle more than one block per chip in the future.
+	 */
+	uint32_t	int_hw_bot;	/* Bottom of HW allocation */
+	uint32_t	int_ipi_top;	/* Highest IPI handed out so far + 1 */
+
+	/* The IPI allocation bitmap */
+	bitmap_t	*ipi_alloc_map;
+
+	/* We keep track of which interrupts were ever enabled to
+	 * speed up xive_reset
+	 */
+	bitmap_t	*int_enabled_map;
+
+	/* Embedded source IPIs */
+	struct xive_src	ipis;
+
+	/* Embedded escalation interrupts */
+	struct xive_src	esc_irqs;
+
+	/* In memory queue overflow */
+	void		*q_ovf;
+};
+
+#define XIVE_CAN_STORE_EOI(x) XIVE_STORE_EOI_ENABLED
+
+/* Global DT node */
+static struct dt_node *xive_dt_node;
+
+
+/* Block <-> Chip conversions.
+ *
+ * As chipIDs may not be within the range of 16 block IDs supported by XIVE,
+ * we have a 2 way conversion scheme.
+ *
+ * From block to chip, use the global table below.
+ *
+ * From chip to block, a field in struct proc_chip contains the first block
+ * of that chip. For now we only support one block per chip but that might
+ * change in the future
+ */
+#define XIVE_INVALID_CHIP	0xffffffff
+#define XIVE_MAX_CHIPS		16
+static uint32_t xive_block_to_chip[XIVE_MAX_CHIPS];
+static uint32_t xive_block_count;
+
+#ifdef USE_BLOCK_GROUP_MODE
+static uint32_t xive_chip_to_block(uint32_t chip_id)
+{
+	struct proc_chip *c = get_chip(chip_id);
+
+	assert(c);
+	assert(c->xive);
+	return c->xive->block_id;
+}
+#endif
+
+/* Conversion between GIRQ and block/index.
+ *
+ * ------------------------------------
+ * |0000000E|BLOC|               INDEX|
+ * ------------------------------------
+ *      8      4           20
+ *
+ * the E bit indicates that this is an escalation interrupt, in
+ * that case, the BLOC/INDEX represents the EQ containig the
+ * corresponding escalation descriptor.
+ *
+ * Global interrupt numbers for non-escalation interrupts are thus
+ * limited to 24 bits which is necessary for our XICS emulation since
+ * the top 8 bits are reserved for the CPPR value.
+ *
+ */
+#define GIRQ_TO_BLK(__g)	(((__g) >> 20) & 0xf)
+#define GIRQ_TO_IDX(__g)	((__g) & 0x000fffff)
+#define BLKIDX_TO_GIRQ(__b,__i)	(((uint32_t)(__b)) << 20 | (__i))
+#define GIRQ_IS_ESCALATION(__g)	((__g) & 0x01000000)
+#define MAKE_ESCALATION_GIRQ(__b,__i)(BLKIDX_TO_GIRQ(__b,__i) | 0x01000000)
+
+/* Block/IRQ to chip# conversions */
+#define PC_BLK_TO_CHIP(__b)	(xive_block_to_chip[__b])
+#define VC_BLK_TO_CHIP(__b)	(xive_block_to_chip[__b])
+#define GIRQ_TO_CHIP(__isn)	(VC_BLK_TO_CHIP(GIRQ_TO_BLK(__isn)))
+
+/* Routing of physical processors to VPs */
+/* XXX P10 (for now these P9 and P10 PIR functions are identical but this is a hack) */
+#ifdef USE_BLOCK_GROUP_MODE
+#define PIR2VP_IDX(__pir)	(0x80 | P9_PIR2LOCALCPU(__pir))
+#define PIR2VP_BLK(__pir)	(xive_chip_to_block(P9_PIR2GCID(__pir)))
+#define VP2PIR(__blk, __idx)	(P9_PIRFROMLOCALCPU(VC_BLK_TO_CHIP(__blk), (__idx) & 0x7f))
+#else
+#define PIR2VP_IDX(__pir)	(0x800 | (P9_PIR2GCID(__pir) << 7) | P9_PIR2LOCALCPU(__pir))
+#define PIR2VP_BLK(__pir)	(0)
+#define VP2PIR(__blk, __idx)	(P9_PIRFROMLOCALCPU(((__idx) >> 7) & 0xf, (__idx) & 0x7f))
+#endif
+
+/* Decoding of OPAL API VP IDs. The VP IDs are encoded as follow
+ *
+ * Block group mode:
+ *
+ * -----------------------------------
+ * |GVEOOOOO|                   INDEX|
+ * -----------------------------------
+ *  ||   |
+ *  ||  Order
+ *  |Virtual
+ *  Group
+ *
+ * G (Group)   : Set to 1 for a group VP (not currently supported)
+ * V (Virtual) : Set to 1 for an allocated VP (vs. a physical processor ID)
+ * E (Error)   : Should never be 1, used internally for errors
+ * O (Order)   : Allocation order of the VP block
+ *
+ * The conversion is thus done as follow (groups aren't implemented yet)
+ *
+ *  If V=0, O must be 0 and 24-bit INDEX value is the PIR
+ *  If V=1, the order O group is allocated such that if N is the number of
+ *          chip bits considered for allocation (*)
+ *          then the INDEX is constructed as follow (bit numbers such as 0=LSB)
+ *           - bottom O-N bits is the index within the "VP block"
+ *           - next N bits is the XIVE blockID of the VP
+ *           - the remaining bits is the per-chip "base"
+ *          so the conversion consists of "extracting" the block ID and moving
+ *          down the upper bits by N bits.
+ *
+ * In non-block-group mode, the difference is that the blockID is
+ * on the left of the index (the entire VP block is in a single
+ * block ID)
+ */
+#ifdef USE_BLOCK_GROUP_MODE
+
+/* VP allocation */
+static uint32_t xive_chips_alloc_bits = 0;
+static struct buddy *xive_vp_buddy;
+static struct lock xive_buddy_lock = LOCK_UNLOCKED;
+
+/* VP# decoding/encoding */
+static bool xive_decode_vp(uint32_t vp, uint32_t *blk, uint32_t *idx,
+			   uint8_t *order, bool *group)
+{
+	uint32_t o = (vp >> 24) & 0x1f;
+	uint32_t n = xive_chips_alloc_bits;
+	uint32_t index = vp & 0x00ffffff;
+	uint32_t imask = (1 << (o - n)) - 1;
+
+	/* Groups not supported yet */
+	if ((vp >> 31) & 1)
+		return false;
+	if (group)
+		*group = false;
+
+	/* PIR case */
+	if (((vp >> 30) & 1) == 0) {
+		if (find_cpu_by_pir(index) == NULL)
+			return false;
+		if (blk)
+			*blk = PIR2VP_BLK(index);
+		if (idx)
+			*idx = PIR2VP_IDX(index);
+		return true;
+	}
+
+	/* Ensure o > n, we have *at least* 2 VPs per block */
+	if (o <= n)
+		return false;
+
+	/* Combine the index base and index */
+	if (idx)
+		*idx = ((index >> n) & ~imask) | (index & imask);
+	/* Extract block ID */
+	if (blk)
+		*blk = (index >> (o - n)) & ((1 << n) - 1);
+
+	/* Return order as well if asked for */
+	if (order)
+		*order = o;
+
+	return true;
+}
+
+static uint32_t xive_encode_vp(uint32_t blk, uint32_t idx, uint32_t order)
+{
+	uint32_t vp = 0x40000000 | (order << 24);
+	uint32_t n = xive_chips_alloc_bits;
+	uint32_t imask = (1 << (order - n)) - 1;
+
+	vp |= (idx & ~imask) << n;
+	vp |= blk << (order - n);
+	vp |= idx & imask;
+	return  vp;
+}
+
+#else /* USE_BLOCK_GROUP_MODE */
+
+/* VP# decoding/encoding */
+static bool xive_decode_vp(uint32_t vp, uint32_t *blk, uint32_t *idx,
+			   uint8_t *order, bool *group)
+{
+	uint32_t o = (vp >> 24) & 0x1f;
+	uint32_t index = vp & 0x00ffffff;
+	uint32_t imask = (1 << o) - 1;
+
+	/* Groups not supported yet */
+	if ((vp >> 31) & 1)
+		return false;
+	if (group)
+		*group = false;
+
+	/* PIR case */
+	if (((vp >> 30) & 1) == 0) {
+		if (find_cpu_by_pir(index) == NULL)
+			return false;
+		if (blk)
+			*blk = PIR2VP_BLK(index);
+		if (idx)
+			*idx = PIR2VP_IDX(index);
+		return true;
+	}
+
+	/* Ensure o > 0, we have *at least* 2 VPs per block */
+	if (o == 0)
+		return false;
+
+	/* Extract index */
+	if (idx)
+		*idx = index & imask;
+	/* Extract block ID */
+	if (blk)
+		*blk = index >> o;
+
+	/* Return order as well if asked for */
+	if (order)
+		*order = o;
+
+	return true;
+}
+
+static uint32_t xive_encode_vp(uint32_t blk, uint32_t idx, uint32_t order)
+{
+	return 0x40000000 | (order << 24) | (blk << order) | idx;
+}
+
+#endif /* !USE_BLOCK_GROUP_MODE */
+
+#define xive_regw(__x, __r, __v) \
+	__xive_regw(__x, __r, X_##__r, __v, #__r)
+#define xive_regr(__x, __r) \
+	__xive_regr(__x, __r, X_##__r, #__r)
+#define xive_regwx(__x, __r, __v) \
+	__xive_regw(__x, 0, X_##__r, __v, #__r)
+#define xive_regrx(__x, __r) \
+	__xive_regr(__x, 0, X_##__r, #__r)
+
+#ifdef XIVE_VERBOSE_DEBUG
+#define xive_vdbg(__x,__fmt,...)	prlog(PR_DEBUG,"XIVE[ IC %02x  ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_vdbg(__c,__fmt,...)	prlog(PR_DEBUG,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#else
+#define xive_vdbg(x,fmt,...)		do { } while(0)
+#define xive_cpu_vdbg(x,fmt,...)	do { } while(0)
+#endif
+
+#define xive_dbg(__x,__fmt,...)		prlog(PR_DEBUG,"XIVE[ IC %02x  ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_dbg(__c,__fmt,...)	prlog(PR_DEBUG,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#define xive_notice(__x,__fmt,...)	prlog(PR_NOTICE,"[ IC %02x  ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_notice(__c,__fmt,...)	prlog(PR_NOTICE,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#define xive_warn(__x,__fmt,...)	prlog(PR_WARNING,"XIVE[ IC %02x  ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_warn(__c,__fmt,...)	prlog(PR_WARNING,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#define xive_err(__x,__fmt,...)		prlog(PR_ERR,"XIVE[ IC %02x  ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_err(__c,__fmt,...)	prlog(PR_ERR,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+
+static void __xive_regw(struct xive *x, uint32_t m_reg, uint32_t x_reg, uint64_t v,
+			const char *rname)
+{
+	bool use_xscom = (m_reg == 0) || !x->ic_base;
+	int64_t rc;
+
+	x->last_reg_error = false;
+
+	if (use_xscom) {
+		assert(x_reg != 0);
+		rc = xscom_write(x->chip_id, x->xscom_base + x_reg, v);
+		if (rc) {
+			if (!rname)
+				rname = "???";
+			xive_err(x, "Error writing register %s\n", rname);
+			/* Anything else we can do here ? */
+			x->last_reg_error = true;
+		}
+	} else {
+		out_be64(x->ic_base + m_reg, v);
+	}
+}
+
+static uint64_t __xive_regr(struct xive *x, uint32_t m_reg, uint32_t x_reg,
+			    const char *rname)
+{
+	bool use_xscom = (m_reg == 0) || !x->ic_base;
+	int64_t rc;
+	uint64_t val;
+
+	x->last_reg_error = false;
+
+	if (use_xscom) {
+		assert(x_reg != 0);
+		rc = xscom_read(x->chip_id, x->xscom_base + x_reg, &val);
+		if (rc) {
+			if (!rname)
+				rname = "???";
+			xive_err(x, "Error reading register %s\n", rname);
+			/* Anything else we can do here ? */
+			x->last_reg_error = true;
+			return -1ull;
+		}
+	} else {
+		val = in_be64(x->ic_base + m_reg);
+	}
+	return val;
+}
+
+/* Locate a controller from an IRQ number */
+static struct xive *xive_from_isn(uint32_t isn)
+{
+	uint32_t chip_id = GIRQ_TO_CHIP(isn);
+	struct proc_chip *c = get_chip(chip_id);
+
+	if (!c)
+		return NULL;
+	return c->xive;
+}
+
+static struct xive *xive_from_pc_blk(uint32_t blk)
+{
+	uint32_t chip_id = PC_BLK_TO_CHIP(blk);
+	struct proc_chip *c = get_chip(chip_id);
+
+	if (!c)
+		return NULL;
+	return c->xive;
+}
+
+static struct xive *xive_from_vc_blk(uint32_t blk)
+{
+	uint32_t chip_id = VC_BLK_TO_CHIP(blk);
+	struct proc_chip *c = get_chip(chip_id);
+
+	if (!c)
+		return NULL;
+	return c->xive;
+}
+
+static struct xive_eq *xive_get_eq(struct xive *x, unsigned int idx)
+{
+	struct xive_eq *p;
+
+#ifdef USE_INDIRECT
+	if (idx >= (x->eq_ind_count * EQ_PER_PAGE))
+		return NULL;
+	p = (struct xive_eq *)(x->eq_ind_base[idx / EQ_PER_PAGE] &
+			       VSD_ADDRESS_MASK);
+	if (!p)
+		return NULL;
+
+	return &p[idx % EQ_PER_PAGE];
+#else
+	if (idx >= MAX_EQ_COUNT)
+		return NULL;
+	if (!x->eq_base)
+		return NULL;
+	p = x->eq_base;
+	return p + idx;
+#endif
+}
+
+static struct xive_ive *xive_get_ive(struct xive *x, unsigned int isn)
+{
+	struct xive_ive *ivt;
+	uint32_t idx = GIRQ_TO_IDX(isn);
+
+	if (GIRQ_IS_ESCALATION(isn)) {
+		/* Allright, an escalation IVE is buried inside an EQ, let's
+		 * try to find it
+		 */
+		struct xive_eq *eq;
+
+		if (x->chip_id != VC_BLK_TO_CHIP(GIRQ_TO_BLK(isn))) {
+			xive_err(x, "xive_get_ive, ESC ISN 0x%x not on right chip\n", isn);
+			return NULL;
+		}
+		eq = xive_get_eq(x, idx);
+		if (!eq) {
+			xive_err(x, "xive_get_ive, ESC ISN 0x%x EQ not found\n", isn);
+			return NULL;
+		}
+
+		/* If using single-escalation, don't let anybody get to the individual
+		 * esclation interrupts
+		 */
+		if (eq->w0 & EQ_W0_UNCOND_ESCALATE)
+			return NULL;
+
+		/* Grab the buried IVE */
+		return (struct xive_ive *)(char *)&eq->w4;
+	} else {
+		/* Check the block matches */
+		if (isn < x->int_base || isn >= x->int_max) {
+			xive_err(x, "xive_get_ive, ISN 0x%x not on right chip\n", isn);
+			return NULL;
+		}
+		assert (idx < MAX_INT_ENTRIES);
+
+		/* If we support >1 block per chip, this should still work as
+		 * we are likely to make the table contiguous anyway
+		 */
+		ivt = x->ivt_base;
+		assert(ivt);
+
+		return ivt + idx;
+	}
+}
+
+static struct xive_vp *xive_get_vp(struct xive *x, unsigned int idx)
+{
+	struct xive_vp *p;
+
+#ifdef USE_INDIRECT
+	assert(idx < (x->vp_ind_count * VP_PER_PAGE));
+	p = (struct xive_vp *)(x->vp_ind_base[idx / VP_PER_PAGE] &
+			       VSD_ADDRESS_MASK);
+	if (!p)
+		return NULL;
+
+	return &p[idx % VP_PER_PAGE];
+#else
+	assert(idx < MAX_VP_COUNT);
+	p = x->vp_base;
+	return p + idx;
+#endif
+}
+
+static void xive_init_default_vp(struct xive_vp *vp,
+				 uint32_t eq_blk, uint32_t eq_idx)
+{
+	memset(vp, 0, sizeof(struct xive_vp));
+
+	/* Stash the EQ base in the pressure relief interrupt field */
+	vp->w1 = (eq_blk << 28) | eq_idx;
+	vp->w0 = VP_W0_VALID;
+}
+
+static void xive_init_emu_eq(uint32_t vp_blk, uint32_t vp_idx,
+			     struct xive_eq *eq, void *backing_page,
+			     uint8_t prio)
+{
+	memset(eq, 0, sizeof(struct xive_eq));
+
+	eq->w1 = EQ_W1_GENERATION;
+	eq->w3 = ((uint64_t)backing_page) & 0xffffffff;
+	eq->w2 = (((uint64_t)backing_page)) >> 32 & 0x0fffffff;
+	eq->w6 = SETFIELD(EQ_W6_NVT_BLOCK, 0ul, vp_blk) |
+		SETFIELD(EQ_W6_NVT_INDEX, 0ul, vp_idx);
+	eq->w7 = SETFIELD(EQ_W7_F0_PRIORITY, 0ul, prio);
+	eq->w0 = EQ_W0_VALID | EQ_W0_ENQUEUE |
+		SETFIELD(EQ_W0_QSIZE, 0ul, EQ_QSIZE_64K) |
+		EQ_W0_FIRMWARE;
+#ifdef EQ_ALWAYS_NOTIFY
+	eq->w0 |= EQ_W0_UCOND_NOTIFY;
+#endif
+}
+
+static uint32_t *xive_get_eq_buf(uint32_t eq_blk, uint32_t eq_idx)
+{
+	struct xive *x = xive_from_vc_blk(eq_blk);
+	struct xive_eq *eq;
+	uint64_t addr;
+
+	assert(x);
+	eq = xive_get_eq(x, eq_idx);
+	assert(eq);
+	assert(eq->w0 & EQ_W0_VALID);
+	addr = (((uint64_t)eq->w2) & 0x0fffffff) << 32 | eq->w3;
+
+	return (uint32_t *)addr;
+}
+
+#ifdef USE_INDIRECT
+static void *xive_get_donated_page(struct xive *x __unused)
+{
+	return (void *)list_pop_(&x->donated_pages, 0);
+}
+#endif
+
+#define XIVE_ALLOC_IS_ERR(_idx)	((_idx) >= 0xfffffff0)
+
+#define XIVE_ALLOC_NO_SPACE	0xffffffff /* No possible space */
+#define XIVE_ALLOC_NO_IND	0xfffffffe /* Indirect need provisioning */
+#define XIVE_ALLOC_NO_MEM	0xfffffffd /* Local allocation failed */
+
+static uint32_t xive_alloc_eq_set(struct xive *x, bool alloc_indirect __unused)
+{
+	uint32_t ind_idx __unused;
+	int idx;
+
+	xive_vdbg(x, "Allocating EQ set...\n");
+
+	assert(x->eq_map);
+
+	/* Allocate from the EQ bitmap. Each bit is 8 EQs */
+	idx = bitmap_find_zero_bit(*x->eq_map, 0, MAX_EQ_COUNT >> 3);
+	if (idx < 0) {
+		xive_dbg(x, "Allocation from EQ bitmap failed !\n");
+		return XIVE_ALLOC_NO_SPACE;
+	}
+	bitmap_set_bit(*x->eq_map, idx);
+
+	idx <<= 3;
+
+	xive_vdbg(x, "Got EQs 0x%x..0x%x\n", idx, idx + 7);
+
+#ifdef USE_INDIRECT
+	/* Calculate the indirect page where the EQs reside */
+	ind_idx = idx / EQ_PER_PAGE;
+
+	/* Is there an indirect page ? If not, check if we can provision it */
+	if (!x->eq_ind_base[ind_idx]) {
+		/* Default flags */
+		uint64_t vsd_flags = SETFIELD(VSD_TSIZE, 0ull, 4) |
+			SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
+		void *page;
+
+		/* If alloc_indirect is set, allocate the memory from OPAL own,
+		 * otherwise try to provision from the donated pool
+		 */
+		if (alloc_indirect) {
+			/* Allocate/provision indirect page during boot only */
+			xive_vdbg(x, "Indirect empty, provisioning from local pool\n");
+			page = local_alloc(x->chip_id, 0x10000, 0x10000);
+			if (!page) {
+				xive_dbg(x, "provisioning failed !\n");
+				return XIVE_ALLOC_NO_MEM;
+			}
+			vsd_flags |= VSD_FIRMWARE;
+		} else {
+			xive_vdbg(x, "Indirect empty, provisioning from donated pages\n");
+			page = xive_get_donated_page(x);
+			if (!page) {
+				xive_vdbg(x, "no idirect pages available !\n");
+				return XIVE_ALLOC_NO_IND;
+			}
+		}
+		memset(page, 0, 0x10000);
+		x->eq_ind_base[ind_idx] = vsd_flags |
+			(((uint64_t)page) & VSD_ADDRESS_MASK);
+		/* Any cache scrub needed ? */
+	}
+#endif /* USE_INDIRECT */
+
+	return idx;
+}
+
+static void xive_free_eq_set(struct xive *x, uint32_t eqs)
+{
+	uint32_t idx;
+
+	xive_vdbg(x, "Freeing EQ set...\n");
+
+	assert((eqs & 7) == 0);
+	assert(x->eq_map);
+
+	idx = eqs >> 3;
+	bitmap_clr_bit(*x->eq_map, idx);
+}
+
+#ifdef USE_INDIRECT
+static bool xive_provision_vp_ind(struct xive *x, uint32_t vp_idx, uint32_t order)
+{
+	uint32_t pbase, pend, i;
+
+	pbase = vp_idx / VP_PER_PAGE;
+	pend  = (vp_idx + (1 << order)) / VP_PER_PAGE;
+
+	for (i = pbase; i <= pend; i++) {
+		void *page;
+		u64 vsd;
+
+		/* Already provisioned ? */
+		if (x->vp_ind_base[i])
+			continue;
+
+		/* Try to grab a donated page */
+		page = xive_get_donated_page(x);
+		if (!page)
+			return false;
+
+		/* Install the page */
+		memset(page, 0, 0x10000);
+		vsd = ((uint64_t)page) & VSD_ADDRESS_MASK;
+		vsd |= SETFIELD(VSD_TSIZE, 0ull, 4);
+		vsd |= SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
+		x->vp_ind_base[i] = vsd;
+	}
+	return true;
+}
+#else
+static inline bool xive_provision_vp_ind(struct xive *x __unused,
+					 uint32_t vp_idx __unused,
+					 uint32_t order __unused)
+{
+	return true;
+}
+#endif /* USE_INDIRECT */
+
+#ifdef USE_BLOCK_GROUP_MODE
+
+static void xive_init_vp_allocator(void)
+{
+	/* Initialize chip alloc bits */
+	xive_chips_alloc_bits = ilog2(xive_block_count);
+
+	prlog(PR_INFO, "XIVE: %d chips considered for VP allocations\n",
+	      1 << xive_chips_alloc_bits);
+
+	/* Allocate a buddy big enough for MAX_VP_ORDER allocations.
+	 *
+	 * each bit in the buddy represents 1 << xive_chips_alloc_bits
+	 * VPs.
+	 */
+	xive_vp_buddy = buddy_create(MAX_VP_ORDER);
+	assert(xive_vp_buddy);
+
+	/* We reserve the whole range of VPs representing HW chips.
+	 *
+	 * These are 0x80..0xff, so order 7 starting at 0x80. This will
+	 * reserve that range on each chip.
+	 */
+	assert(buddy_reserve(xive_vp_buddy, 0x80, 7));
+}
+
+static uint32_t xive_alloc_vps(uint32_t order)
+{
+	uint32_t local_order, i;
+	int vp;
+
+	/* The minimum order is 2 VPs per chip */
+	if (order < (xive_chips_alloc_bits + 1))
+		order = xive_chips_alloc_bits + 1;
+
+	/* We split the allocation */
+	local_order = order - xive_chips_alloc_bits;
+
+	/* We grab that in the global buddy */
+	assert(xive_vp_buddy);
+	lock(&xive_buddy_lock);
+	vp = buddy_alloc(xive_vp_buddy, local_order);
+	unlock(&xive_buddy_lock);
+	if (vp < 0)
+		return XIVE_ALLOC_NO_SPACE;
+
+	/* Provision on every chip considered for allocation */
+	for (i = 0; i < (1 << xive_chips_alloc_bits); i++) {
+		struct xive *x = xive_from_pc_blk(i);
+		bool success;
+
+		/* Return internal error & log rather than assert ? */
+		assert(x);
+		lock(&x->lock);
+		success = xive_provision_vp_ind(x, vp, local_order);
+		unlock(&x->lock);
+		if (!success) {
+			lock(&xive_buddy_lock);
+			buddy_free(xive_vp_buddy, vp, local_order);
+			unlock(&xive_buddy_lock);
+			return XIVE_ALLOC_NO_IND;
+		}
+	}
+
+	/* Encode the VP number. "blk" is 0 as this represents
+	 * all blocks and the allocation always starts at 0
+	 */
+	return xive_encode_vp(0, vp, order);
+}
+
+static void xive_free_vps(uint32_t vp)
+{
+	uint32_t idx;
+	uint8_t order, local_order;
+
+	assert(xive_decode_vp(vp, NULL, &idx, &order, NULL));
+
+	/* We split the allocation */
+	local_order = order - xive_chips_alloc_bits;
+
+	/* Free that in the buddy */
+	lock(&xive_buddy_lock);
+	buddy_free(xive_vp_buddy, idx, local_order);
+	unlock(&xive_buddy_lock);
+}
+
+#else /* USE_BLOCK_GROUP_MODE */
+
+static void xive_init_vp_allocator(void)
+{
+	struct proc_chip *chip;
+
+	for_each_chip(chip) {
+		struct xive *x = chip->xive;
+		if (!x)
+			continue;
+		/* Each chip has a MAX_VP_ORDER buddy */
+		x->vp_buddy = buddy_create(MAX_VP_ORDER);
+		assert(x->vp_buddy);
+
+		/* We reserve the whole range of VPs representing HW chips.
+		 *
+		 * These are 0x800..0xfff on block 0 only, so order 11
+		 * starting at 0x800.
+		 */
+		if (x->block_id == 0)
+			assert(buddy_reserve(x->vp_buddy, 0x800, 11));
+	}
+}
+
+static uint32_t xive_alloc_vps(uint32_t order)
+{
+	struct proc_chip *chip;
+	struct xive *x = NULL;
+	int vp = -1;
+
+	/* Minimum order is 1 */
+	if (order < 1)
+		order = 1;
+
+	/* Try on every chip */
+	for_each_chip(chip) {
+		x = chip->xive;
+		if (!x)
+			continue;
+		assert(x->vp_buddy);
+		lock(&x->lock);
+		vp = buddy_alloc(x->vp_buddy, order);
+		unlock(&x->lock);
+		if (vp >= 0)
+			break;
+	}
+	if (vp < 0)
+		return XIVE_ALLOC_NO_SPACE;
+
+	/* We have VPs, make sure we have backing for the
+	 * NVTs on that block
+	 */
+	if (!xive_provision_vp_ind(x, vp, order)) {
+		lock(&x->lock);
+		buddy_free(x->vp_buddy, vp, order);
+		unlock(&x->lock);
+		return XIVE_ALLOC_NO_IND;
+	}
+
+	/* Encode the VP number */
+	return xive_encode_vp(x->block_id, vp, order);
+}
+
+static void xive_free_vps(uint32_t vp)
+{
+	uint32_t idx, blk;
+	uint8_t order;
+	struct xive *x;
+
+	assert(xive_decode_vp(vp, &blk, &idx, &order, NULL));
+
+	/* Grab appropriate xive */
+	x = xive_from_pc_blk(blk);
+	/* XXX Return error instead ? */
+	assert(x);
+
+	/* Free that in the buddy */
+	lock(&x->lock);
+	buddy_free(x->vp_buddy, idx, order);
+	unlock(&x->lock);
+}
+
+#endif /* ndef USE_BLOCK_GROUP_MODE */
+
+enum xive_cache_type {
+	xive_cache_ivc,
+	xive_cache_sbc,
+	xive_cache_eqc,
+	xive_cache_vpc,
+};
+
+static int64_t __xive_cache_watch(struct xive *x, enum xive_cache_type ctype,
+				  uint64_t block, uint64_t idx,
+				  uint32_t start_dword, uint32_t dword_count,
+				  void *new_data, bool light_watch,
+				  bool synchronous);
+
+static void xive_scrub_workaround_vp(struct xive *x, uint32_t block, uint32_t idx __unused)
+{
+	/* VP variant of the workaround described in __xive_cache_scrub(),
+	 * we need to be careful to use for that workaround an NVT that
+	 * sits on the same xive but isn NOT part of a donated indirect
+	 * entry.
+	 *
+	 * The reason is that the dummy cache watch will re-create a
+	 * dirty entry in the cache, even if the entry is marked
+	 * invalid.
+	 *
+	 * Thus if we are about to dispose of the indirect entry backing
+	 * it, we'll cause a checkstop later on when trying to write it
+	 * out.
+	 *
+	 * Note: This means the workaround only works for block group
+	 * mode.
+	 */
+#ifdef USE_BLOCK_GROUP_MODE
+	__xive_cache_watch(x, xive_cache_vpc, block, INITIAL_VP_BASE, 0,
+			   0, NULL, true, false);
+#else
+	/* WARNING: Some workarounds related to cache scrubs require us to
+	 * have at least one firmware owned (permanent) indirect entry for
+	 * each XIVE instance. This currently only happens in block group
+	 * mode
+	 */
+#warning Block group mode should not be disabled
+#endif
+}
+
+static void xive_scrub_workaround_eq(struct xive *x, uint32_t block __unused, uint32_t idx)
+{
+	void *mmio;
+
+	/* EQ variant of the workaround described in __xive_cache_scrub(),
+	 * a simple non-side effect load from ESn will do
+	 */
+	mmio = x->eq_mmio + idx * 0x20000;
+
+	/* Ensure the above has returned before we do anything else
+	 * the XIVE store queue is completely empty
+	 */
+	load_wait(in_be64(mmio + 0x800));
+}
+
+static int64_t __xive_cache_scrub(struct xive *x, enum xive_cache_type ctype,
+				  uint64_t block, uint64_t idx,
+				  bool want_inval, bool want_disable)
+{
+	uint64_t sreg, sregx, mreg, mregx;
+	uint64_t mval, sval;
+
+#ifdef XIVE_CHECK_LOCKS
+	assert(lock_held_by_me(&x->lock));
+#endif
+
+	/* Workaround a HW bug in XIVE where the scrub completion
+	 * isn't ordered by loads, thus the data might still be
+	 * in a queue and may not have reached coherency.
+	 *
+	 * The workaround is two folds: We force the scrub to also
+	 * invalidate, then after the scrub, we do a dummy cache
+	 * watch which will make the HW read the data back, which
+	 * should be ordered behind all the preceding stores.
+	 *
+	 * Update: For EQs we can do a non-side effect ESB load instead
+	 * which is faster.
+	 */
+	want_inval = true;
+
+	switch (ctype) {
+	case xive_cache_ivc:
+		sreg = VC_IVC_SCRUB_TRIG;
+		sregx = X_VC_IVC_SCRUB_TRIG;
+		mreg = VC_IVC_SCRUB_MASK;
+		mregx = X_VC_IVC_SCRUB_MASK;
+		break;
+	case xive_cache_sbc:
+		sreg = VC_SBC_SCRUB_TRIG;
+		sregx = X_VC_SBC_SCRUB_TRIG;
+		mreg = VC_SBC_SCRUB_MASK;
+		mregx = X_VC_SBC_SCRUB_MASK;
+		break;
+	case xive_cache_eqc:
+		sreg = VC_EQC_SCRUB_TRIG;
+		sregx = X_VC_EQC_SCRUB_TRIG;
+		mreg = VC_EQC_SCRUB_MASK;
+		mregx = X_VC_EQC_SCRUB_MASK;
+		break;
+	case xive_cache_vpc:
+		sreg = PC_VPC_SCRUB_TRIG;
+		sregx = X_PC_VPC_SCRUB_TRIG;
+		mreg = PC_VPC_SCRUB_MASK;
+		mregx = X_PC_VPC_SCRUB_MASK;
+		break;
+	default:
+		return OPAL_INTERNAL_ERROR;
+	}
+	if (ctype == xive_cache_vpc) {
+		mval = PC_SCRUB_BLOCK_ID | PC_SCRUB_OFFSET;
+		sval = SETFIELD(PC_SCRUB_BLOCK_ID, idx, block) |
+			PC_SCRUB_VALID;
+	} else {
+		mval = VC_SCRUB_BLOCK_ID | VC_SCRUB_OFFSET;
+		sval = SETFIELD(VC_SCRUB_BLOCK_ID, idx, block) |
+			VC_SCRUB_VALID;
+	}
+	if (want_inval)
+		sval |= PC_SCRUB_WANT_INVAL;
+	if (want_disable)
+		sval |= PC_SCRUB_WANT_DISABLE;
+
+	__xive_regw(x, mreg, mregx, mval, NULL);
+	__xive_regw(x, sreg, sregx, sval, NULL);
+
+	/* XXX Add timeout !!! */
+	for (;;) {
+		sval = __xive_regr(x, sreg, sregx, NULL);
+		if (!(sval & VC_SCRUB_VALID))
+			break;
+		/* Small delay */
+		time_wait(100);
+	}
+	sync();
+
+	/* Workaround for HW bug described above (only applies to
+	 * EQC and VPC
+	 */
+	if (ctype == xive_cache_eqc)
+		xive_scrub_workaround_eq(x, block, idx);
+	else if (ctype == xive_cache_vpc)
+		xive_scrub_workaround_vp(x, block, idx);
+
+	return 0;
+}
+
+static int64_t xive_ivc_scrub(struct xive *x, uint64_t block, uint64_t idx)
+{
+	/* IVC has no "want_inval" bit, it always invalidates */
+	return __xive_cache_scrub(x, xive_cache_ivc, block, idx, false, false);
+}
+
+static int64_t xive_vpc_scrub(struct xive *x, uint64_t block, uint64_t idx)
+{
+	return __xive_cache_scrub(x, xive_cache_vpc, block, idx, false, false);
+}
+
+static int64_t xive_vpc_scrub_clean(struct xive *x, uint64_t block, uint64_t idx)
+{
+	return __xive_cache_scrub(x, xive_cache_vpc, block, idx, true, false);
+}
+
+static int64_t xive_eqc_scrub(struct xive *x, uint64_t block, uint64_t idx)
+{
+	return __xive_cache_scrub(x, xive_cache_eqc, block, idx, false, false);
+}
+
+static int64_t __xive_cache_watch(struct xive *x, enum xive_cache_type ctype,
+				  uint64_t block, uint64_t idx,
+				  uint32_t start_dword, uint32_t dword_count,
+				  void *new_data, bool light_watch,
+				  bool synchronous)
+{
+	uint64_t sreg, sregx, dreg0, dreg0x;
+	uint64_t dval0, sval, status;
+	int64_t i;
+
+#ifdef XIVE_CHECK_LOCKS
+	assert(lock_held_by_me(&x->lock));
+#endif
+	switch (ctype) {
+	case xive_cache_eqc:
+		sreg = VC_EQC_CWATCH_SPEC;
+		sregx = X_VC_EQC_CWATCH_SPEC;
+		dreg0 = VC_EQC_CWATCH_DAT0;
+		dreg0x = X_VC_EQC_CWATCH_DAT0;
+		sval = SETFIELD(VC_EQC_CWATCH_BLOCKID, idx, block);
+		break;
+	case xive_cache_vpc:
+		sreg = PC_VPC_CWATCH_SPEC;
+		sregx = X_PC_VPC_CWATCH_SPEC;
+		dreg0 = PC_VPC_CWATCH_DAT0;
+		dreg0x = X_PC_VPC_CWATCH_DAT0;
+		sval = SETFIELD(PC_VPC_CWATCH_BLOCKID, idx, block);
+		break;
+	default:
+		return OPAL_INTERNAL_ERROR;
+	}
+
+	/* The full bit is in the same position for EQC and VPC */
+	if (!light_watch)
+		sval |= VC_EQC_CWATCH_FULL;
+
+	for (;;) {
+		/* Write the cache watch spec */
+		__xive_regw(x, sreg, sregx, sval, NULL);
+
+		/* Load data0 register to populate the watch */
+		dval0 = __xive_regr(x, dreg0, dreg0x, NULL);
+
+		/* If new_data is NULL, this is a dummy watch used as a
+		 * workaround for a HW bug
+		 */
+		if (!new_data) {
+			__xive_regw(x, dreg0, dreg0x, dval0, NULL);
+			return 0;
+		}
+
+		/* Write the words into the watch facility. We write in reverse
+		 * order in case word 0 is part of it as it must be the last
+		 * one written.
+		 */
+		for (i = start_dword + dword_count - 1; i >= start_dword ;i--) {
+			uint64_t dw = ((uint64_t *)new_data)[i - start_dword];
+			__xive_regw(x, dreg0 + i * 8, dreg0x + i, dw, NULL);
+		}
+
+		/* Write data0 register to trigger the update if word 0 wasn't
+		 * written above
+		 */
+		if (start_dword > 0)
+			__xive_regw(x, dreg0, dreg0x, dval0, NULL);
+
+		/* This may not be necessary for light updates (it's possible
+		 * that a sync in sufficient, TBD). Ensure the above is
+		 * complete and check the status of the watch.
+		 */
+		status = __xive_regr(x, sreg, sregx, NULL);
+
+		/* Bits FULL and CONFLICT are in the same position in
+		 * EQC and VPC
+		 */
+		if (!(status & VC_EQC_CWATCH_FULL) ||
+		    !(status & VC_EQC_CWATCH_CONFLICT))
+			break;
+		if (!synchronous)
+			return OPAL_BUSY;
+
+		/* XXX Add timeout ? */
+	}
+
+	/* Perform a scrub with "want_invalidate" set to false to push the
+	 * cache updates to memory as well
+	 */
+	return __xive_cache_scrub(x, ctype, block, idx, false, false);
+}
+
+static int64_t xive_eqc_cache_update(struct xive *x, uint64_t block,
+				     uint64_t idx, uint32_t start_dword,
+				     uint32_t dword_count, void *new_data,
+				     bool light_watch, bool synchronous)
+{
+	return __xive_cache_watch(x, xive_cache_eqc, block, idx,
+				  start_dword, dword_count,
+				  new_data, light_watch, synchronous);
+}
+
+static int64_t xive_vpc_cache_update(struct xive *x, uint64_t block,
+				     uint64_t idx, uint32_t start_dword,
+				     uint32_t dword_count, void *new_data,
+				     bool light_watch, bool synchronous)
+{
+	return __xive_cache_watch(x, xive_cache_vpc, block, idx,
+				  start_dword, dword_count,
+				  new_data, light_watch, synchronous);
+}
+
+static bool xive_set_vsd(struct xive *x, uint32_t tbl, uint32_t idx, uint64_t v)
+{
+	/* Set VC version */
+	xive_regw(x, VC_VSD_TABLE_ADDR,
+		  SETFIELD(VST_TABLE_SELECT, 0ull, tbl) |
+		  SETFIELD(VST_TABLE_OFFSET, 0ull, idx));
+	if (x->last_reg_error)
+		return false;
+	xive_regw(x, VC_VSD_TABLE_DATA, v);
+	if (x->last_reg_error)
+		return false;
+
+	/* Except for IRQ table, also set PC version */
+	if (tbl == VST_TSEL_IRQ)
+		return true;
+
+	xive_regw(x, PC_VSD_TABLE_ADDR,
+		  SETFIELD(VST_TABLE_SELECT, 0ull, tbl) |
+		  SETFIELD(VST_TABLE_OFFSET, 0ull, idx));
+	if (x->last_reg_error)
+		return false;
+	xive_regw(x, PC_VSD_TABLE_DATA, v);
+	if (x->last_reg_error)
+		return false;
+	return true;
+}
+
+static bool xive_set_local_tables(struct xive *x)
+{
+	uint64_t base, i;
+
+	/* These have to be power of 2 sized */
+	assert(is_pow2(SBE_SIZE));
+	assert(is_pow2(IVT_SIZE));
+
+	/* All tables set as exclusive */
+	base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
+
+	/* Set IVT as direct mode */
+	if (!xive_set_vsd(x, VST_TSEL_IVT, x->block_id, base |
+			  (((uint64_t)x->ivt_base) & VSD_ADDRESS_MASK) |
+			  SETFIELD(VSD_TSIZE, 0ull, ilog2(IVT_SIZE) - 12)))
+		return false;
+
+	/* Set SBE as direct mode */
+	if (!xive_set_vsd(x, VST_TSEL_SBE, x->block_id, base |
+			  (((uint64_t)x->sbe_base) & VSD_ADDRESS_MASK) |
+			  SETFIELD(VSD_TSIZE, 0ull, ilog2(SBE_SIZE) - 12)))
+		return false;
+
+#ifdef USE_INDIRECT
+	/* Set EQDT as indirect mode with 64K subpages */
+	if (!xive_set_vsd(x, VST_TSEL_EQDT, x->block_id, base |
+			  (((uint64_t)x->eq_ind_base) & VSD_ADDRESS_MASK) |
+			  VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull, 4)))
+		return false;
+
+	/* Set VPDT as indirect mode with 64K subpages */
+	if (!xive_set_vsd(x, VST_TSEL_VPDT, x->block_id, base |
+			  (((uint64_t)x->vp_ind_base) & VSD_ADDRESS_MASK) |
+			  VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull, 4)))
+		return false;
+#else
+	/* Set EQDT as direct mode */
+	if (!xive_set_vsd(x, VST_TSEL_EQDT, x->block_id, base |
+			  (((uint64_t)x->eq_base) & VSD_ADDRESS_MASK) |
+			  SETFIELD(VSD_TSIZE, 0ull, ilog2(EQT_SIZE) - 12)))
+		return false;
+
+	/* Set VPDT as direct mode */
+	if (!xive_set_vsd(x, VST_TSEL_VPDT, x->block_id, base |
+			  (((uint64_t)x->vp_base) & VSD_ADDRESS_MASK) |
+			  SETFIELD(VSD_TSIZE, 0ull, ilog2(VPT_SIZE) - 12)))
+		return false;
+#endif
+
+	/* Setup quue overflows */
+	for (i = 0; i < VC_QUEUE_OVF_COUNT; i++) {
+		u64 addr = ((uint64_t)x->q_ovf) + i * 0x10000;
+		u64 cfg, sreg, sregx;
+
+		if (!xive_set_vsd(x, VST_TSEL_IRQ, i, base |
+				  (addr & VSD_ADDRESS_MASK) |
+			  SETFIELD(VSD_TSIZE, 0ull, 4)))
+			return false;
+		sreg = VC_IRQ_CONFIG_IPI +  i * 8;
+		sregx = X_VC_IRQ_CONFIG_IPI + i;
+		cfg = __xive_regr(x, sreg, sregx, NULL);
+		cfg |= VC_IRQ_CONFIG_MEMB_EN;
+		cfg = SETFIELD(VC_IRQ_CONFIG_MEMB_SZ, cfg, 4);
+		__xive_regw(x, sreg, sregx, cfg, NULL);
+	}
+
+	return true;
+}
+
+static bool xive_configure_bars(struct xive *x)
+{
+	uint64_t chip_id = x->chip_id;
+	uint64_t val;
+
+	/* IC BAR */
+	phys_map_get(chip_id, XIVE_IC, 0, (uint64_t *)&x->ic_base, &x->ic_size);
+	val = (uint64_t)x->ic_base | CQ_IC_BAR_VALID;
+	if (IC_PAGE_SIZE == 0x10000) {
+		val |= CQ_IC_BAR_64K;
+		x->ic_shift = 16;
+	} else
+		x->ic_shift = 12;
+	xive_regwx(x, CQ_IC_BAR, val);
+	if (x->last_reg_error)
+		return false;
+
+	/* TM BAR, only configure TM1. Note that this has the same address
+	 * for each chip !!!  Hence we create a fake chip 0 and use that for
+	 * all phys_map_get(XIVE_TM) calls.
+	 */
+	phys_map_get(0, XIVE_TM, 0, (uint64_t *)&x->tm_base, &x->tm_size);
+	val = (uint64_t)x->tm_base | CQ_TM_BAR_VALID;
+	if (TM_PAGE_SIZE == 0x10000) {
+		x->tm_shift = 16;
+		val |= CQ_TM_BAR_64K;
+	} else
+		x->tm_shift = 12;
+	xive_regwx(x, CQ_TM1_BAR, val);
+	if (x->last_reg_error)
+		return false;
+	xive_regwx(x, CQ_TM2_BAR, 0);
+	if (x->last_reg_error)
+		return false;
+
+	/* PC BAR. Clear first, write mask, then write value */
+	phys_map_get(chip_id, XIVE_PC, 0, (uint64_t *)&x->pc_base, &x->pc_size);
+	xive_regwx(x, CQ_PC_BAR, 0);
+	if (x->last_reg_error)
+		return false;
+	val = ~(x->pc_size - 1) & CQ_PC_BARM_MASK;
+	xive_regwx(x, CQ_PC_BARM, val);
+	if (x->last_reg_error)
+		return false;
+	val = (uint64_t)x->pc_base | CQ_PC_BAR_VALID;
+	xive_regwx(x, CQ_PC_BAR, val);
+	if (x->last_reg_error)
+		return false;
+
+	/* VC BAR. Clear first, write mask, then write value */
+	phys_map_get(chip_id, XIVE_VC, 0, (uint64_t *)&x->vc_base, &x->vc_size);
+	xive_regwx(x, CQ_VC_BAR, 0);
+	if (x->last_reg_error)
+		return false;
+	val = ~(x->vc_size - 1) & CQ_VC_BARM_MASK;
+	xive_regwx(x, CQ_VC_BARM, val);
+	if (x->last_reg_error)
+		return false;
+	val = (uint64_t)x->vc_base | CQ_VC_BAR_VALID;
+	xive_regwx(x, CQ_VC_BAR, val);
+	if (x->last_reg_error)
+		return false;
+
+	/* Calculate some MMIO bases in the VC BAR */
+	x->esb_mmio = x->vc_base;
+	x->eq_mmio = x->vc_base + (x->vc_size / VC_MAX_SETS) * VC_ESB_SETS;
+
+	/* Print things out */
+	xive_dbg(x, "IC: %14p [0x%012llx/%d]\n", x->ic_base, x->ic_size,
+		 x->ic_shift);
+	xive_dbg(x, "TM: %14p [0x%012llx/%d]\n", x->tm_base, x->tm_size,
+		 x->tm_shift);
+	xive_dbg(x, "PC: %14p [0x%012llx]\n", x->pc_base, x->pc_size);
+	xive_dbg(x, "VC: %14p [0x%012llx]\n", x->vc_base, x->vc_size);
+
+	return true;
+}
+
+static void xive_dump_mmio(struct xive *x)
+{
+	prlog(PR_DEBUG, " CQ_CFG_PB_GEN = %016llx\n",
+	      in_be64(x->ic_base + CQ_CFG_PB_GEN));
+	prlog(PR_DEBUG, " CQ_MSGSND     = %016llx\n",
+	      in_be64(x->ic_base + CQ_MSGSND));
+}
+
+static bool xive_config_init(struct xive *x)
+{
+	uint64_t val __unused;
+
+	/* Configure PC and VC page sizes and disable Linux trigger mode */
+	xive_regwx(x, CQ_PBI_CTL, CQ_PBI_PC_64K | CQ_PBI_VC_64K | CQ_PBI_FORCE_TM_LOCAL);
+	if (x->last_reg_error)
+		return false;
+
+	/*** The rest can use MMIO ***/
+
+#ifdef USE_INDIRECT
+	/* Enable indirect mode in VC config */
+	val = xive_regr(x, VC_GLOBAL_CONFIG);
+	val |= VC_GCONF_INDIRECT;
+	xive_regw(x, VC_GLOBAL_CONFIG, val);
+#endif
+
+	/* Enable indirect mode in PC config */
+	val = xive_regr(x, PC_GLOBAL_CONFIG);
+#ifdef USE_INDIRECT
+	val |= PC_GCONF_INDIRECT;
+#endif
+	val |= PC_GCONF_CHIPID_OVR;
+	val = SETFIELD(PC_GCONF_CHIPID, val, x->block_id);
+	xive_regw(x, PC_GLOBAL_CONFIG, val);
+	xive_dbg(x, "PC_GLOBAL_CONFIG=%016llx\n", val);
+
+	val = xive_regr(x, PC_TCTXT_CFG);
+#ifdef USE_BLOCK_GROUP_MODE
+	val |= PC_TCTXT_CFG_BLKGRP_EN | PC_TCTXT_CFG_HARD_CHIPID_BLK;
+#endif
+	val |= PC_TCTXT_CHIPID_OVERRIDE;
+	val |= PC_TCTXT_CFG_TARGET_EN;
+	val = SETFIELD(PC_TCTXT_CHIPID, val, x->block_id);
+	val = SETFIELD(PC_TCTXT_INIT_AGE, val, 0x2);
+	val |= PC_TCTXT_CFG_LGS_EN;
+	/* Disable pressure relief as we hijack the field in the VPs */
+	val &= ~PC_TCTXT_CFG_STORE_ACK;
+	xive_regw(x, PC_TCTXT_CFG, val);
+	xive_dbg(x, "PC_TCTXT_CFG=%016llx\n", val);
+
+	val = xive_regr(x, CQ_CFG_PB_GEN);
+	/* 1-block-per-chip mode */
+	val = SETFIELD(CQ_INT_ADDR_OPT, val, 2);
+	xive_regw(x, CQ_CFG_PB_GEN, val);
+
+	/* Enable StoreEOI */
+	val = xive_regr(x, VC_SBC_CONFIG);
+	if (XIVE_CAN_STORE_EOI(x))
+		val |= VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH;
+	else
+		xive_dbg(x, "store EOI is disabled\n");
+
+	val |= VC_SBC_CONF_NO_UPD_PRF;
+	xive_regw(x, VC_SBC_CONFIG, val);
+
+	/* Disable block tracking on Nimbus (we may want to enable
+	 * it on Cumulus later). HW Erratas.
+	 */
+	val = xive_regr(x, PC_TCTXT_TRACK);
+	val &= ~PC_TCTXT_TRACK_EN;
+	xive_regw(x, PC_TCTXT_TRACK, val);
+
+	/* Enable relaxed ordering of trigger forwarding */
+	val = xive_regr(x, VC_AIB_TX_ORDER_TAG2);
+	val |= VC_AIB_TX_ORDER_TAG2_REL_TF;
+	xive_regw(x, VC_AIB_TX_ORDER_TAG2, val);
+
+	/* Enable new END s and u bits for silent escalate */
+	val = xive_regr(x, VC_EQC_CONFIG);
+	val |= VC_EQC_CONF_ENABLE_END_s_BIT;
+	val |= VC_EQC_CONF_ENABLE_END_u_BIT;
+	xive_regw(x, VC_EQC_CONFIG, val);
+
+	/* Disable error reporting in the FIR for info errors
+	 * from the VC.
+	 */
+	xive_regw(x, CQ_FIRMASK_OR, CQ_FIR_VC_INFO_ERROR_0_1);
+
+	/* Mask CI Load and Store to bad location, as IPI trigger
+	 * pages may be mapped to user space, and a read on the
+	 * trigger page causes a checkstop
+	 */
+	xive_regw(x, CQ_FIRMASK_OR, CQ_FIR_PB_RCMDX_CI_ERR1);
+
+	return true;
+}
+
+static bool xive_setup_set_xlate(struct xive *x)
+{
+	unsigned int i;
+
+	/* Configure EDT for ESBs (aka IPIs) */
+	xive_regw(x, CQ_TAR, CQ_TAR_TBL_AUTOINC | CQ_TAR_TSEL_EDT);
+	if (x->last_reg_error)
+		return false;
+	for (i = 0; i < VC_ESB_SETS; i++) {
+		xive_regw(x, CQ_TDR,
+			  /* IPI type */
+			  (1ull << 62) |
+			  /* block ID */
+			  (((uint64_t)x->block_id) << 48) |
+			  /* offset */
+			  (((uint64_t)i) << 32));
+		if (x->last_reg_error)
+			return false;
+	}
+
+	/* Configure EDT for ENDs (aka EQs) */
+	for (i = 0; i < VC_END_SETS; i++) {
+		xive_regw(x, CQ_TDR,
+			  /* EQ type */
+			  (2ull << 62) |
+			  /* block ID */
+			  (((uint64_t)x->block_id) << 48) |
+			  /* offset */
+			  (((uint64_t)i) << 32));
+		if (x->last_reg_error)
+			return false;
+	}
+
+	/* Configure VDT */
+	xive_regw(x, CQ_TAR, CQ_TAR_TBL_AUTOINC | CQ_TAR_TSEL_VDT);
+	if (x->last_reg_error)
+		return false;
+	for (i = 0; i < PC_MAX_SETS; i++) {
+		xive_regw(x, CQ_TDR,
+			  /* Valid bit */
+			  (1ull << 63) |
+			  /* block ID */
+			  (((uint64_t)x->block_id) << 48) |
+			  /* offset */
+			  (((uint64_t)i) << 32));
+		if (x->last_reg_error)
+			return false;
+	}
+	return true;
+}
+
+static bool xive_prealloc_tables(struct xive *x)
+{
+	uint32_t i __unused, vp_init_count __unused, vp_init_base __unused;
+	uint32_t pbase __unused, pend __unused;
+	uint64_t al __unused;
+
+	/* ESB/SBE has 4 entries per byte */
+	x->sbe_base = local_alloc(x->chip_id, SBE_SIZE, SBE_SIZE);
+	if (!x->sbe_base) {
+		xive_err(x, "Failed to allocate SBE\n");
+		return false;
+	}
+	/* SBEs are initialized to 0b01 which corresponds to "ints off" */
+	memset(x->sbe_base, 0x55, SBE_SIZE);
+	xive_dbg(x, "SBE at %p size 0x%x\n", x->sbe_base, IVT_SIZE);
+
+	/* EAS/IVT entries are 8 bytes */
+	x->ivt_base = local_alloc(x->chip_id, IVT_SIZE, IVT_SIZE);
+	if (!x->ivt_base) {
+		xive_err(x, "Failed to allocate IVT\n");
+		return false;
+	}
+	/* We clear the entries (non-valid). They will be initialized
+	 * when actually used
+	 */
+	memset(x->ivt_base, 0, IVT_SIZE);
+	xive_dbg(x, "IVT at %p size 0x%x\n", x->ivt_base, IVT_SIZE);
+
+#ifdef USE_INDIRECT
+	/* Indirect EQ table. (XXX Align to 64K until I figure out the
+	 * HW requirements)
+	 */
+	al = (IND_EQ_TABLE_SIZE + 0xffff) & ~0xffffull;
+	x->eq_ind_base = local_alloc(x->chip_id, al, al);
+	if (!x->eq_ind_base) {
+		xive_err(x, "Failed to allocate EQ indirect table\n");
+		return false;
+	}
+	memset(x->eq_ind_base, 0, al);
+	xive_dbg(x, "EQi at %p size 0x%llx\n", x->eq_ind_base, al);
+	x->eq_ind_count = IND_EQ_TABLE_SIZE / 8;
+
+	/* Indirect VP table. (XXX Align to 64K until I figure out the
+	 * HW requirements)
+	 */
+	al = (IND_VP_TABLE_SIZE + 0xffff) & ~0xffffull;
+	x->vp_ind_base = local_alloc(x->chip_id, al, al);
+	if (!x->vp_ind_base) {
+		xive_err(x, "Failed to allocate VP indirect table\n");
+		return false;
+	}
+	xive_dbg(x, "VPi at %p size 0x%llx\n", x->vp_ind_base, al);
+	x->vp_ind_count = IND_VP_TABLE_SIZE / 8;
+	memset(x->vp_ind_base, 0, al);
+
+	/* Populate/initialize VP/EQs indirect backing */
+#ifdef USE_BLOCK_GROUP_MODE
+	vp_init_count = INITIAL_VP_COUNT;
+	vp_init_base = INITIAL_VP_BASE;
+#else
+	vp_init_count = x->block_id == 0 ? INITIAL_BLK0_VP_COUNT : 0;
+	vp_init_base = INITIAL_BLK0_VP_BASE;
+#endif
+
+	/* Allocate pages for some VPs in indirect mode */
+	pbase = vp_init_base / VP_PER_PAGE;
+	pend  = (vp_init_base + vp_init_count) / VP_PER_PAGE;
+
+	xive_dbg(x, "Allocating pages %d to %d of VPs (for %d VPs)\n",
+		 pbase, pend, vp_init_count);
+	for (i = pbase; i <= pend; i++) {
+		void *page;
+		u64 vsd;
+
+		/* Indirect entries have a VSD format */
+		page = local_alloc(x->chip_id, 0x10000, 0x10000);
+		if (!page) {
+			xive_err(x, "Failed to allocate VP page\n");
+			return false;
+		}
+		xive_dbg(x, "VP%d at %p size 0x%x\n", i, page, 0x10000);
+		memset(page, 0, 0x10000);
+		vsd = ((uint64_t)page) & VSD_ADDRESS_MASK;
+
+		vsd |= SETFIELD(VSD_TSIZE, 0ull, 4);
+		vsd |= SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
+		vsd |= VSD_FIRMWARE;
+		x->vp_ind_base[i] = vsd;
+	}
+
+#else /* USE_INDIRECT */
+
+	/* Allocate direct EQ and VP tables */
+	x->eq_base = local_alloc(x->chip_id, EQT_SIZE, EQT_SIZE);
+	if (!x->eq_base) {
+		xive_err(x, "Failed to allocate EQ table\n");
+		return false;
+	}
+	memset(x->eq_base, 0, EQT_SIZE);
+	x->vp_base = local_alloc(x->chip_id, VPT_SIZE, VPT_SIZE);
+	if (!x->vp_base) {
+		xive_err(x, "Failed to allocate VP table\n");
+		return false;
+	}
+	/* We clear the entries (non-valid). They will be initialized
+	 * when actually used
+	 */
+	memset(x->vp_base, 0, VPT_SIZE);
+#endif /* USE_INDIRECT */
+
+	/* Allocate the queue overflow pages */
+	x->q_ovf = local_alloc(x->chip_id, VC_QUEUE_OVF_COUNT * 0x10000, 0x10000);
+	if (!x->q_ovf) {
+		xive_err(x, "Failed to allocate queue overflow\n");
+		return false;
+	}
+	return true;
+}
+
+#ifdef USE_INDIRECT
+static void xive_add_provisioning_properties(void)
+{
+	uint32_t chips[XIVE_MAX_CHIPS];
+	uint32_t i, count;
+
+	dt_add_property_cells(xive_dt_node,
+			      "ibm,xive-provision-page-size", 0x10000);
+
+#ifdef USE_BLOCK_GROUP_MODE
+	count = 1 << xive_chips_alloc_bits;
+#else
+	count = xive_block_count;
+#endif
+	for (i = 0; i < count; i++)
+		chips[i] = xive_block_to_chip[i];
+	dt_add_property(xive_dt_node, "ibm,xive-provision-chips",
+			chips, 4 * count);
+}
+#else
+static inline void xive_add_provisioning_properties(void) { }
+#endif
+
+static void xive_create_mmio_dt_node(struct xive *x)
+{
+	uint64_t tb = (uint64_t)x->tm_base;
+	uint32_t stride = 1u << x->tm_shift;
+
+	xive_dt_node = dt_new_addr(dt_root, "interrupt-controller", tb);
+	assert(xive_dt_node);
+
+	dt_add_property_u64s(xive_dt_node, "reg",
+			     tb + 0 * stride, stride,
+			     tb + 1 * stride, stride,
+			     tb + 2 * stride, stride,
+			     tb + 3 * stride, stride);
+
+	dt_add_property_strings(xive_dt_node, "compatible",
+				"ibm,opal-xive-pe", "ibm,opal-intc");
+
+	dt_add_property_cells(xive_dt_node, "ibm,xive-eq-sizes",
+			      12, 16, 21, 24);
+
+	dt_add_property_cells(xive_dt_node, "ibm,xive-#priorities", 8);
+	dt_add_property(xive_dt_node, "single-escalation-support", NULL, 0);
+
+	xive_add_provisioning_properties();
+}
+
+static void xive_setup_forward_ports(struct xive *x, struct proc_chip *remote_chip)
+{
+	struct xive *remote_xive = remote_chip->xive;
+	uint64_t base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_FORWARD);
+	uint32_t remote_id = remote_xive->block_id;
+	uint64_t nport;
+
+	/* ESB(SBE), EAS(IVT) and END(EQ) point to the notify port */
+	nport = ((uint64_t)remote_xive->ic_base) + (1ul << remote_xive->ic_shift);
+	if (!xive_set_vsd(x, VST_TSEL_IVT, remote_id, base | nport))
+		goto error;
+	if (!xive_set_vsd(x, VST_TSEL_SBE, remote_id, base | nport))
+		goto error;
+	if (!xive_set_vsd(x, VST_TSEL_EQDT, remote_id, base | nport))
+		goto error;
+
+	/* NVT/VPD points to the remote NVT MMIO sets */
+	if (!xive_set_vsd(x, VST_TSEL_VPDT, remote_id,
+			  base | ((uint64_t)remote_xive->pc_base) |
+			  SETFIELD(VSD_TSIZE, 0ull, ilog2(x->pc_size) - 12)))
+		goto error;
+
+	return;
+
+ error:
+	xive_err(x, "Failure configuring forwarding ports\n");
+}
+
+static void late_init_one_xive(struct xive *x)
+{
+	struct proc_chip *chip;
+
+	/* We need to setup the cross-chip forward ports. Let's
+	 * iterate all chip and set them up accordingly
+	 */
+	for_each_chip(chip) {
+		/* We skip ourselves or chips without a xive */
+		if (chip->xive == x || !chip->xive)
+			continue;
+
+		/* Setup our forward ports to that chip */
+		xive_setup_forward_ports(x, chip);
+	}
+}
+
+static bool xive_check_ipi_free(struct xive *x, uint32_t irq, uint32_t count)
+{
+	uint32_t i, idx = GIRQ_TO_IDX(irq);
+
+	for (i = 0; i < count; i++)
+		if (bitmap_tst_bit(*x->ipi_alloc_map, idx + i))
+			return false;
+	return true;
+}
+
+static uint32_t xive_p9_alloc_hw_irqs(uint32_t chip_id, uint32_t count,
+				      uint32_t align)
+{
+	struct proc_chip *chip = get_chip(chip_id);
+	struct xive *x;
+	uint32_t base, i;
+
+	assert(chip);
+	assert(is_pow2(align));
+
+	x = chip->xive;
+	assert(x);
+
+	lock(&x->lock);
+
+	/* Allocate the HW interrupts */
+	base = x->int_hw_bot - count;
+	base &= ~(align - 1);
+	if (base < x->int_ipi_top) {
+		xive_err(x,
+			 "HW alloc request for %d interrupts aligned to %d failed\n",
+			 count, align);
+		unlock(&x->lock);
+		return XIVE_IRQ_ERROR;
+	}
+	if (!xive_check_ipi_free(x, base, count)) {
+		xive_err(x, "HWIRQ boot allocator request overlaps dynamic allocator\n");
+		unlock(&x->lock);
+		return XIVE_IRQ_ERROR;
+	}
+
+	x->int_hw_bot = base;
+
+	/* Initialize the corresponding IVT entries to sane defaults,
+	 * IE entry is valid, not routed and masked, EQ data is set
+	 * to the GIRQ number.
+	 */
+	for (i = 0; i < count; i++) {
+		struct xive_ive *ive = xive_get_ive(x, base + i);
+
+		ive->w = IVE_VALID | IVE_MASKED | SETFIELD(IVE_EQ_DATA, 0ul, base + i);
+	}
+
+	unlock(&x->lock);
+	return base;
+}
+
+static uint32_t xive_p9_alloc_ipi_irqs(uint32_t chip_id, uint32_t count,
+				       uint32_t align)
+{
+	struct proc_chip *chip = get_chip(chip_id);
+	struct xive *x;
+	uint32_t base, i;
+
+	assert(chip);
+	assert(is_pow2(align));
+
+	x = chip->xive;
+	assert(x);
+
+	lock(&x->lock);
+
+	/* Allocate the IPI interrupts */
+	base = x->int_ipi_top + (align - 1);
+	base &= ~(align - 1);
+	if (base >= x->int_hw_bot) {
+		xive_err(x,
+			 "IPI alloc request for %d interrupts aligned to %d failed\n",
+			 count, align);
+		unlock(&x->lock);
+		return XIVE_IRQ_ERROR;
+	}
+	if (!xive_check_ipi_free(x, base, count)) {
+		xive_err(x, "IPI boot allocator request overlaps dynamic allocator\n");
+		unlock(&x->lock);
+		return XIVE_IRQ_ERROR;
+	}
+
+	x->int_ipi_top = base + count;
+
+	/* Initialize the corresponding IVT entries to sane defaults,
+	 * IE entry is valid, not routed and masked, EQ data is set
+	 * to the GIRQ number.
+	 */
+	for (i = 0; i < count; i++) {
+		struct xive_ive *ive = xive_get_ive(x, base + i);
+
+		ive->w = IVE_VALID | IVE_MASKED |
+			SETFIELD(IVE_EQ_DATA, 0ul, base + i);
+	}
+
+	unlock(&x->lock);
+	return base;
+}
+
+static void *xive_p9_get_trigger_port(uint32_t girq)
+{
+	uint32_t idx = GIRQ_TO_IDX(girq);
+	struct xive *x;
+
+	/* Find XIVE on which the IVE resides */
+	x = xive_from_isn(girq);
+	if (!x)
+		return NULL;
+
+	if (GIRQ_IS_ESCALATION(girq)) {
+		/* There is no trigger page for escalation interrupts */
+		return NULL;
+	} else {
+		/* Make sure it's an IPI on that chip */
+		if (girq < x->int_base ||
+		    girq >= x->int_ipi_top)
+			return NULL;
+
+		return x->esb_mmio + idx * 0x20000;
+	}
+}
+
+static uint64_t xive_p9_get_notify_port(uint32_t chip_id, uint32_t ent)
+{
+	struct proc_chip *chip = get_chip(chip_id);
+	struct xive *x;
+	uint32_t offset = 0;
+
+	assert(chip);
+	x = chip->xive;
+	assert(x);
+
+	/* This is where we can assign a different HW queue to a different
+	 * source by offsetting into the cache lines of the notify port
+	 *
+	 * For now we keep it very basic, this will have to be looked at
+	 * again on real HW with some proper performance analysis.
+	 *
+	 * Here's what Florian says on the matter:
+	 *
+	 * <<
+	 * The first 2k of the notify port page can all be used for PCIe triggers
+	 *
+	 * However the idea would be that we try to use the first 4 cache lines to
+	 * balance the PCIe Interrupt requests to use the least used snoop buses
+	 * (we went from 2 to 4 snoop buses for P9). snoop 0 is heavily used
+	 * (I think TLBIs are using that in addition to the normal addresses),
+	 * snoop 3 is used for all Int commands, so I think snoop 2 (CL 2 in the
+	 * page) is the least used overall. So we probably should that one for
+	 * the Int commands from PCIe.
+	 *
+	 * In addition, our EAS cache supports hashing to provide "private" cache
+	 * areas for the PHBs in the shared 1k EAS cache. This allows e.g. to avoid
+	 * that one "thrashing" PHB thrashes the EAS cache for everyone, or provide
+	 * a PHB with a private area that would allow high cache hits in case of a
+	 * device using very few interrupts. The hashing is based on the offset within
+	 * the cache line. So using that, you can e.g. set the EAS cache up so that
+	 * IPIs use 512 entries, the x16 PHB uses 256 entries and the x8 PHBs 128
+	 * entries each - or IPIs using all entries and sharing with PHBs, so PHBs
+	 * would use 512 entries and 256 entries respectively.
+	 *
+	 * This is a tuning we would probably do later in the lab, but as a "prep"
+	 * we should set up the different PHBs such that they are using different
+	 * 8B-aligned offsets within the cache line, so e.g.
+	 * PH4_0  addr        0x100        (CL 2 DW0
+	 * PH4_1  addr        0x108        (CL 2 DW1)
+	 * PH4_2  addr        0x110        (CL 2 DW2)
+	 * etc.
+	 * >>
+	 *
+	 * I'm using snoop1 for PHB0 and snoop2 for everybody else.
+	 */
+	switch(ent) {
+	case XIVE_HW_SRC_PHBn(0):
+		offset = 0x100;
+		break;
+	case XIVE_HW_SRC_PHBn(1):
+		offset = 0x208;
+		break;
+	case XIVE_HW_SRC_PHBn(2):
+		offset = 0x210;
+		break;
+	case XIVE_HW_SRC_PHBn(3):
+		offset = 0x218;
+		break;
+	case XIVE_HW_SRC_PHBn(4):
+		offset = 0x220;
+		break;
+	case XIVE_HW_SRC_PHBn(5):
+		offset = 0x228;
+		break;
+	case XIVE_HW_SRC_PSI:
+		offset = 0x230;
+		break;
+	default:
+		assert(false);
+		return 0;
+	}
+
+	/* Notify port is the second page of the IC BAR */
+	return ((uint64_t)x->ic_base) + (1ul << x->ic_shift) + offset;
+}
+
+/* Manufacture the powerbus packet bits 32:63 */
+static __attrconst uint32_t xive_p9_get_notify_base(uint32_t girq)
+{
+	return (GIRQ_TO_BLK(girq) << 28)  | GIRQ_TO_IDX(girq);
+}
+
+static bool xive_get_irq_targetting(uint32_t isn, uint32_t *out_target,
+				    uint8_t *out_prio, uint32_t *out_lirq)
+{
+	struct xive_ive *ive;
+	struct xive *x, *eq_x;
+	struct xive_eq *eq;
+	uint32_t eq_blk, eq_idx;
+	uint32_t vp_blk __unused, vp_idx;
+	uint32_t prio, server;
+	bool is_escalation = GIRQ_IS_ESCALATION(isn);
+
+	/* Find XIVE on which the IVE resides */
+	x = xive_from_isn(isn);
+	if (!x)
+		return false;
+	/* Grab the IVE */
+	ive = xive_get_ive(x, isn);
+	if (!ive)
+		return false;
+	if (!(ive->w & IVE_VALID) && !is_escalation) {
+		xive_err(x, "ISN %x lead to invalid IVE !\n", isn);
+		return false;
+	}
+
+	if (out_lirq)
+		*out_lirq = GETFIELD(IVE_EQ_DATA, ive->w);
+
+	/* Find the EQ and its xive instance */
+	eq_blk = GETFIELD(IVE_EQ_BLOCK, ive->w);
+	eq_idx = GETFIELD(IVE_EQ_INDEX, ive->w);
+	eq_x = xive_from_vc_blk(eq_blk);
+
+	/* This can fail if the interrupt hasn't been initialized yet
+	 * but it should also be masked, so fail silently
+	 */
+	if (!eq_x)
+		goto pick_default;
+	eq = xive_get_eq(eq_x, eq_idx);
+	if (!eq)
+		goto pick_default;
+
+	/* XXX Check valid and format 0 */
+
+	/* No priority conversion, return the actual one ! */
+	if (ive->w & IVE_MASKED)
+		prio = 0xff;
+	else
+		prio = GETFIELD(EQ_W7_F0_PRIORITY, eq->w7);
+	if (out_prio)
+		*out_prio = prio;
+
+	vp_blk = GETFIELD(EQ_W6_NVT_BLOCK, eq->w6);
+	vp_idx = GETFIELD(EQ_W6_NVT_INDEX, eq->w6);
+	server = VP2PIR(vp_blk, vp_idx);
+
+	if (out_target)
+		*out_target = server;
+
+	xive_vdbg(eq_x, "EQ info for ISN %x: prio=%d, server=0x%x (VP %x/%x)\n",
+		  isn, prio, server, vp_blk, vp_idx);
+	return true;
+
+pick_default:
+	xive_vdbg(eq_x, "EQ info for ISN %x: Using masked defaults\n", isn);
+
+	if (out_prio)
+		*out_prio = 0xff;
+	/* Pick a random default, me will be fine ... */
+	if (out_target)
+		*out_target = mfspr(SPR_PIR);
+	return true;
+}
+
+static inline bool xive_eq_for_target(uint32_t target, uint8_t prio,
+				      uint32_t *out_eq_blk,
+				      uint32_t *out_eq_idx)
+{
+	struct xive *x;
+	struct xive_vp *vp;
+	uint32_t vp_blk, vp_idx;
+	uint32_t eq_blk, eq_idx;
+
+	if (prio > 7)
+		return false;
+
+	/* Get the VP block/index from the target word */
+	if (!xive_decode_vp(target, &vp_blk, &vp_idx, NULL, NULL))
+		return false;
+
+	/* Grab the target VP's XIVE */
+	x = xive_from_pc_blk(vp_blk);
+	if (!x)
+		return false;
+
+	/* Find the VP structrure where we stashed the EQ number */
+	vp = xive_get_vp(x, vp_idx);
+	if (!vp)
+		return false;
+
+	/* Grab it, it's in the pressure relief interrupt field,
+	 * top 4 bits are the block (word 1).
+	 */
+	eq_blk = vp->w1 >> 28;
+	eq_idx = vp->w1 & 0x0fffffff;
+
+	/* Currently the EQ block and VP block should be the same */
+	if (eq_blk != vp_blk) {
+		xive_err(x, "eq_blk != vp_blk (%d vs. %d) for target 0x%08x/%d\n",
+			 eq_blk, vp_blk, target, prio);
+		assert(false);
+	}
+
+	if (out_eq_blk)
+		*out_eq_blk = eq_blk;
+	if (out_eq_idx)
+		*out_eq_idx = eq_idx + prio;
+
+	return true;
+}
+
+static int64_t xive_set_irq_targetting(uint32_t isn, uint32_t target,
+				       uint8_t prio, uint32_t lirq,
+				       bool synchronous)
+{
+	struct xive *x;
+	struct xive_ive *ive;
+	uint32_t eq_blk, eq_idx;
+	bool is_escalation = GIRQ_IS_ESCALATION(isn);
+	uint64_t new_ive;
+	int64_t rc;
+
+	/* Find XIVE on which the IVE resides */
+	x = xive_from_isn(isn);
+	if (!x)
+		return OPAL_PARAMETER;
+	/* Grab the IVE */
+	ive = xive_get_ive(x, isn);
+	if (!ive)
+		return OPAL_PARAMETER;
+	if (!(ive->w & IVE_VALID) && !is_escalation) {
+		xive_err(x, "ISN %x lead to invalid IVE !\n", isn);
+		return OPAL_PARAMETER;
+	}
+
+	lock(&x->lock);
+
+	/* If using emulation mode, fixup prio to the only supported one */
+	if (xive_mode == XIVE_MODE_EMU && prio != 0xff)
+		prio = XIVE_EMULATION_PRIO;
+
+	/* Read existing IVE */
+	new_ive = ive->w;
+
+	/* Are we masking ? */
+	if (prio == 0xff && !is_escalation) {
+		new_ive |= IVE_MASKED;
+		xive_vdbg(x, "ISN %x masked !\n", isn);
+
+		/* Put prio 7 in the EQ */
+		prio = 7;
+	} else {
+		/* Unmasking */
+		new_ive = ive->w & ~IVE_MASKED;
+		xive_vdbg(x, "ISN %x unmasked !\n", isn);
+
+		/* For normal interrupt sources, keep track of which ones
+		 * we ever enabled since the last reset
+		 */
+		if (!is_escalation)
+			bitmap_set_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn));
+	}
+
+	/* If prio isn't 0xff, re-target the IVE. First find the EQ
+	 * correponding to the target
+	 */
+	if (prio != 0xff) {
+		if (!xive_eq_for_target(target, prio, &eq_blk, &eq_idx)) {
+			xive_err(x, "Can't find EQ for target/prio 0x%x/%d\n",
+				 target, prio);
+			unlock(&x->lock);
+			return OPAL_PARAMETER;
+		}
+
+		/* Try to update it atomically to avoid an intermediary
+		 * stale state
+		 */
+		new_ive = SETFIELD(IVE_EQ_BLOCK, new_ive, eq_blk);
+		new_ive = SETFIELD(IVE_EQ_INDEX, new_ive, eq_idx);
+	}
+	new_ive = SETFIELD(IVE_EQ_DATA, new_ive, lirq);
+
+	xive_vdbg(x,"ISN %x routed to eq %x/%x lirq=%08x IVE=%016llx !\n",
+		  isn, eq_blk, eq_idx, lirq, new_ive);
+
+	/* Updating the cache differs between real IVEs and escalation
+	 * IVEs inside an EQ
+	 */
+	if (is_escalation) {
+		rc = xive_eqc_cache_update(x, x->block_id, GIRQ_TO_IDX(isn),
+					   2, 1, &new_ive, true, synchronous);
+	} else {
+		sync();
+		ive->w = new_ive;
+		rc = xive_ivc_scrub(x, x->block_id, GIRQ_TO_IDX(isn));
+	}
+
+	unlock(&x->lock);
+	return rc;
+}
+
+static int64_t xive_source_get_xive(struct irq_source *is __unused,
+				    uint32_t isn, uint16_t *server,
+				    uint8_t *prio)
+{
+	uint32_t target_id;
+
+	if (xive_get_irq_targetting(isn, &target_id, prio, NULL)) {
+		*server = target_id << 2;
+		return OPAL_SUCCESS;
+	} else
+		return OPAL_PARAMETER;
+}
+
+static void xive_update_irq_mask(struct xive_src *s, uint32_t idx, bool masked)
+{
+	void *mmio_base = s->esb_mmio + (1ul << s->esb_shift) * idx;
+	uint32_t offset;
+
+	/* XXX FIXME: A quick mask/umask can make us shoot an interrupt
+	 * more than once to a queue. We need to keep track better
+	 */
+	if (s->flags & XIVE_SRC_EOI_PAGE1)
+		mmio_base += 1ull << (s->esb_shift - 1);
+	if (masked)
+		offset = 0xd00; /* PQ = 01 */
+	else
+		offset = 0xc00; /* PQ = 00 */
+
+	if (s->flags & XIVE_SRC_SHIFT_BUG)
+		offset <<= 4;
+
+	in_be64(mmio_base + offset);
+}
+
+static int64_t xive_sync(struct xive *x)
+{
+	uint64_t r;
+	void *p;
+
+	lock(&x->lock);
+
+	/* Second 2K range of second page */
+	p = x->ic_base + (1 << x->ic_shift) + 0x800;
+
+	/* TODO: Make this more fine grained */
+	out_be64(p + (10 << 7), 0); /* Sync OS escalations */
+	out_be64(p + (11 << 7), 0); /* Sync Hyp escalations */
+	out_be64(p + (12 << 7), 0); /* Sync Redistribution */
+	out_be64(p + ( 8 << 7), 0); /* Sync IPI */
+	out_be64(p + ( 9 << 7), 0); /* Sync HW */
+
+#define SYNC_MASK                \
+	(VC_EQC_CONF_SYNC_IPI  | \
+	 VC_EQC_CONF_SYNC_HW   | \
+	 VC_EQC_CONF_SYNC_ESC1 | \
+	 VC_EQC_CONF_SYNC_ESC2 | \
+	 VC_EQC_CONF_SYNC_REDI)
+
+	/* XXX Add timeout */
+	for (;;) {
+		r = xive_regrx(x, VC_EQC_CONFIG);
+		if ((r & SYNC_MASK) == SYNC_MASK)
+			break;
+		cpu_relax();
+	}
+	xive_regw(x, VC_EQC_CONFIG, r & ~SYNC_MASK);
+
+	/* Workaround HW issue, read back before allowing a new sync */
+	xive_regr(x, VC_GLOBAL_CONFIG);
+
+	unlock(&x->lock);
+
+	return 0;
+}
+
+static int64_t __xive_set_irq_config(struct irq_source *is, uint32_t girq,
+				     uint64_t vp, uint8_t prio, uint32_t lirq,
+				     bool update_esb, bool sync)
+{
+	struct xive_src *s = container_of(is, struct xive_src, is);
+	uint32_t old_target, vp_blk;
+	u8 old_prio;
+	int64_t rc;
+
+	/* Grab existing target */
+	if (!xive_get_irq_targetting(girq, &old_target, &old_prio, NULL))
+		return OPAL_PARAMETER;
+
+	/* Let XIVE configure the EQ. We do the update without the
+	 * synchronous flag, thus a cache update failure will result
+	 * in us returning OPAL_BUSY
+	 */
+	rc = xive_set_irq_targetting(girq, vp, prio, lirq, false);
+	if (rc)
+		return rc;
+
+	/* Do we need to update the mask ? */
+	if (old_prio != prio && (old_prio == 0xff || prio == 0xff)) {
+		/* The source has special variants of masking/unmasking */
+		if (s->orig_ops && s->orig_ops->set_xive) {
+			/* We don't pass as server on source ops ! Targetting
+			 * is handled by the XIVE
+			 */
+			rc = s->orig_ops->set_xive(is, girq, 0, prio);
+		} else if (update_esb) {
+			/* Ensure it's enabled/disabled in the source
+			 * controller
+			 */
+			xive_update_irq_mask(s, girq - s->esb_base,
+					     prio == 0xff);
+		}
+	}
+
+	/*
+	 * Synchronize the source and old target XIVEs to ensure that
+	 * all pending interrupts to the old target have reached their
+	 * respective queue.
+	 *
+	 * WARNING: This assumes the VP and it's queues are on the same
+	 *          XIVE instance !
+	 */
+	if (!sync)
+		return OPAL_SUCCESS;
+	xive_sync(s->xive);
+	if (xive_decode_vp(old_target, &vp_blk, NULL, NULL, NULL)) {
+		struct xive *x = xive_from_pc_blk(vp_blk);
+		if (x)
+			xive_sync(x);
+	}
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t xive_set_irq_config(uint32_t girq, uint64_t vp, uint8_t prio,
+				   uint32_t lirq, bool update_esb)
+{
+	struct irq_source *is = irq_find_source(girq);
+
+	return __xive_set_irq_config(is, girq, vp, prio, lirq, update_esb,
+				     true);
+}
+
+static int64_t xive_source_set_xive(struct irq_source *is,
+				    uint32_t isn, uint16_t server, uint8_t prio)
+{
+	/*
+	 * WARNING: There is an inherent race with the use of the
+	 * mask bit in the EAS/IVT. When masked, interrupts are "lost"
+	 * but their P/Q bits are still set. So when unmasking, one has
+	 * to check the P bit and possibly trigger a resend.
+	 *
+	 * We "deal" with it by relying on the fact that the OS will
+	 * lazy disable MSIs. Thus mask will only be called if the
+	 * interrupt occurred while already logically masked. Thus
+	 * losing subsequent occurrences is of no consequences, we just
+	 * need to "cleanup" P and Q when unmasking.
+	 *
+	 * This needs to be documented in the OPAL APIs
+	 */
+
+	/* Unmangle server */
+	server >>= 2;
+
+	/* Set logical irq to match isn */
+	return __xive_set_irq_config(is, isn, server, prio, isn, true, true);
+}
+
+static void __xive_source_eoi(struct irq_source *is, uint32_t isn)
+{
+	struct xive_src *s = container_of(is, struct xive_src, is);
+	uint32_t idx = isn - s->esb_base;
+	struct xive_ive *ive;
+	void *mmio_base;
+	uint64_t eoi_val;
+
+	/* Grab the IVE */
+	ive = s->xive->ivt_base;
+	if (!ive)
+		return;
+	ive += GIRQ_TO_IDX(isn);
+
+	/* XXX To fix the races with mask/unmask potentially causing
+	 * multiple queue entries, we need to keep track of EOIs here,
+	 * before the masked test below
+	 */
+
+	/* If it's invalid or masked, don't do anything */
+	if ((ive->w & IVE_MASKED) || !(ive->w & IVE_VALID))
+		return;
+
+	/* Grab MMIO control address for that ESB */
+	mmio_base = s->esb_mmio + (1ull << s->esb_shift) * idx;
+
+	/* If the XIVE supports the new "store EOI facility, use it */
+	if (s->flags & XIVE_SRC_STORE_EOI)
+		out_be64(mmio_base + 0x400, 0);
+	else {
+		uint64_t offset;
+
+		/* Otherwise for EOI, we use the special MMIO that does
+		 * a clear of both P and Q and returns the old Q.
+		 *
+		 * This allows us to then do a re-trigger if Q was set
+		 * rather than synthetizing an interrupt in software
+		 */
+		if (s->flags & XIVE_SRC_EOI_PAGE1)
+			mmio_base += 1ull << (s->esb_shift - 1);
+
+		/* LSIs don't need anything special, just EOI */
+		if (s->flags & XIVE_SRC_LSI)
+			in_be64(mmio_base);
+		else {
+			offset = 0xc00;
+			if (s->flags & XIVE_SRC_SHIFT_BUG)
+				offset <<= 4;
+			eoi_val = in_be64(mmio_base + offset);
+			xive_vdbg(s->xive, "ISN: %08x EOI=%llx\n",
+				  isn, eoi_val);
+			if (!(eoi_val & 1))
+				return;
+
+			/* Re-trigger always on page0 or page1 ? */
+			out_be64(mmio_base, 0);
+		}
+	}
+}
+
+static void xive_source_eoi(struct irq_source *is, uint32_t isn)
+{
+	struct xive_src *s = container_of(is, struct xive_src, is);
+
+	if (s->orig_ops && s->orig_ops->eoi)
+		s->orig_ops->eoi(is, isn);
+	else
+		__xive_source_eoi(is, isn);
+}
+
+static void xive_source_interrupt(struct irq_source *is, uint32_t isn)
+{
+	struct xive_src *s = container_of(is, struct xive_src, is);
+
+	if (!s->orig_ops || !s->orig_ops->interrupt)
+		return;
+	s->orig_ops->interrupt(is, isn);
+}
+
+static uint64_t xive_source_attributes(struct irq_source *is, uint32_t isn)
+{
+	struct xive_src *s = container_of(is, struct xive_src, is);
+
+	if (!s->orig_ops || !s->orig_ops->attributes)
+		return IRQ_ATTR_TARGET_LINUX;
+	return s->orig_ops->attributes(is, isn);
+}
+
+static char *xive_source_name(struct irq_source *is, uint32_t isn)
+{
+	struct xive_src *s = container_of(is, struct xive_src, is);
+
+	if (!s->orig_ops || !s->orig_ops->name)
+		return NULL;
+	return s->orig_ops->name(is, isn);
+}
+
+static const struct irq_source_ops xive_irq_source_ops = {
+	.get_xive = xive_source_get_xive,
+	.set_xive = xive_source_set_xive,
+	.eoi = xive_source_eoi,
+	.interrupt = xive_source_interrupt,
+	.attributes = xive_source_attributes,
+	.name = xive_source_name,
+};
+
+static void __xive_register_source(struct xive *x, struct xive_src *s,
+				   uint32_t base, uint32_t count,
+				   uint32_t shift, void *mmio, uint32_t flags,
+				   bool secondary, void *data,
+				   const struct irq_source_ops *orig_ops)
+{
+	s->esb_base = base;
+	s->esb_shift = shift;
+	s->esb_mmio = mmio;
+	s->flags = flags;
+	s->orig_ops = orig_ops;
+	s->xive = x;
+	s->is.start = base;
+	s->is.end = base + count;
+	s->is.ops = &xive_irq_source_ops;
+	s->is.data = data;
+
+	__register_irq_source(&s->is, secondary);
+}
+
+static void xive_p9_register_hw_source(uint32_t base, uint32_t count, uint32_t shift,
+			     void *mmio, uint32_t flags, void *data,
+			     const struct irq_source_ops *ops)
+{
+	struct xive_src *s;
+	struct xive *x = xive_from_isn(base);
+
+	assert(x);
+
+	s = malloc(sizeof(struct xive_src));
+	assert(s);
+	__xive_register_source(x, s, base, count, shift, mmio, flags,
+			       false, data, ops);
+}
+
+static void xive_p9_register_ipi_source(uint32_t base, uint32_t count, void *data,
+			      const struct irq_source_ops *ops)
+{
+	struct xive_src *s;
+	struct xive *x = xive_from_isn(base);
+	uint32_t base_idx = GIRQ_TO_IDX(base);
+	void *mmio_base;
+	uint32_t flags = XIVE_SRC_EOI_PAGE1 | XIVE_SRC_TRIGGER_PAGE;
+
+	assert(x);
+	assert(base >= x->int_base && (base + count) <= x->int_ipi_top);
+
+	s = malloc(sizeof(struct xive_src));
+	assert(s);
+
+	/* Store EOI supported on DD2.0 */
+	if (XIVE_CAN_STORE_EOI(x))
+		flags |= XIVE_SRC_STORE_EOI;
+
+	/* Callbacks assume the MMIO base corresponds to the first
+	 * interrupt of that source structure so adjust it
+	 */
+	mmio_base = x->esb_mmio + (1ul << IPI_ESB_SHIFT) * base_idx;
+	__xive_register_source(x, s, base, count, IPI_ESB_SHIFT, mmio_base,
+			       flags, false, data, ops);
+}
+
+static struct xive *init_one_xive(struct dt_node *np)
+{
+	struct xive *x;
+	struct proc_chip *chip;
+	uint32_t flags;
+
+	x = zalloc(sizeof(struct xive));
+	assert(x);
+	x->x_node = np;
+	x->xscom_base = dt_get_address(np, 0, NULL);
+	x->chip_id = dt_get_chip_id(np);
+
+	/* "Allocate" a new block ID for the chip */
+	x->block_id = xive_block_count++;
+	assert (x->block_id < XIVE_MAX_CHIPS);
+	xive_block_to_chip[x->block_id] = x->chip_id;
+	init_lock(&x->lock);
+
+	chip = get_chip(x->chip_id);
+	assert(chip);
+
+	/* All supported P9 are revision 2 (Nimbus DD2) */
+	switch (chip->type) {
+	case PROC_CHIP_P9_NIMBUS:
+		/* We should not be able to boot a P9N DD1 */
+		assert((chip->ec_level & 0xf0) != 0x10);
+		/* Fallthrough */
+	case PROC_CHIP_P9_CUMULUS:
+	case PROC_CHIP_P9P:
+		x->generation = XIVE_GEN_1;
+		break;
+	default:
+		assert(0);
+	}
+
+	xive_notice(x, "Initializing XIVE Gen %d, block ID %d...\n",
+		    x->generation, x->block_id);
+	chip->xive = x;
+
+#ifdef USE_INDIRECT
+	list_head_init(&x->donated_pages);
+#endif
+	/* Base interrupt numbers and allocator init */
+	/* XXX Consider allocating half as many ESBs than MMIO space
+	 * so that HW sources land outside of ESB space...
+	 */
+	x->int_base	= BLKIDX_TO_GIRQ(x->block_id, 0);
+	x->int_max	= x->int_base + MAX_INT_ENTRIES;
+	x->int_hw_bot	= x->int_max;
+	x->int_ipi_top	= x->int_base;
+
+	/* Make sure we never hand out "2" as it's reserved for XICS emulation
+	 * IPI returns. Generally start handing out at 0x10
+	 */
+	if (x->int_ipi_top < XIVE_INT_SAFETY_GAP)
+		x->int_ipi_top = XIVE_INT_SAFETY_GAP;
+
+	/* Allocate a few bitmaps */
+	x->eq_map = zalloc(BITMAP_BYTES(MAX_EQ_COUNT >> 3));
+	assert(x->eq_map);
+	/* Make sure we don't hand out 0 */
+	bitmap_set_bit(*x->eq_map, 0);
+
+	x->int_enabled_map = zalloc(BITMAP_BYTES(MAX_INT_ENTRIES));
+	assert(x->int_enabled_map);
+	x->ipi_alloc_map = zalloc(BITMAP_BYTES(MAX_INT_ENTRIES));
+	assert(x->ipi_alloc_map);
+
+	xive_dbg(x, "Handling interrupts [%08x..%08x]\n",
+		 x->int_base, x->int_max - 1);
+
+	/* System dependant values that must be set before BARs */
+	//xive_regwx(x, CQ_CFG_PB_GEN, xx);
+	//xive_regwx(x, CQ_MSGSND, xx);
+
+	/* Setup the BARs */
+	if (!xive_configure_bars(x))
+		goto fail;
+
+	/* Some basic global inits such as page sizes etc... */
+	if (!xive_config_init(x))
+		goto fail;
+
+	/* Configure the set translations for MMIO */
+	if (!xive_setup_set_xlate(x))
+		goto fail;
+
+	/* Dump some MMIO registers for diagnostics */
+	xive_dump_mmio(x);
+
+	/* Pre-allocate a number of tables */
+	if (!xive_prealloc_tables(x))
+		goto fail;
+
+	/* Configure local tables in VSDs (forward ports will be
+	 * handled later)
+	 */
+	if (!xive_set_local_tables(x))
+		goto fail;
+
+	/* Register built-in source controllers (aka IPIs) */
+	flags = XIVE_SRC_EOI_PAGE1 | XIVE_SRC_TRIGGER_PAGE;
+	if (XIVE_CAN_STORE_EOI(x))
+		flags |= XIVE_SRC_STORE_EOI;
+	__xive_register_source(x, &x->ipis, x->int_base,
+			       x->int_hw_bot - x->int_base, IPI_ESB_SHIFT,
+			       x->esb_mmio, flags, true, NULL, NULL);
+
+	/* Register escalation sources */
+	__xive_register_source(x, &x->esc_irqs,
+			       MAKE_ESCALATION_GIRQ(x->block_id, 0),
+			       MAX_EQ_COUNT, EQ_ESB_SHIFT,
+			       x->eq_mmio, XIVE_SRC_EOI_PAGE1,
+			       false, NULL, NULL);
+
+
+	return x;
+ fail:
+	xive_err(x, "Initialization failed...\n");
+
+	/* Should this be fatal ? */
+	//assert(false);
+	return NULL;
+}
+
+/*
+ * XICS emulation
+ */
+static void xive_ipi_init(struct xive *x, struct cpu_thread *cpu)
+{
+	struct xive_cpu_state *xs = cpu->xstate;
+
+	assert(xs);
+
+	__xive_set_irq_config(&x->ipis.is, xs->ipi_irq, cpu->pir,
+			      XIVE_EMULATION_PRIO, xs->ipi_irq,
+			      true, true);
+}
+
+static void xive_ipi_eoi(struct xive *x, uint32_t idx)
+{
+	uint8_t *mm = x->esb_mmio + idx * 0x20000;
+	uint8_t eoi_val;
+
+	/* For EOI, we use the special MMIO that does a clear of both
+	 * P and Q and returns the old Q.
+	 *
+	 * This allows us to then do a re-trigger if Q was set rather
+	 * than synthetizing an interrupt in software
+	 */
+	eoi_val = in_8(mm + 0x10c00);
+	if (eoi_val & 1) {
+		out_8(mm, 0);
+	}
+}
+
+static void xive_ipi_trigger(struct xive *x, uint32_t idx)
+{
+	uint8_t *mm = x->esb_mmio + idx * 0x20000;
+
+	xive_vdbg(x, "Trigger IPI 0x%x\n", idx);
+
+	out_8(mm, 0);
+}
+
+
+static void xive_reset_enable_thread(struct cpu_thread *c)
+{
+	struct proc_chip *chip = get_chip(c->chip_id);
+	struct xive *x = chip->xive;
+	uint32_t fc, bit;
+
+	/* Get fused core number */
+	fc = (c->pir >> 3) & 0xf;
+
+	/* Get bit in register */
+	bit = c->pir & 0x3f;
+
+	/* Get which register to access */
+	if (fc < 8) {
+		xive_regw(x, PC_THREAD_EN_REG0_CLR, PPC_BIT(bit));
+		xive_regw(x, PC_THREAD_EN_REG0_SET, PPC_BIT(bit));
+	} else {
+		xive_regw(x, PC_THREAD_EN_REG1_CLR, PPC_BIT(bit));
+		xive_regw(x, PC_THREAD_EN_REG1_SET, PPC_BIT(bit));
+	}
+}
+
+static void xive_p9_cpu_callin(struct cpu_thread *cpu)
+{
+	struct xive_cpu_state *xs = cpu->xstate;
+	uint8_t old_w2 __unused, w2 __unused;
+
+	if (!xs)
+		return;
+
+	/* Reset the HW thread context and enable it */
+	xive_reset_enable_thread(cpu);
+
+	/* Set VT to 1 */
+	old_w2 = in_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2);
+	out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2, 0x80);
+	w2 = in_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2);
+
+	xive_cpu_vdbg(cpu, "Initialized TIMA VP=%x/%x W01=%016llx W2=%02x->%02x\n",
+		      xs->vp_blk, xs->vp_idx,
+		      in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS),
+		      old_w2, w2);
+}
+
+#ifdef XIVE_DEBUG_INIT_CACHE_UPDATES
+static bool xive_check_eq_update(struct xive *x, uint32_t idx, struct xive_eq *eq)
+{
+	struct xive_eq *eq_p = xive_get_eq(x, idx);
+	struct xive_eq eq2;
+
+	assert(eq_p);
+	eq2 = *eq_p;
+	if (memcmp(eq, &eq2, sizeof(eq)) != 0) {
+		xive_err(x, "EQ update mismatch idx %d\n", idx);
+		xive_err(x, "want: %08x %08x %08x %08x\n",
+			 eq->w0, eq->w1, eq->w2, eq->w3);
+		xive_err(x, "      %08x %08x %08x %08x\n",
+			 eq->w4, eq->w5, eq->w6, eq->w7);
+		xive_err(x, "got : %08x %08x %08x %08x\n",
+			 eq2.w0, eq2.w1, eq2.w2, eq2.w3);
+		xive_err(x, "      %08x %08x %08x %08x\n",
+			 eq2.w4, eq2.w5, eq2.w6, eq2.w7);
+		return false;
+	}
+	return true;
+}
+
+static bool xive_check_vpc_update(struct xive *x, uint32_t idx, struct xive_vp *vp)
+{
+	struct xive_vp *vp_p = xive_get_vp(x, idx);
+	struct xive_vp vp2;
+
+	assert(vp_p);
+	vp2 = *vp_p;
+	if (memcmp(vp, &vp2, sizeof(vp)) != 0) {
+		xive_err(x, "VP update mismatch idx %d\n", idx);
+		xive_err(x, "want: %08x %08x %08x %08x\n",
+			 vp->w0, vp->w1, vp->w2, vp->w3);
+		xive_err(x, "      %08x %08x %08x %08x\n",
+			 vp->w4, vp->w5, vp->w6, vp->w7);
+		xive_err(x, "got : %08x %08x %08x %08x\n",
+			 vp2.w0, vp2.w1, vp2.w2, vp2.w3);
+		xive_err(x, "      %08x %08x %08x %08x\n",
+			 vp2.w4, vp2.w5, vp2.w6, vp2.w7);
+		return false;
+	}
+	return true;
+}
+#else
+static inline bool xive_check_eq_update(struct xive *x __unused,
+					uint32_t idx __unused,
+					struct xive_eq *eq __unused)
+{
+	return true;
+}
+
+static inline bool xive_check_vpc_update(struct xive *x __unused,
+					 uint32_t idx __unused,
+					 struct xive_vp *vp __unused)
+{
+	return true;
+}
+#endif
+
+#ifdef XIVE_EXTRA_CHECK_INIT_CACHE
+static void xive_special_cache_check(struct xive *x, uint32_t blk, uint32_t idx)
+{
+	struct xive_vp vp = {0};
+	uint32_t i;
+
+	for (i = 0; i < 1000; i++) {
+		struct xive_vp *vp_m = xive_get_vp(x, idx);
+
+		memset(vp_m, (~i) & 0xff, sizeof(*vp_m));
+		sync();
+		vp.w1 = (i << 16) | i;
+		xive_vpc_cache_update(x, blk, idx,
+				      0, 8, &vp, false, true);
+		if (!xive_check_vpc_update(x, idx, &vp)) {
+			xive_dbg(x, "Test failed at %d iterations\n", i);
+			return;
+		}
+	}
+	xive_dbg(x, "1000 iterations test success at %d/0x%x\n", blk, idx);
+}
+#else
+static inline void xive_special_cache_check(struct xive *x __unused,
+					    uint32_t blk __unused,
+					    uint32_t idx __unused)
+{
+}
+#endif
+
+static void xive_setup_hw_for_emu(struct xive_cpu_state *xs)
+{
+	struct xive_eq eq;
+	struct xive_vp vp;
+	struct xive *x_eq, *x_vp;
+
+	/* Grab the XIVE where the VP resides. It could be different from
+	 * the local chip XIVE if not using block group mode
+	 */
+	x_vp = xive_from_pc_blk(xs->vp_blk);
+	assert(x_vp);
+
+	/* Grab the XIVE where the EQ resides. It will be the same as the
+	 * VP one with the current provisioning but I prefer not making
+	 * this code depend on it.
+	 */
+	x_eq = xive_from_vc_blk(xs->eq_blk);
+	assert(x_eq);
+
+	/* Initialize the structure */
+	xive_init_emu_eq(xs->vp_blk, xs->vp_idx, &eq,
+			 xs->eq_page, XIVE_EMULATION_PRIO);
+
+	/* Use the cache watch to write it out */
+	lock(&x_eq->lock);
+	xive_eqc_cache_update(x_eq, xs->eq_blk,
+			      xs->eq_idx + XIVE_EMULATION_PRIO,
+			      0, 4, &eq, false, true);
+	xive_check_eq_update(x_eq, xs->eq_idx + XIVE_EMULATION_PRIO, &eq);
+
+	/* Extra testing of cache watch & scrub facilities */
+	xive_special_cache_check(x_vp, xs->vp_blk, xs->vp_idx);
+	unlock(&x_eq->lock);
+
+	/* Initialize/enable the VP */
+	xive_init_default_vp(&vp, xs->eq_blk, xs->eq_idx);
+
+	/* Use the cache watch to write it out */
+	lock(&x_vp->lock);
+	xive_vpc_cache_update(x_vp, xs->vp_blk, xs->vp_idx,
+			      0, 8, &vp, false, true);
+	xive_check_vpc_update(x_vp, xs->vp_idx, &vp);
+	unlock(&x_vp->lock);
+}
+
+static void xive_init_cpu_emulation(struct xive_cpu_state *xs,
+				    struct cpu_thread *cpu)
+{
+	struct xive *x;
+
+	/* Setup HW EQ and VP */
+	xive_setup_hw_for_emu(xs);
+
+	/* Setup and unmask the IPI */
+	xive_ipi_init(xs->xive, cpu);
+
+	/* Initialize remaining state */
+	xs->cppr = 0;
+	xs->mfrr = 0xff;
+	xs->eqbuf = xive_get_eq_buf(xs->vp_blk,
+				    xs->eq_idx + XIVE_EMULATION_PRIO);
+	assert(xs->eqbuf);
+	memset(xs->eqbuf, 0, 0x10000);
+
+	xs->eqptr = 0;
+	xs->eqmsk = (0x10000/4) - 1;
+	xs->eqgen = 0;
+	x = xive_from_vc_blk(xs->eq_blk);
+	assert(x);
+	xs->eqmmio = x->eq_mmio + (xs->eq_idx + XIVE_EMULATION_PRIO) * 0x20000;
+}
+
+static void xive_init_cpu_exploitation(struct xive_cpu_state *xs)
+{
+	struct xive_vp vp;
+	struct xive *x_vp;
+
+	/* Grab the XIVE where the VP resides. It could be different from
+	 * the local chip XIVE if not using block group mode
+	 */
+	x_vp = xive_from_pc_blk(xs->vp_blk);
+	assert(x_vp);
+
+	/* Initialize/enable the VP */
+	xive_init_default_vp(&vp, xs->eq_blk, xs->eq_idx);
+
+	/* Use the cache watch to write it out */
+	lock(&x_vp->lock);
+	xive_vpc_cache_update(x_vp, xs->vp_blk, xs->vp_idx,
+			      0, 8, &vp, false, true);
+	unlock(&x_vp->lock);
+
+	/* Clenaup remaining state */
+	xs->cppr = 0;
+	xs->mfrr = 0xff;
+	xs->eqbuf = NULL;
+	xs->eqptr = 0;
+	xs->eqmsk = 0;
+	xs->eqgen = 0;
+	xs->eqmmio = NULL;
+}
+
+static void xive_configure_ex_special_bar(struct xive *x, struct cpu_thread *c)
+{
+	uint64_t xa, val;
+	int64_t rc;
+
+	xive_cpu_vdbg(c, "Setting up special BAR\n");
+	xa = XSCOM_ADDR_P9_EX(pir_to_core_id(c->pir), P9X_EX_NCU_SPEC_BAR);
+	val = (uint64_t)x->tm_base | P9X_EX_NCU_SPEC_BAR_ENABLE;
+	if (x->tm_shift == 16)
+		val |= P9X_EX_NCU_SPEC_BAR_256K;
+	xive_cpu_vdbg(c, "NCU_SPEC_BAR_XA[%08llx]=%016llx\n", xa, val);
+	rc = xscom_write(c->chip_id, xa, val);
+	if (rc) {
+		xive_cpu_err(c, "Failed to setup NCU_SPEC_BAR\n");
+		/* XXXX  what do do now ? */
+	}
+}
+
+static void xive_p9_late_init(void)
+{
+	struct cpu_thread *c;
+
+	prlog(PR_INFO, "SLW: Configuring self-restore for NCU_SPEC_BAR\n");
+	for_each_present_cpu(c) {
+		if(cpu_is_thread0(c)) {
+			struct proc_chip *chip = get_chip(c->chip_id);
+			struct xive *x = chip->xive;
+			uint64_t xa, val, rc;
+			xa = XSCOM_ADDR_P9_EX(pir_to_core_id(c->pir),
+				P9X_EX_NCU_SPEC_BAR);
+			val = (uint64_t)x->tm_base | P9X_EX_NCU_SPEC_BAR_ENABLE;
+			/* Bail out if wakeup engine has already failed */
+			if ( wakeup_engine_state != WAKEUP_ENGINE_PRESENT) {
+				prlog(PR_ERR, "XIVE p9_stop_api fail detected\n");
+				break;
+			}
+			rc = p9_stop_save_scom((void *)chip->homer_base, xa, val,
+				P9_STOP_SCOM_REPLACE, P9_STOP_SECTION_EQ_SCOM);
+			if (rc) {
+				xive_cpu_err(c, "p9_stop_api failed for NCU_SPEC_BAR rc=%lld\n",
+				rc);
+				wakeup_engine_state = WAKEUP_ENGINE_FAILED;
+			}
+		}
+	}
+
+}
+static void xive_provision_cpu(struct xive_cpu_state *xs, struct cpu_thread *c)
+{
+	struct xive *x;
+	void *p;
+
+	/* Physical VPs are pre-allocated */
+	xs->vp_blk = PIR2VP_BLK(c->pir);
+	xs->vp_idx = PIR2VP_IDX(c->pir);
+
+	/* For now we use identical block IDs for VC and PC but that might
+	 * change. We allocate the EQs on the same XIVE as the VP.
+	 */
+	xs->eq_blk = xs->vp_blk;
+
+	/* Grab the XIVE where the EQ resides. It could be different from
+	 * the local chip XIVE if not using block group mode
+	 */
+	x = xive_from_vc_blk(xs->eq_blk);
+	assert(x);
+
+	/* Allocate a set of EQs for that VP */
+	xs->eq_idx = xive_alloc_eq_set(x, true);
+	assert(!XIVE_ALLOC_IS_ERR(xs->eq_idx));
+
+	/* Provision one of the queues. Allocate the memory on the
+	 * chip where the CPU resides
+	 */
+	p = local_alloc(c->chip_id, 0x10000, 0x10000);
+	if (!p) {
+		xive_err(x, "Failed to allocate EQ backing store\n");
+		assert(false);
+	}
+	xs->eq_page = p;
+}
+
+static void xive_init_cpu(struct cpu_thread *c)
+{
+	struct proc_chip *chip = get_chip(c->chip_id);
+	struct xive *x = chip->xive;
+	struct xive_cpu_state *xs;
+
+	if (!x)
+		return;
+
+	/*
+	 * Each core pair (EX) needs this special BAR setup to have the
+	 * right powerbus cycle for the TM area (as it has the same address
+	 * on all chips so it's somewhat special).
+	 *
+	 * Because we don't want to bother trying to figure out which core
+	 * of a pair is present we just do the setup for each of them, which
+	 * is harmless.
+	 */
+	if (cpu_is_thread0(c))
+		xive_configure_ex_special_bar(x, c);
+
+	/* Initialize the state structure */
+	c->xstate = xs = local_alloc(c->chip_id, sizeof(struct xive_cpu_state), 1);
+	assert(xs);
+	memset(xs, 0, sizeof(struct xive_cpu_state));
+	xs->xive = x;
+
+	init_lock(&xs->lock);
+
+	/* Shortcut to TM HV ring */
+	xs->tm_ring1 = x->tm_base + (1u << x->tm_shift);
+
+	/* Allocate an IPI */
+	xs->ipi_irq = xive_alloc_ipi_irqs(c->chip_id, 1, 1);
+
+	xive_cpu_vdbg(c, "CPU IPI is irq %08x\n", xs->ipi_irq);
+
+	/* Provision a VP and some EQDs for a physical CPU */
+	xive_provision_cpu(xs, c);
+
+	/* Initialize the XICS emulation related fields */
+	xive_init_cpu_emulation(xs, c);
+}
+
+static void xive_init_cpu_properties(struct cpu_thread *cpu)
+{
+	struct cpu_thread *t;
+	uint32_t iprop[8][2] = { };
+	uint32_t i;
+
+	assert(cpu_thread_count <= 8);
+
+	if (!cpu->node)
+		return;
+	for (i = 0; i < cpu_thread_count; i++) {
+		t = (i == 0) ? cpu : find_cpu_by_pir(cpu->pir + i);
+		if (!t)
+			continue;
+		iprop[i][0] = t->xstate->ipi_irq;
+		iprop[i][1] = 0; /* Edge */
+	}
+	dt_add_property(cpu->node, "interrupts", iprop, cpu_thread_count * 8);
+	dt_add_property_cells(cpu->node, "interrupt-parent", get_ics_phandle());
+}
+
+#ifdef XIVE_DEBUG_DUPLICATES
+static uint32_t xive_count_irq_copies(struct xive_cpu_state *xs, uint32_t ref)
+{
+	uint32_t i, irq;
+	uint32_t cnt = 0;
+	uint32_t pos = xs->eqptr;
+	uint32_t gen = xs->eqgen;
+
+	for (i = 0; i < 0x3fff; i++) {
+		irq = xs->eqbuf[pos];
+		if ((irq >> 31) == gen)
+			break;
+		if (irq == ref)
+			cnt++;
+		pos = (pos + 1) & xs->eqmsk;
+		if (!pos)
+			gen ^= 1;
+	}
+	return cnt;
+}
+#else
+static inline uint32_t xive_count_irq_copies(struct xive_cpu_state *xs __unused,
+					     uint32_t ref __unused)
+{
+	return 1;
+}
+#endif
+
+static uint32_t xive_read_eq(struct xive_cpu_state *xs, bool just_peek)
+{
+	uint32_t cur, copies;
+
+	xive_cpu_vdbg(this_cpu(), "  EQ %s... IDX=%x MSK=%x G=%d\n",
+		      just_peek ? "peek" : "read",
+		      xs->eqptr, xs->eqmsk, xs->eqgen);
+	cur = xs->eqbuf[xs->eqptr];
+	xive_cpu_vdbg(this_cpu(), "    cur: %08x [%08x %08x %08x ...]\n", cur,
+		      xs->eqbuf[(xs->eqptr + 1) & xs->eqmsk],
+		      xs->eqbuf[(xs->eqptr + 2) & xs->eqmsk],
+		      xs->eqbuf[(xs->eqptr + 3) & xs->eqmsk]);
+	if ((cur >> 31) == xs->eqgen)
+		return 0;
+
+	/* Debug: check for duplicate interrupts in the queue */
+	copies = xive_count_irq_copies(xs, cur);
+	if (copies > 1) {
+		struct xive_eq *eq;
+
+		prerror("Wow ! Dups of irq %x, found %d copies !\n",
+			cur & 0x7fffffff, copies);
+		prerror("[%08x > %08x %08x %08x %08x ...] eqgen=%x eqptr=%x jp=%d\n",
+			xs->eqbuf[(xs->eqptr - 1) & xs->eqmsk],
+			xs->eqbuf[(xs->eqptr + 0) & xs->eqmsk],
+			xs->eqbuf[(xs->eqptr + 1) & xs->eqmsk],
+			xs->eqbuf[(xs->eqptr + 2) & xs->eqmsk],
+			xs->eqbuf[(xs->eqptr + 3) & xs->eqmsk],
+			xs->eqgen, xs->eqptr, just_peek);
+		lock(&xs->xive->lock);
+		__xive_cache_scrub(xs->xive, xive_cache_eqc, xs->eq_blk,
+				   xs->eq_idx + XIVE_EMULATION_PRIO,
+				   false, false);
+		unlock(&xs->xive->lock);
+		eq = xive_get_eq(xs->xive, xs->eq_idx + XIVE_EMULATION_PRIO);
+		prerror("EQ @%p W0=%08x W1=%08x qbuf @%p\n",
+			eq, eq->w0, eq->w1, xs->eqbuf);
+	}
+	log_add(xs, LOG_TYPE_POPQ, 7, cur,
+		xs->eqbuf[(xs->eqptr + 1) & xs->eqmsk],
+		xs->eqbuf[(xs->eqptr + 2) & xs->eqmsk],
+		copies,
+		xs->eqptr, xs->eqgen, just_peek);
+	if (!just_peek) {
+		xs->eqptr = (xs->eqptr + 1) & xs->eqmsk;
+		if (xs->eqptr == 0)
+			xs->eqgen ^= 1;
+		xs->total_irqs++;
+	}
+	return cur & 0x00ffffff;
+}
+
+static uint8_t xive_sanitize_cppr(uint8_t cppr)
+{
+	if (cppr == 0xff || cppr == 0)
+		return cppr;
+	else
+		return XIVE_EMULATION_PRIO;
+}
+
+static inline uint8_t opal_xive_check_pending(struct xive_cpu_state *xs,
+					      uint8_t cppr)
+{
+	uint8_t mask = (cppr > 7) ? 0xff : ~((0x100 >> cppr) - 1);
+
+	return xs->pending & mask;
+}
+
+static void opal_xive_update_cppr(struct xive_cpu_state *xs, u8 cppr)
+{
+	/* Peform the update */
+	xs->cppr = cppr;
+	out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, cppr);
+
+	/* Trigger the IPI if it's still more favored than the CPPR
+	 *
+	 * This can lead to a bunch of spurrious retriggers if the
+	 * IPI is queued up behind other interrupts but that's not
+	 * a big deal and keeps the code simpler
+	 */
+	if (xs->mfrr < cppr)
+		xive_ipi_trigger(xs->xive, GIRQ_TO_IDX(xs->ipi_irq));
+}
+
+static int64_t opal_xive_eoi(uint32_t xirr)
+{
+	struct cpu_thread *c = this_cpu();
+	struct xive_cpu_state *xs = c->xstate;
+	uint32_t isn = xirr & 0x00ffffff;
+	struct xive *src_x;
+	bool special_ipi = false;
+	uint8_t cppr;
+
+	/*
+	 * In exploitation mode, this is supported as a way to perform
+	 * an EOI via a FW calls. This can be needed to workaround HW
+	 * implementation bugs for example. In this case interrupts will
+	 * have the OPAL_XIVE_IRQ_EOI_VIA_FW flag set.
+	 *
+	 * In that mode the entire "xirr" argument is interpreterd as
+	 * a global IRQ number (including the escalation bit), ther is
+	 * no split between the top 8 bits for CPPR and bottom 24 for
+	 * the interrupt number.
+	 */
+	if (xive_mode != XIVE_MODE_EMU)
+		return irq_source_eoi(xirr) ? OPAL_SUCCESS : OPAL_PARAMETER;
+
+	if (!xs)
+		return OPAL_INTERNAL_ERROR;
+
+	xive_cpu_vdbg(c, "EOI xirr=%08x cur_cppr=%d\n", xirr, xs->cppr);
+
+	/* Limit supported CPPR values from OS */
+	cppr = xive_sanitize_cppr(xirr >> 24);
+
+	lock(&xs->lock);
+
+	log_add(xs, LOG_TYPE_EOI, 3, isn, xs->eqptr, xs->eqgen);
+
+	/* If this was our magic IPI, convert to IRQ number */
+	if (isn == 2) {
+		isn = xs->ipi_irq;
+		special_ipi = true;
+		xive_cpu_vdbg(c, "User EOI for IPI !\n");
+	}
+
+	/* First check if we have stuff in that queue. If we do, don't bother with
+	 * doing an EOI on the EQ. Just mark that priority pending, we'll come
+	 * back later.
+	 *
+	 * If/when supporting multiple queues we would have to check them all
+	 * in ascending prio order up to the passed-in CPPR value (exclusive).
+	 */
+	if (xive_read_eq(xs, true)) {
+		xive_cpu_vdbg(c, "  isn %08x, skip, queue non empty\n", xirr);
+		xs->pending |= 1 << XIVE_EMULATION_PRIO;
+	}
+#ifndef EQ_ALWAYS_NOTIFY
+	else {
+		uint8_t eoi_val;
+
+		/* Perform EQ level EOI. Only one EQ for now ...
+		 *
+		 * Note: We aren't doing an actual EOI. Instead we are clearing
+		 * both P and Q and will re-check the queue if Q was set.
+		 */
+		eoi_val = in_8(xs->eqmmio + 0xc00);
+		xive_cpu_vdbg(c, "  isn %08x, eoi_val=%02x\n", xirr, eoi_val);
+
+		/* Q was set ? Check EQ again after doing a sync to ensure
+		 * ordering.
+		 */
+		if (eoi_val & 1) {
+			sync();
+			if (xive_read_eq(xs, true))
+				xs->pending |= 1 << XIVE_EMULATION_PRIO;
+		}
+	}
+#endif
+
+	/* Perform source level EOI if it's not our emulated MFRR IPI
+	 * otherwise EOI ourselves
+	 */
+	src_x = xive_from_isn(isn);
+	if (src_x) {
+		uint32_t idx = GIRQ_TO_IDX(isn);
+
+		/* Is it an IPI ? */
+		if (special_ipi) {
+			xive_ipi_eoi(src_x, idx);
+		} else {
+			/* Otherwise go through the source mechanism */
+			xive_vdbg(src_x, "EOI of IDX %x in EXT range\n", idx);
+			irq_source_eoi(isn);
+		}
+	} else {
+		xive_cpu_err(c, "  EOI unknown ISN %08x\n", isn);
+	}
+
+	/* Finally restore CPPR */
+	opal_xive_update_cppr(xs, cppr);
+
+	xive_cpu_vdbg(c, "  pending=0x%x cppr=%d\n", xs->pending, cppr);
+
+	unlock(&xs->lock);
+
+	/* Return whether something is pending that is suitable for
+	 * delivery considering the new CPPR value. This can be done
+	 * without lock as these fields are per-cpu.
+	 */
+	return opal_xive_check_pending(xs, cppr) ? 1 : 0;
+}
+
+#ifdef XIVE_CHECK_MISROUTED_IPI
+static void xive_dump_eq(uint32_t eq_blk, uint32_t eq_idx)
+{
+	struct cpu_thread *me = this_cpu();
+	struct xive *x;
+	struct xive_eq *eq;
+
+	x = xive_from_vc_blk(eq_blk);
+	if (!x)
+		return;
+	eq = xive_get_eq(x, eq_idx);
+	if (!eq)
+		return;
+	xive_cpu_err(me, "EQ: %08x %08x %08x %08x (@%p)\n",
+		     eq->w0, eq->w1, eq->w2, eq->w3, eq);
+	xive_cpu_err(me, "    %08x %08x %08x %08x\n",
+		     eq->w4, eq->w5, eq->w6, eq->w7);
+}
+static int64_t __opal_xive_dump_emu(struct xive_cpu_state *xs, uint32_t pir);
+
+static bool check_misrouted_ipi(struct cpu_thread *me, uint32_t irq)
+{
+	struct cpu_thread *c;
+
+	for_each_present_cpu(c) {
+		struct xive_cpu_state *xs = c->xstate;
+		struct xive_ive *ive;
+		uint32_t ipi_target, i, eq_blk, eq_idx;
+		struct proc_chip *chip;
+		struct xive *x;
+
+		if (!xs)
+			continue;
+		if (irq == xs->ipi_irq) {
+			xive_cpu_err(me, "misrouted IPI 0x%x, should"
+				     " be aimed at CPU 0x%x\n",
+				     irq, c->pir);
+			xive_cpu_err(me, " my eq_page=%p eqbuff=%p eq=0x%x/%x\n",
+				     me->xstate->eq_page, me->xstate->eqbuf,
+				     me->xstate->eq_blk, me->xstate->eq_idx + XIVE_EMULATION_PRIO);
+			xive_cpu_err(me, "tgt eq_page=%p eqbuff=%p eq=0x%x/%x\n",
+				     c->xstate->eq_page, c->xstate->eqbuf,
+				     c->xstate->eq_blk, c->xstate->eq_idx + XIVE_EMULATION_PRIO);
+			__opal_xive_dump_emu(me->xstate, me->pir);
+			__opal_xive_dump_emu(c->xstate, c->pir);
+			if (xive_get_irq_targetting(xs->ipi_irq, &ipi_target, NULL, NULL))
+				xive_cpu_err(me, "target=%08x\n", ipi_target);
+			else
+				xive_cpu_err(me, "target=???\n");
+				/* Find XIVE on which the IVE resides */
+			x = xive_from_isn(irq);
+			if (!x) {
+				xive_cpu_err(me, "no xive attached\n");
+				return true;
+			}
+			ive = xive_get_ive(x, irq);
+			if (!ive) {
+				xive_cpu_err(me, "no ive attached\n");
+				return true;
+			}
+			xive_cpu_err(me, "ive=%016llx\n", ive->w);
+			for_each_chip(chip) {
+				x = chip->xive;
+				if (!x)
+					continue;
+				ive = x->ivt_base;
+				for (i = 0; i < MAX_INT_ENTRIES; i++) {
+					if ((ive[i].w & IVE_EQ_DATA) == irq) {
+						eq_blk = GETFIELD(IVE_EQ_BLOCK, ive[i].w);
+						eq_idx = GETFIELD(IVE_EQ_INDEX, ive[i].w);
+						xive_cpu_err(me, "Found source: 0x%x ive=%016llx\n"
+							     " eq 0x%x/%x",
+							     BLKIDX_TO_GIRQ(x->block_id, i),
+							     ive[i].w, eq_blk, eq_idx);
+						xive_dump_eq(eq_blk, eq_idx);
+					}
+				}
+			}
+			return true;
+		}
+	}
+	return false;
+}
+#else
+static inline bool check_misrouted_ipi(struct cpu_thread  *c __unused,
+				       uint32_t irq __unused)
+{
+	return false;
+}
+#endif
+
+static int64_t opal_xive_get_xirr(uint32_t *out_xirr, bool just_poll)
+{
+	struct cpu_thread *c = this_cpu();
+	struct xive_cpu_state *xs = c->xstate;
+	uint16_t ack;
+	uint8_t active, old_cppr;
+
+	if (xive_mode != XIVE_MODE_EMU)
+		return OPAL_WRONG_STATE;
+	if (!xs)
+		return OPAL_INTERNAL_ERROR;
+	if (!out_xirr)
+		return OPAL_PARAMETER;
+
+	*out_xirr = 0;
+
+	lock(&xs->lock);
+
+	/*
+	 * Due to the need to fetch multiple interrupts from the EQ, we
+	 * need to play some tricks.
+	 *
+	 * The "pending" byte in "xs" keeps track of the priorities that
+	 * are known to have stuff to read (currently we only use one).
+	 *
+	 * It is set in EOI and cleared when consumed here. We don't bother
+	 * looking ahead here, EOI will do it.
+	 *
+	 * We do need to still do an ACK every time in case a higher prio
+	 * exception occurred (though we don't do prio yet... right ? still
+	 * let's get the basic design right !).
+	 *
+	 * Note that if we haven't found anything via ack, but did find
+	 * something in the queue, we must also raise CPPR back.
+	 */
+
+	xive_cpu_vdbg(c, "get_xirr W01=%016llx W2=%08x\n",
+		      __in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS),
+		      __in_be32(xs->tm_ring1 + TM_QW3_HV_PHYS + 8));
+
+	/* Perform the HV Ack cycle */
+	if (just_poll)
+		ack = __in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS) >> 48;
+	else
+		ack = __in_be16(xs->tm_ring1 + TM_SPC_ACK_HV_REG);
+	sync();
+	xive_cpu_vdbg(c, "get_xirr,%s=%04x\n", just_poll ? "POLL" : "ACK", ack);
+
+	/* Capture the old CPPR which we will return with the interrupt */
+	old_cppr = xs->cppr;
+
+	switch(GETFIELD(TM_QW3_NSR_HE, (ack >> 8))) {
+	case TM_QW3_NSR_HE_NONE:
+		break;
+	case TM_QW3_NSR_HE_POOL:
+		break;
+	case TM_QW3_NSR_HE_PHYS:
+		/* Mark pending and keep track of the CPPR update */
+		if (!just_poll && (ack & 0xff) != 0xff) {
+			xs->cppr = ack & 0xff;
+			xs->pending |= 1 << xs->cppr;
+		}
+		break;
+	case TM_QW3_NSR_HE_LSI:
+		break;
+	}
+
+	/* Calculate "active" lines as being the pending interrupts
+	 * masked by the "old" CPPR
+	 */
+	active = opal_xive_check_pending(xs, old_cppr);
+
+	log_add(xs, LOG_TYPE_XIRR, 6, old_cppr, xs->cppr, xs->pending, active,
+		xs->eqptr, xs->eqgen);
+
+#ifdef XIVE_PERCPU_LOG
+	{
+		struct xive_eq *eq;
+		lock(&xs->xive->lock);
+		__xive_cache_scrub(xs->xive, xive_cache_eqc, xs->eq_blk,
+				   xs->eq_idx + XIVE_EMULATION_PRIO,
+				   false, false);
+		unlock(&xs->xive->lock);
+		eq = xive_get_eq(xs->xive, xs->eq_idx + XIVE_EMULATION_PRIO);
+		log_add(xs, LOG_TYPE_EQD, 2, eq->w0, eq->w1);
+	}
+#endif /* XIVE_PERCPU_LOG */
+
+	xive_cpu_vdbg(c, "  cppr=%d->%d pending=0x%x active=%x\n",
+		      old_cppr, xs->cppr, xs->pending, active);
+	if (active) {
+		/* Find highest pending */
+		uint8_t prio = ffs(active) - 1;
+		uint32_t val;
+
+		/* XXX Use "p" to select queue */
+		val = xive_read_eq(xs, just_poll);
+
+		if (val && val < XIVE_INT_SAFETY_GAP)
+			xive_cpu_err(c, "Bogus interrupt 0x%x received !\n", val);
+
+		/* Convert to magic IPI if needed */
+		if (val == xs->ipi_irq)
+			val = 2;
+		if (check_misrouted_ipi(c, val))
+			val = 2;
+
+		*out_xirr = (old_cppr << 24) | val;
+
+		/* If we are polling, that's it */
+		if (just_poll)
+			goto skip;
+
+		/* Clear the pending bit. EOI will set it again if needed. We
+		 * could check the queue but that's not really critical here.
+		 */
+		xs->pending &= ~(1 << prio);
+
+		/* Spurrious IPB bit, nothing to fetch, bring CPPR back */
+		if (!val)
+			prio = old_cppr;
+
+		/* We could have fetched a pending interrupt left over
+		 * by a previous EOI, so the CPPR might need adjusting
+		 * Also if we had a spurrious one as well.
+		 */
+		if (xs->cppr != prio) {
+			xs->cppr = prio;
+			out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, prio);
+			xive_cpu_vdbg(c, "  adjusted CPPR to %d\n", prio);
+		}
+
+		if (val)
+			xive_cpu_vdbg(c, "  found irq, prio=%d\n", prio);
+
+	} else {
+		/* Nothing was active, this is a fluke, restore CPPR */
+		opal_xive_update_cppr(xs, old_cppr);
+		xive_cpu_vdbg(c, "  nothing active, restored CPPR to %d\n",
+			      old_cppr);
+	}
+ skip:
+
+	log_add(xs, LOG_TYPE_XIRR2, 5, xs->cppr, xs->pending,
+		*out_xirr, xs->eqptr, xs->eqgen);
+	xive_cpu_vdbg(c, "  returning XIRR=%08x, pending=0x%x\n",
+		      *out_xirr, xs->pending);
+
+	unlock(&xs->lock);
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_set_cppr(uint8_t cppr)
+{
+	struct cpu_thread *c = this_cpu();
+	struct xive_cpu_state *xs = c->xstate;
+
+	if (xive_mode != XIVE_MODE_EMU)
+		return OPAL_WRONG_STATE;
+
+	/* Limit supported CPPR values */
+	cppr = xive_sanitize_cppr(cppr);
+
+	if (!xs)
+		return OPAL_INTERNAL_ERROR;
+	xive_cpu_vdbg(c, "CPPR setting to %d\n", cppr);
+
+	lock(&xs->lock);
+	opal_xive_update_cppr(xs, cppr);
+	unlock(&xs->lock);
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_set_mfrr(uint32_t cpu, uint8_t mfrr)
+{
+	struct cpu_thread *c = find_cpu_by_server(cpu);
+	struct xive_cpu_state *xs;
+	uint8_t old_mfrr;
+
+	if (xive_mode != XIVE_MODE_EMU)
+		return OPAL_WRONG_STATE;
+	if (!c)
+		return OPAL_PARAMETER;
+	xs = c->xstate;
+	if (!xs)
+		return OPAL_INTERNAL_ERROR;
+
+	lock(&xs->lock);
+	old_mfrr = xs->mfrr;
+	xive_cpu_vdbg(c, "  Setting MFRR to %x, old is %x\n", mfrr, old_mfrr);
+	xs->mfrr = mfrr;
+	if (old_mfrr > mfrr && mfrr < xs->cppr)
+		xive_ipi_trigger(xs->xive, GIRQ_TO_IDX(xs->ipi_irq));
+	unlock(&xs->lock);
+
+	return OPAL_SUCCESS;
+}
+
+static uint64_t xive_convert_irq_flags(uint64_t iflags)
+{
+	uint64_t oflags = 0;
+
+	if (iflags & XIVE_SRC_STORE_EOI)
+		oflags |= OPAL_XIVE_IRQ_STORE_EOI;
+
+	/* OPAL_XIVE_IRQ_TRIGGER_PAGE is only meant to be set if
+	 * the interrupt has a *separate* trigger page.
+	 */
+	if ((iflags & XIVE_SRC_EOI_PAGE1) &&
+	    (iflags & XIVE_SRC_TRIGGER_PAGE))
+		oflags |= OPAL_XIVE_IRQ_TRIGGER_PAGE;
+
+	if (iflags & XIVE_SRC_LSI)
+		oflags |= OPAL_XIVE_IRQ_LSI;
+	if (iflags & XIVE_SRC_SHIFT_BUG)
+		oflags |= OPAL_XIVE_IRQ_SHIFT_BUG;
+	return oflags;
+}
+
+static int64_t opal_xive_get_irq_info(uint32_t girq,
+				      uint64_t *out_flags,
+				      uint64_t *out_eoi_page,
+				      uint64_t *out_trig_page,
+				      uint32_t *out_esb_shift,
+				      uint32_t *out_src_chip)
+{
+	struct irq_source *is = irq_find_source(girq);
+	struct xive_src *s = container_of(is, struct xive_src, is);
+	uint32_t idx;
+	uint64_t mm_base;
+	uint64_t eoi_page = 0, trig_page = 0;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+	if (is == NULL || out_flags == NULL)
+		return OPAL_PARAMETER;
+	assert(is->ops == &xive_irq_source_ops);
+
+	if (out_flags)
+		*out_flags = xive_convert_irq_flags(s->flags);
+
+	/*
+	 * If the orig source has a set_xive callback, then set
+	 * OPAL_XIVE_IRQ_MASK_VIA_FW as masking/unmasking requires
+	 * source specific workarounds. Same with EOI.
+	 */
+	if (out_flags && s->orig_ops) {
+		if (s->orig_ops->set_xive)
+			*out_flags |= OPAL_XIVE_IRQ_MASK_VIA_FW;
+		if (s->orig_ops->eoi)
+			*out_flags |= OPAL_XIVE_IRQ_EOI_VIA_FW;
+	}
+
+	idx = girq - s->esb_base;
+
+	if (out_esb_shift)
+		*out_esb_shift = s->esb_shift;
+
+	mm_base = (uint64_t)s->esb_mmio + (1ull << s->esb_shift) * idx;
+
+	/* The EOI page can either be the first or second page */
+	if (s->flags & XIVE_SRC_EOI_PAGE1) {
+		uint64_t p1off = 1ull << (s->esb_shift - 1);
+		eoi_page = mm_base + p1off;
+	} else
+		eoi_page = mm_base;
+
+	/* The trigger page, if it exists, is always the first page */
+	if (s->flags & XIVE_SRC_TRIGGER_PAGE)
+		trig_page = mm_base;
+
+	if (out_eoi_page)
+		*out_eoi_page = eoi_page;
+	if (out_trig_page)
+		*out_trig_page = trig_page;
+	if (out_src_chip)
+		*out_src_chip = GIRQ_TO_CHIP(girq);
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_get_irq_config(uint32_t girq,
+					uint64_t *out_vp,
+					uint8_t *out_prio,
+					uint32_t *out_lirq)
+{
+	uint32_t vp;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+
+	if (xive_get_irq_targetting(girq, &vp, out_prio, out_lirq)) {
+		*out_vp = vp;
+		return OPAL_SUCCESS;
+	} else
+		return OPAL_PARAMETER;
+}
+
+static int64_t opal_xive_set_irq_config(uint32_t girq,
+					uint64_t vp,
+					uint8_t prio,
+					uint32_t lirq)
+{
+	/*
+	 * This variant is meant for a XIVE-aware OS, thus it will
+	 * *not* affect the ESB state of the interrupt. If used with
+	 * a prio of FF, the IVT/EAS will be mased. In that case the
+	 * races have to be handled by the OS.
+	 *
+	 * The exception to this rule is interrupts for which masking
+	 * and unmasking is handled by firmware. In that case the ESB
+	 * state isn't under OS control and will be dealt here. This
+	 * is currently only the case of LSIs and on P9 DD1.0 only so
+	 * isn't an issue.
+	 */
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+
+	return xive_set_irq_config(girq, vp, prio, lirq, false);
+}
+
+static int64_t opal_xive_get_queue_info(uint64_t vp, uint32_t prio,
+					uint64_t *out_qpage,
+					uint64_t *out_qsize,
+					uint64_t *out_qeoi_page,
+					uint32_t *out_escalate_irq,
+					uint64_t *out_qflags)
+{
+	uint32_t blk, idx;
+	struct xive *x;
+	struct xive_eq *eq;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+
+	if (!xive_eq_for_target(vp, prio, &blk, &idx))
+		return OPAL_PARAMETER;
+
+	x = xive_from_vc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+
+	eq = xive_get_eq(x, idx);
+	if (!eq)
+		return OPAL_PARAMETER;
+
+	if (out_escalate_irq) {
+		uint32_t esc_idx = idx;
+
+		/* If escalations are routed to a single queue, fix up
+		 * the escalation interrupt number here.
+		 */
+		if (eq->w0 & EQ_W0_UNCOND_ESCALATE)
+			esc_idx |= 7;
+		*out_escalate_irq =
+			MAKE_ESCALATION_GIRQ(blk, esc_idx);
+	}
+
+	/* If this is a single-escalation gather queue, that's all
+	 * there is to return
+	 */
+	if (eq->w0 & EQ_W0_SILENT_ESCALATE) {
+		if (out_qflags)
+			*out_qflags = 0;
+		if (out_qpage)
+			*out_qpage = 0;
+		if (out_qsize)
+			*out_qsize = 0;
+		if (out_qeoi_page)
+			*out_qeoi_page = 0;
+		return OPAL_SUCCESS;
+	}
+
+	if (out_qpage) {
+		if (eq->w0 & EQ_W0_ENQUEUE)
+			*out_qpage =
+				(((uint64_t)(eq->w2 & 0x0fffffff)) << 32) | eq->w3;
+		else
+			*out_qpage = 0;
+	}
+	if (out_qsize) {
+		if (eq->w0 & EQ_W0_ENQUEUE)
+			*out_qsize = GETFIELD(EQ_W0_QSIZE, eq->w0) + 12;
+		else
+			*out_qsize = 0;
+	}
+	if (out_qeoi_page) {
+		*out_qeoi_page =
+			(uint64_t)x->eq_mmio + idx * 0x20000;
+	}
+	if (out_qflags) {
+		*out_qflags = 0;
+		if (eq->w0 & EQ_W0_VALID)
+			*out_qflags |= OPAL_XIVE_EQ_ENABLED;
+		if (eq->w0 & EQ_W0_UCOND_NOTIFY)
+			*out_qflags |= OPAL_XIVE_EQ_ALWAYS_NOTIFY;
+		if (eq->w0 & EQ_W0_ESCALATE_CTL)
+			*out_qflags |= OPAL_XIVE_EQ_ESCALATE;
+	}
+
+	return OPAL_SUCCESS;
+}
+
+static void xive_cleanup_eq(struct xive_eq *eq)
+{
+	eq->w0 = eq->w0 & EQ_W0_FIRMWARE;
+	eq->w1 = EQ_W1_ESe_Q | EQ_W1_ESn_Q;
+	eq->w2 = eq->w3 = eq->w4 = eq->w5 = eq->w6 = eq->w7 = 0;
+}
+
+static int64_t opal_xive_set_queue_info(uint64_t vp, uint32_t prio,
+					uint64_t qpage,
+					uint64_t qsize,
+					uint64_t qflags)
+{
+	uint32_t blk, idx;
+	struct xive *x;
+	struct xive_eq *old_eq;
+	struct xive_eq eq;
+	uint32_t vp_blk, vp_idx;
+	bool group;
+	int64_t rc;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+	if (!xive_eq_for_target(vp, prio, &blk, &idx))
+		return OPAL_PARAMETER;
+
+	x = xive_from_vc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+
+	old_eq = xive_get_eq(x, idx);
+	if (!old_eq)
+		return OPAL_PARAMETER;
+
+	/* If this is a silent escalation queue, it cannot be
+	 * configured directly
+	 */
+	if (old_eq->w0 & EQ_W0_SILENT_ESCALATE)
+		return OPAL_PARAMETER;
+
+	/* This shouldn't fail or xive_eq_for_target would have
+	 * failed already
+	 */
+	if (!xive_decode_vp(vp, &vp_blk, &vp_idx, NULL, &group))
+		return OPAL_PARAMETER;
+
+	/*
+	 * Make a local copy which we will later try to commit using
+	 * the cache watch facility
+	 */
+	eq = *old_eq;
+
+	if (qflags & OPAL_XIVE_EQ_ENABLED) {
+		switch(qsize) {
+			/* Supported sizes */
+		case 12:
+		case 16:
+		case 21:
+		case 24:
+			eq.w3 = ((uint64_t)qpage) & 0xffffffff;
+			eq.w2 = (((uint64_t)qpage)) >> 32 & 0x0fffffff;
+			eq.w0 |= EQ_W0_ENQUEUE;
+			eq.w0 = SETFIELD(EQ_W0_QSIZE, eq.w0, qsize - 12);
+			break;
+		case 0:
+			eq.w2 = eq.w3 = 0;
+			eq.w0 &= ~EQ_W0_ENQUEUE;
+			break;
+		default:
+			return OPAL_PARAMETER;
+		}
+
+		/* Ensure the priority and target are correctly set (they will
+		 * not be right after allocation
+		 */
+		eq.w6 = SETFIELD(EQ_W6_NVT_BLOCK, 0ul, vp_blk) |
+			SETFIELD(EQ_W6_NVT_INDEX, 0ul, vp_idx);
+		eq.w7 = SETFIELD(EQ_W7_F0_PRIORITY, 0ul, prio);
+		/* XXX Handle group i bit when needed */
+
+		/* Always notify flag */
+		if (qflags & OPAL_XIVE_EQ_ALWAYS_NOTIFY)
+			eq.w0 |= EQ_W0_UCOND_NOTIFY;
+		else
+			eq.w0 &= ~EQ_W0_UCOND_NOTIFY;
+
+		/* Escalation flag */
+		if (qflags & OPAL_XIVE_EQ_ESCALATE)
+			eq.w0 |= EQ_W0_ESCALATE_CTL;
+		else
+			eq.w0 &= ~EQ_W0_ESCALATE_CTL;
+
+		/* Unconditionally clear the current queue pointer, set
+		 * generation to 1 and disable escalation interrupts.
+		 */
+		eq.w1 = EQ_W1_GENERATION |
+			(old_eq->w1 & (EQ_W1_ESe_P | EQ_W1_ESe_Q |
+				       EQ_W1_ESn_P | EQ_W1_ESn_Q));
+
+		/* Enable. We always enable backlog for an enabled queue
+		 * otherwise escalations won't work.
+		 */
+		eq.w0 |= EQ_W0_VALID | EQ_W0_BACKLOG;
+	} else
+		xive_cleanup_eq(&eq);
+
+	/* Update EQ, non-synchronous */
+	lock(&x->lock);
+	rc = xive_eqc_cache_update(x, blk, idx, 0, 4, &eq, false, false);
+	unlock(&x->lock);
+
+	return rc;
+}
+
+static int64_t opal_xive_get_queue_state(uint64_t vp, uint32_t prio,
+					 uint32_t *out_qtoggle,
+					 uint32_t *out_qindex)
+{
+	uint32_t blk, idx;
+	struct xive *x;
+	struct xive_eq *eq;
+	int64_t rc;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+
+	if (!out_qtoggle || !out_qindex ||
+	    !xive_eq_for_target(vp, prio, &blk, &idx))
+		return OPAL_PARAMETER;
+
+	x = xive_from_vc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+
+	eq = xive_get_eq(x, idx);
+	if (!eq)
+		return OPAL_PARAMETER;
+
+	/* Scrub the queue */
+	lock(&x->lock);
+	rc = xive_eqc_scrub(x, blk, idx);
+	unlock(&x->lock);
+	if (rc)
+		return rc;
+
+	/* We don't do disable queues */
+	if (!(eq->w0 & EQ_W0_VALID))
+		return OPAL_WRONG_STATE;
+
+	*out_qtoggle = GETFIELD(EQ_W1_GENERATION, eq->w1);
+	*out_qindex  = GETFIELD(EQ_W1_PAGE_OFF, eq->w1);
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_set_queue_state(uint64_t vp, uint32_t prio,
+					 uint32_t qtoggle, uint32_t qindex)
+{
+	uint32_t blk, idx;
+	struct xive *x;
+	struct xive_eq *eq, new_eq;
+	int64_t rc;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+
+	if (!xive_eq_for_target(vp, prio, &blk, &idx))
+		return OPAL_PARAMETER;
+
+	x = xive_from_vc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+
+	eq = xive_get_eq(x, idx);
+	if (!eq)
+		return OPAL_PARAMETER;
+
+	/* We don't do disable queues */
+	if (!(eq->w0 & EQ_W0_VALID))
+		return OPAL_WRONG_STATE;
+
+	new_eq = *eq;
+
+	new_eq.w1 = SETFIELD(EQ_W1_GENERATION, new_eq.w1, qtoggle);
+	new_eq.w1 = SETFIELD(EQ_W1_PAGE_OFF, new_eq.w1, qindex);
+
+	lock(&x->lock);
+	rc = xive_eqc_cache_update(x, blk, idx, 0, 4, &new_eq, false, false);
+	unlock(&x->lock);
+
+	return rc;
+}
+
+static int64_t opal_xive_donate_page(uint32_t chip_id, uint64_t addr)
+{
+	struct proc_chip *c = get_chip(chip_id);
+	struct list_node *n __unused;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+	if (!c)
+		return OPAL_PARAMETER;
+	if (!c->xive)
+		return OPAL_PARAMETER;
+	if (addr & 0xffff)
+		return OPAL_PARAMETER;
+#ifdef USE_INDIRECT
+	n = (struct list_node *)addr;
+	lock(&c->xive->lock);
+	list_add(&c->xive->donated_pages, n);
+	unlock(&c->xive->lock);
+#endif
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_get_vp_info(uint64_t vp_id,
+				     uint64_t *out_flags,
+				     uint64_t *out_cam_value,
+				     uint64_t *out_report_cl_pair,
+				     uint32_t *out_chip_id)
+{
+	struct xive *x;
+	struct xive_vp *vp;
+	uint32_t blk, idx;
+	bool group;
+
+	if (!xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
+		return OPAL_PARAMETER;
+	/* We don't do groups yet */
+	if (group)
+		return OPAL_PARAMETER;
+	x = xive_from_pc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+	vp = xive_get_vp(x, idx);
+	if (!vp)
+		return OPAL_PARAMETER;
+
+	if (out_flags) {
+		uint32_t eq_blk, eq_idx;
+		struct xive_eq *eq;
+		struct xive *eq_x;
+		*out_flags = 0;
+
+		/* We would like to a way to stash a SW bit in the VP to
+		 * know whether silent escalation is enabled or not, but
+		 * unlike what happens with EQs, the PC cache watch doesn't
+		 * implement the reserved bit in the VPs... so we have to go
+		 * look at EQ 7 instead.
+		 */
+		/* Grab EQ for prio 7 to check for silent escalation */
+		if (!xive_eq_for_target(vp_id, 7, &eq_blk, &eq_idx))
+			return OPAL_PARAMETER;
+
+		eq_x = xive_from_vc_blk(eq_blk);
+		if (!eq_x)
+			return OPAL_PARAMETER;
+
+		eq = xive_get_eq(x, eq_idx);
+		if (!eq)
+			return OPAL_PARAMETER;
+		if (vp->w0 & VP_W0_VALID)
+			*out_flags |= OPAL_XIVE_VP_ENABLED;
+		if (eq->w0 & EQ_W0_SILENT_ESCALATE)
+			*out_flags |= OPAL_XIVE_VP_SINGLE_ESCALATION;
+	}
+
+	if (out_cam_value)
+		*out_cam_value = (blk << 19) | idx;
+
+	if (out_report_cl_pair) {
+		*out_report_cl_pair = ((uint64_t)(vp->w6 & 0x0fffffff)) << 32;
+		*out_report_cl_pair |= vp->w7 & 0xffffff00;
+	}
+
+	if (out_chip_id)
+		*out_chip_id = xive_block_to_chip[blk];
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t xive_setup_silent_gather(uint64_t vp_id, bool enable)
+{
+	uint32_t blk, idx, i;
+	struct xive_eq *eq_orig;
+	struct xive_eq eq;
+	struct xive *x;
+	int64_t rc;
+
+	/* Get base EQ block */
+	if (!xive_eq_for_target(vp_id, 0, &blk, &idx))
+		return OPAL_PARAMETER;
+	x = xive_from_vc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+
+	/* Grab prio 7 */
+	eq_orig = xive_get_eq(x, idx + 7);
+	if (!eq_orig)
+		return OPAL_PARAMETER;
+
+	/* If trying to enable silent gather, make sure prio 7 is not
+	 * already enabled as a normal queue
+	 */
+	if (enable && (eq_orig->w0 & EQ_W0_VALID) &&
+	    !(eq_orig->w0 & EQ_W0_SILENT_ESCALATE)) {
+		xive_dbg(x, "Attempt at enabling silent gather but"
+			 " prio 7 queue already in use\n");
+		return OPAL_PARAMETER;
+	}
+
+	eq = *eq_orig;
+
+	if (enable) {
+		/* W0: Enabled and "s" set, no other bit */
+		eq.w0 &= EQ_W0_FIRMWARE;
+		eq.w0 |= EQ_W0_VALID | EQ_W0_SILENT_ESCALATE |
+			EQ_W0_ESCALATE_CTL | EQ_W0_BACKLOG;
+
+		/* W1: Mark ESn as 01, ESe as 00 */
+		eq.w1 &= ~EQ_W1_ESn_P;
+		eq.w1 |= EQ_W1_ESn_Q;
+		eq.w1 &= ~(EQ_W1_ESe);
+	} else if (eq.w0 & EQ_W0_SILENT_ESCALATE)
+		xive_cleanup_eq(&eq);
+
+	if (!memcmp(eq_orig, &eq, sizeof(eq)))
+		rc = 0;
+	else
+		rc = xive_eqc_cache_update(x, blk, idx + 7, 0, 4, &eq,
+					   false, false);
+	if (rc)
+		return rc;
+
+	/* Mark/unmark all other prios with the new "u" bit and update
+	 * escalation
+	 */
+	for (i = 0; i < 6; i++) {
+		eq_orig = xive_get_eq(x, idx + i);
+		if (!eq_orig)
+			continue;
+		eq = *eq_orig;
+		if (enable) {
+			/* Set new "u" bit */
+			eq.w0 |= EQ_W0_UNCOND_ESCALATE;
+
+			/* Re-route escalation interrupt (previous
+			 * route is lost !) to the gather queue
+			 */
+			eq.w4 = SETFIELD(EQ_W4_ESC_EQ_BLOCK,
+					 eq.w4, blk);
+			eq.w4 = SETFIELD(EQ_W4_ESC_EQ_INDEX,
+					 eq.w4, idx + 7);
+		} else if (eq.w0 & EQ_W0_UNCOND_ESCALATE) {
+			/* Clear the "u" bit, disable escalations if it was set */
+			eq.w0 &= ~EQ_W0_UNCOND_ESCALATE;
+			eq.w0 &= ~EQ_W0_ESCALATE_CTL;
+		}
+		if (!memcmp(eq_orig, &eq, sizeof(eq)))
+			continue;
+		rc = xive_eqc_cache_update(x, blk, idx + i, 0, 4, &eq,
+					   false, false);
+		if (rc)
+			break;
+	}
+
+	return rc;
+}
+
+static int64_t opal_xive_set_vp_info(uint64_t vp_id,
+				     uint64_t flags,
+				     uint64_t report_cl_pair)
+{
+	struct xive *x;
+	struct xive_vp *vp, vp_new;
+	uint32_t blk, idx;
+	bool group;
+	int64_t rc;
+
+	if (!xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
+		return OPAL_PARAMETER;
+	/* We don't do groups yet */
+	if (group)
+		return OPAL_PARAMETER;
+	if (report_cl_pair & 0xff)
+		return OPAL_PARAMETER;
+	x = xive_from_pc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+	vp = xive_get_vp(x, idx);
+	if (!vp)
+		return OPAL_PARAMETER;
+
+	lock(&x->lock);
+
+	vp_new = *vp;
+	if (flags & OPAL_XIVE_VP_ENABLED) {
+		vp_new.w0 |= VP_W0_VALID;
+		vp_new.w6 = report_cl_pair >> 32;
+		vp_new.w7 = report_cl_pair & 0xffffffff;
+
+		if (flags & OPAL_XIVE_VP_SINGLE_ESCALATION)
+			rc = xive_setup_silent_gather(vp_id, true);
+		else
+			rc = xive_setup_silent_gather(vp_id, false);
+	} else {
+		vp_new.w0 = vp_new.w6 = vp_new.w7 = 0;
+		rc = xive_setup_silent_gather(vp_id, false);
+	}
+
+	if (rc) {
+		if (rc != OPAL_BUSY)
+			xive_dbg(x, "Silent gather setup failed with err %lld\n", rc);
+		goto bail;
+	}
+
+	rc = xive_vpc_cache_update(x, blk, idx, 0, 8, &vp_new, false, false);
+	if (rc)
+		goto bail;
+
+	/* When disabling, we scrub clean (invalidate the entry) so
+	 * we can avoid cache ops in alloc/free
+	 */
+	if (!(flags & OPAL_XIVE_VP_ENABLED))
+		xive_vpc_scrub_clean(x, blk, idx);
+
+bail:
+	unlock(&x->lock);
+	return rc;
+}
+
+static int64_t opal_xive_get_vp_state(uint64_t vp_id, uint64_t *out_state)
+{
+	struct xive *x;
+	struct xive_vp *vp;
+	uint32_t blk, idx;
+	int64_t rc;
+	bool group;
+
+	if (!out_state || !xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
+		return OPAL_PARAMETER;
+	if (group)
+		return OPAL_PARAMETER;
+	x = xive_from_pc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+	vp = xive_get_vp(x, idx);
+	if (!vp)
+		return OPAL_PARAMETER;
+
+	/* Scrub the vp */
+	lock(&x->lock);
+	rc = xive_vpc_scrub(x, blk, idx);
+	unlock(&x->lock);
+	if (rc)
+		return rc;
+
+	if (!(vp->w0 & VP_W0_VALID))
+		return OPAL_WRONG_STATE;
+
+	/*
+	 * Return word4 and word5 which contain the saved HW thread
+	 * context. The IPB register is all we care for now on P9.
+	 */
+	*out_state = (((uint64_t)vp->w4) << 32) | vp->w5;
+
+	return OPAL_SUCCESS;
+}
+
+static void xive_cleanup_cpu_tima(struct cpu_thread *c)
+{
+	struct xive_cpu_state *xs = c->xstate;
+	struct xive *x = xs->xive;
+	void *ind_tm_base = x->ic_base + (4 << x->ic_shift);
+	uint8_t old_w2 __unused, w2 __unused;
+
+	/* Reset the HW context */
+	xive_reset_enable_thread(c);
+
+	/* Setup indirect access to the corresponding thread */
+	xive_regw(x, PC_TCTXT_INDIR0,
+		  PC_TCTXT_INDIR_VALID |
+		  SETFIELD(PC_TCTXT_INDIR_THRDID, 0ull, c->pir & 0xff));
+
+	/* Workaround for HW issue: Need to read the above register
+	 * back before doing the subsequent accesses
+	 */
+	xive_regr(x, PC_TCTXT_INDIR0);
+
+	/* Set VT to 1 */
+	old_w2 = in_8(ind_tm_base + TM_QW3_HV_PHYS + TM_WORD2);
+	out_8(ind_tm_base + TM_QW3_HV_PHYS + TM_WORD2, 0x80);
+	w2 = in_8(ind_tm_base + TM_QW3_HV_PHYS + TM_WORD2);
+
+	/* Dump HV state */
+	xive_cpu_vdbg(c, "[reset] VP TIMA VP=%x/%x W01=%016llx W2=%02x->%02x\n",
+		      xs->vp_blk, xs->vp_idx,
+		      in_be64(ind_tm_base + TM_QW3_HV_PHYS),
+		      old_w2, w2);
+
+	/* Reset indirect access */
+	xive_regw(x, PC_TCTXT_INDIR0, 0);
+}
+
+#ifdef USE_INDIRECT
+static int64_t xive_vc_ind_cache_kill(struct xive *x, uint64_t type)
+{
+	uint64_t val;
+
+	/* We clear the whole thing */
+	xive_regw(x, VC_AT_MACRO_KILL_MASK, 0);
+	xive_regw(x, VC_AT_MACRO_KILL, VC_KILL_VALID |
+		  SETFIELD(VC_KILL_TYPE, 0ull, type));
+
+	/* XXX SIMICS problem ? */
+	if (chip_quirk(QUIRK_SIMICS))
+		return 0;
+
+	/* XXX Add timeout */
+	for (;;) {
+		val = xive_regr(x, VC_AT_MACRO_KILL);
+		if (!(val & VC_KILL_VALID))
+			break;
+	}
+	return 0;
+}
+
+static int64_t xive_pc_ind_cache_kill(struct xive *x)
+{
+	uint64_t val;
+
+	/* We clear the whole thing */
+	xive_regw(x, PC_AT_KILL_MASK, 0);
+	xive_regw(x, PC_AT_KILL, PC_AT_KILL_VALID);
+
+	/* XXX SIMICS problem ? */
+	if (chip_quirk(QUIRK_SIMICS))
+		return 0;
+
+	/* XXX Add timeout */
+	for (;;) {
+		val = xive_regr(x, PC_AT_KILL);
+		if (!(val & PC_AT_KILL_VALID))
+			break;
+	}
+	return 0;
+}
+
+static void xive_cleanup_vp_ind(struct xive *x)
+{
+	int i;
+
+	xive_dbg(x, "Cleaning up %d VP ind entries...\n", x->vp_ind_count);
+	for (i = 0; i < x->vp_ind_count; i++) {
+		if (x->vp_ind_base[i] & VSD_FIRMWARE) {
+			xive_dbg(x, " %04x ... skip (firmware)\n", i);
+			continue;
+		}
+		if (x->vp_ind_base[i] != 0) {
+			x->vp_ind_base[i] = 0;
+			xive_dbg(x, " %04x ... cleaned\n", i);
+		}
+	}
+	xive_pc_ind_cache_kill(x);
+}
+
+static void xive_cleanup_eq_ind(struct xive *x)
+{
+	int i;
+
+	xive_dbg(x, "Cleaning up %d EQ ind entries...\n", x->eq_ind_count);
+	for (i = 0; i < x->eq_ind_count; i++) {
+		if (x->eq_ind_base[i] & VSD_FIRMWARE) {
+			xive_dbg(x, " %04x ... skip (firmware)\n", i);
+			continue;
+		}
+		if (x->eq_ind_base[i] != 0) {
+			x->eq_ind_base[i] = 0;
+			xive_dbg(x, " %04x ... cleaned\n", i);
+		}
+	}
+	xive_vc_ind_cache_kill(x, VC_KILL_EQD);
+}
+#endif /* USE_INDIRECT */
+
+static void xive_reset_one(struct xive *x)
+{
+	struct cpu_thread *c;
+	bool eq_firmware;
+	int i;
+
+	xive_dbg(x, "Resetting one xive...\n");
+
+	lock(&x->lock);
+
+	/* Check all interrupts are disabled */
+	i = bitmap_find_one_bit(*x->int_enabled_map, 0, MAX_INT_ENTRIES);
+	if (i >= 0)
+		xive_warn(x, "Interrupt %d (and maybe more) not disabled"
+			  " at reset !\n", i);
+
+	/* Reset IPI allocation */
+	xive_dbg(x, "freeing alloc map %p/%p\n",
+		 x->ipi_alloc_map, *x->ipi_alloc_map);
+	memset(x->ipi_alloc_map, 0, BITMAP_BYTES(MAX_INT_ENTRIES));
+
+	xive_dbg(x, "Resetting EQs...\n");
+
+	/* Reset all allocated EQs and free the user ones */
+	bitmap_for_each_one(*x->eq_map, MAX_EQ_COUNT >> 3, i) {
+		struct xive_eq eq0;
+		struct xive_eq *eq;
+		int j;
+
+		if (i == 0)
+			continue;
+		eq_firmware = false;
+		for (j = 0; j < 8; j++) {
+			uint32_t idx = (i << 3) | j;
+
+			eq = xive_get_eq(x, idx);
+			if (!eq)
+				continue;
+
+			/* We need to preserve the firmware bit, otherwise
+			 * we will incorrectly free the EQs that are reserved
+			 * for the physical CPUs
+			 */
+			if (eq->w0 & EQ_W0_VALID) {
+				if (!(eq->w0 & EQ_W0_FIRMWARE))
+					xive_dbg(x, "EQ 0x%x:0x%x is valid at reset: %08x %08x\n",
+						 x->block_id, idx, eq->w0, eq->w1);
+				eq0 = *eq;
+				xive_cleanup_eq(&eq0);
+				xive_eqc_cache_update(x, x->block_id,
+						      idx, 0, 4, &eq0, false, true);
+			}
+			if (eq->w0 & EQ_W0_FIRMWARE)
+				eq_firmware = true;
+		}
+		if (!eq_firmware)
+			bitmap_clr_bit(*x->eq_map, i);
+	}
+
+	/* Take out all VPs from HW and reset all CPPRs to 0 */
+	for_each_present_cpu(c) {
+		if (c->chip_id != x->chip_id)
+			continue;
+		if (!c->xstate)
+			continue;
+		xive_cleanup_cpu_tima(c);
+	}
+
+	/* Reset all user-allocated VPs. This is inefficient, we should
+	 * either keep a bitmap of allocated VPs or add an iterator to
+	 * the buddy which is trickier but doable.
+	 */
+	for (i = 0; i < MAX_VP_COUNT; i++) {
+		struct xive_vp *vp;
+		struct xive_vp vp0 = {0};
+
+		/* Ignore the physical CPU VPs */
+#ifdef USE_BLOCK_GROUP_MODE
+		if (i >= INITIAL_VP_BASE &&
+		    i < (INITIAL_VP_BASE + INITIAL_VP_COUNT))
+			continue;
+#else
+		if (x->block_id == 0 &&
+		    i >= INITIAL_BLK0_VP_BASE &&
+		    i < (INITIAL_BLK0_VP_BASE + INITIAL_BLK0_VP_BASE))
+			continue;
+#endif
+		/* Is the VP valid ? */
+		vp = xive_get_vp(x, i);
+		if (!vp || !(vp->w0 & VP_W0_VALID))
+			continue;
+
+		/* Clear it */
+		xive_dbg(x, "VP 0x%x:0x%x is valid at reset\n", x->block_id, i);
+		xive_vpc_cache_update(x, x->block_id,
+				      i, 0, 8, &vp0, false, true);
+	}
+
+#ifndef USE_BLOCK_GROUP_MODE
+	/* If block group mode isn't enabled, reset VP alloc buddy */
+	buddy_reset(x->vp_buddy);
+	if (x->block_id == 0)
+		assert(buddy_reserve(x->vp_buddy, 0x800, 11));
+#endif
+
+#ifdef USE_INDIRECT
+	/* Forget about remaining donated pages */
+	list_head_init(&x->donated_pages);
+
+	/* And cleanup donated indirect VP and EQ pages */
+	xive_cleanup_vp_ind(x);
+	xive_cleanup_eq_ind(x);
+#endif
+
+	/* The rest must not be called with the lock held */
+	unlock(&x->lock);
+
+	/* Re-configure VPs and emulation */
+	for_each_present_cpu(c) {
+		struct xive_cpu_state *xs = c->xstate;
+
+		if (c->chip_id != x->chip_id || !xs)
+			continue;
+
+		if (xive_mode == XIVE_MODE_EMU)
+			xive_init_cpu_emulation(xs, c);
+		else
+			xive_init_cpu_exploitation(xs);
+	}
+}
+
+static void xive_reset_mask_source_cb(struct irq_source *is,
+				      void *data __unused)
+{
+	struct xive_src *s = container_of(is, struct xive_src, is);
+	struct xive *x;
+	uint32_t isn;
+
+	if (is->ops != &xive_irq_source_ops)
+		return;
+
+	/* Skip escalation sources */
+	if (GIRQ_IS_ESCALATION(is->start))
+		return;
+
+	x = s->xive;
+
+	/* Iterate all interrupts */
+	for (isn = is->start; isn < is->end; isn++) {
+		/* Has it ever been enabled ? */
+		if (!bitmap_tst_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn)))
+			continue;
+		/* Mask it and clear the enabled map bit */
+		xive_vdbg(x, "[reset] disabling source 0x%x\n", isn);
+		__xive_set_irq_config(is, isn, 0, 0xff, isn, true, false);
+		bitmap_clr_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn));
+	}
+}
+
+static void xive_p9_cpu_reset(void)
+{
+	struct cpu_thread *c = this_cpu();
+	struct xive_cpu_state *xs = c->xstate;
+
+	xs->cppr = 0;
+	out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, 0);
+
+	in_be64(xs->tm_ring1 + TM_SPC_PULL_POOL_CTX);
+}
+
+static int64_t __xive_reset(uint64_t version)
+{
+	struct proc_chip *chip;
+
+	xive_mode = version;
+
+	/* Mask all interrupt sources */
+	irq_for_each_source(xive_reset_mask_source_cb, NULL);
+
+	/* For each XIVE do a sync... */
+	for_each_chip(chip) {
+		if (!chip->xive)
+			continue;
+		xive_sync(chip->xive);
+	}
+
+	/* For each XIVE reset everything else... */
+	for_each_chip(chip) {
+		if (!chip->xive)
+			continue;
+		xive_reset_one(chip->xive);
+	}
+
+#ifdef USE_BLOCK_GROUP_MODE
+	/* Cleanup global VP allocator */
+	buddy_reset(xive_vp_buddy);
+
+	/* We reserve the whole range of VPs representing HW chips.
+	 *
+	 * These are 0x80..0xff, so order 7 starting at 0x80. This will
+	 * reserve that range on each chip.
+	 */
+	assert(buddy_reserve(xive_vp_buddy, 0x80, 7));
+#endif /* USE_BLOCK_GROUP_MODE */
+
+	return OPAL_SUCCESS;
+}
+
+/* Called by fast reboot */
+static int64_t xive_p9_reset(void)
+{
+	if (xive_mode == XIVE_MODE_NONE)
+		return OPAL_SUCCESS;
+	return __xive_reset(XIVE_MODE_EMU);
+}
+
+static int64_t opal_xive_reset(uint64_t version)
+{
+	prlog(PR_DEBUG, "XIVE reset, version: %d...\n", (int)version);
+
+	if (version > 1)
+		return OPAL_PARAMETER;
+
+	return __xive_reset(version);
+}
+
+static int64_t opal_xive_free_vp_block(uint64_t vp_base)
+{
+	uint32_t blk, idx, i, j, count;
+	uint8_t order;
+	bool group;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+
+	if (!xive_decode_vp(vp_base, &blk, &idx, &order, &group))
+		return OPAL_PARAMETER;
+	if (group)
+		return OPAL_PARAMETER;
+#ifdef USE_BLOCK_GROUP_MODE
+	if (blk)
+		return OPAL_PARAMETER;
+	if (order < (xive_chips_alloc_bits + 1))
+		return OPAL_PARAMETER;
+	if (idx & ((1 << (order - xive_chips_alloc_bits)) - 1))
+		return OPAL_PARAMETER;
+#else
+	if (order < 1)
+		return OPAL_PARAMETER;
+	if (idx & ((1 << order) - 1))
+		return OPAL_PARAMETER;
+#endif
+
+	count = 1 << order;
+	for (i = 0; i < count; i++) {
+		uint32_t vp_id = vp_base + i;
+		uint32_t blk, idx, eq_blk, eq_idx;
+		struct xive *x;
+		struct xive_vp *vp;
+
+		if (!xive_decode_vp(vp_id, &blk, &idx, NULL, NULL)) {
+			prerror("XIVE: Couldn't decode VP id %u\n", vp_id);
+			return OPAL_INTERNAL_ERROR;
+		}
+		x = xive_from_pc_blk(blk);
+		if (!x) {
+			prerror("XIVE: Instance not found for deallocated VP"
+				" block %d\n", blk);
+			return OPAL_INTERNAL_ERROR;
+		}
+		vp = xive_get_vp(x, idx);
+		if (!vp) {
+			prerror("XIVE: VP not found for deallocation !");
+			return OPAL_INTERNAL_ERROR;
+		}
+
+		/* VP must be disabled */
+		if (vp->w0 & VP_W0_VALID) {
+			prlog(PR_ERR, "XIVE: freeing active VP %d\n", vp_id);
+			return OPAL_XIVE_FREE_ACTIVE;
+		}
+
+		/* Not populated */
+		if (vp->w1 == 0)
+			continue;
+		eq_blk = vp->w1 >> 28;
+		eq_idx = vp->w1 & 0x0fffffff;
+
+		lock(&x->lock);
+
+		/* Ensure EQs are disabled and cleaned up. Ideally the caller
+		 * should have done it but we double check it here
+		 */
+		for (j = 0; j < 7; j++) {
+			struct xive *eq_x = xive_from_vc_blk(eq_blk);
+			struct xive_eq eq, *orig_eq = xive_get_eq(eq_x, eq_idx + j);
+
+			if (!(orig_eq->w0 & EQ_W0_VALID))
+				continue;
+
+			prlog(PR_WARNING, "XIVE: freeing VP %d with queue %d active\n",
+			      vp_id, j);
+			eq = *orig_eq;
+			xive_cleanup_eq(&eq);
+			xive_eqc_cache_update(x, eq_blk, eq_idx + j, 0, 4, &eq, false, true);
+		}
+
+		/* Mark it not populated so we don't try to free it again */
+		vp->w1 = 0;
+
+		if (eq_blk != blk) {
+			prerror("XIVE: Block mismatch trying to free EQs\n");
+			unlock(&x->lock);
+			return OPAL_INTERNAL_ERROR;
+		}
+
+		xive_free_eq_set(x, eq_idx);
+		unlock(&x->lock);
+	}
+
+	xive_free_vps(vp_base);
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_alloc_vp_block(uint32_t alloc_order)
+{
+	uint32_t vp_base, eqs, count, i;
+	int64_t rc;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+
+	prlog(PR_TRACE, "opal_xive_alloc_vp_block(%d)\n", alloc_order);
+
+	vp_base = xive_alloc_vps(alloc_order);
+	if (XIVE_ALLOC_IS_ERR(vp_base)) {
+		if (vp_base == XIVE_ALLOC_NO_IND)
+			return OPAL_XIVE_PROVISIONING;
+		return OPAL_RESOURCE;
+	}
+
+	/* Allocate EQs and initialize VPs */
+	count = 1 << alloc_order;
+	for (i = 0; i < count; i++) {
+		uint32_t vp_id = vp_base + i;
+		uint32_t blk, idx;
+		struct xive *x;
+		struct xive_vp *vp;
+
+		if (!xive_decode_vp(vp_id, &blk, &idx, NULL, NULL)) {
+			prerror("XIVE: Couldn't decode VP id %u\n", vp_id);
+			return OPAL_INTERNAL_ERROR;
+		}
+		x = xive_from_pc_blk(blk);
+		if (!x) {
+			prerror("XIVE: Instance not found for allocated VP"
+				" block %d\n", blk);
+			rc = OPAL_INTERNAL_ERROR;
+			goto fail;
+		}
+		vp = xive_get_vp(x, idx);
+		if (!vp) {
+			prerror("XIVE: VP not found after allocation !");
+			rc = OPAL_INTERNAL_ERROR;
+			goto fail;
+		}
+
+		/* Allocate EQs, if fails, free the VPs and return */
+		lock(&x->lock);
+		eqs = xive_alloc_eq_set(x, false);
+		unlock(&x->lock);
+		if (XIVE_ALLOC_IS_ERR(eqs)) {
+			if (eqs == XIVE_ALLOC_NO_IND)
+				rc = OPAL_XIVE_PROVISIONING;
+			else
+				rc = OPAL_RESOURCE;
+			goto fail;
+		}
+
+		/* Initialize the VP structure. We don't use a cache watch
+		 * as we have made sure when freeing the entries to scrub
+		 * it out of the cache.
+		 */
+		memset(vp, 0, sizeof(*vp));
+		vp->w1 = (blk << 28) | eqs;
+		vp->w5 = 0xff000000;
+	}
+	return vp_base;
+ fail:
+	opal_xive_free_vp_block(vp_base);
+
+	return rc;
+}
+
+static int64_t xive_try_allocate_irq(struct xive *x)
+{
+	int idx, base_idx, max_count, girq;
+	struct xive_ive *ive;
+
+	lock(&x->lock);
+
+	base_idx = x->int_ipi_top - x->int_base;
+	max_count = x->int_hw_bot - x->int_ipi_top;
+
+	idx = bitmap_find_zero_bit(*x->ipi_alloc_map, base_idx, max_count);
+	if (idx < 0) {
+		unlock(&x->lock);
+		return XIVE_ALLOC_NO_SPACE;
+	}
+	bitmap_set_bit(*x->ipi_alloc_map, idx);
+	girq = x->int_base + idx;
+
+	/* Mark the IVE valid. Don't bother with the HW cache, it's
+	 * still masked anyway, the cache will be updated when unmasked
+	 * and configured.
+	 */
+	ive = xive_get_ive(x, girq);
+	if (!ive) {
+		bitmap_clr_bit(*x->ipi_alloc_map, idx);
+		unlock(&x->lock);
+		return OPAL_PARAMETER;
+	}
+	ive->w = IVE_VALID | IVE_MASKED | SETFIELD(IVE_EQ_DATA, 0ul, girq);
+	unlock(&x->lock);
+
+	return girq;
+}
+
+static int64_t opal_xive_allocate_irq(uint32_t chip_id)
+{
+	struct proc_chip *chip;
+	bool try_all = false;
+	int64_t rc;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+
+	if (chip_id == OPAL_XIVE_ANY_CHIP) {
+		try_all = true;
+		chip_id = this_cpu()->chip_id;
+	}
+	chip = get_chip(chip_id);
+	if (!chip)
+		return OPAL_PARAMETER;
+
+	/* Try initial target chip */
+	if (!chip->xive)
+		rc = OPAL_PARAMETER;
+	else
+		rc = xive_try_allocate_irq(chip->xive);
+	if (rc >= 0 || !try_all)
+		return rc;
+
+	/* Failed and we try all... do so */
+	for_each_chip(chip) {
+		if (!chip->xive)
+			continue;
+		rc = xive_try_allocate_irq(chip->xive);
+		if (rc >= 0)
+			break;
+	}
+	return rc;
+}
+
+static int64_t opal_xive_free_irq(uint32_t girq)
+{
+	struct irq_source *is = irq_find_source(girq);
+	struct xive_src *s = container_of(is, struct xive_src, is);
+	struct xive *x = xive_from_isn(girq);
+	struct xive_ive *ive;
+	uint32_t idx;
+
+	if (xive_mode != XIVE_MODE_EXPL)
+		return OPAL_WRONG_STATE;
+	if (!x || !is)
+		return OPAL_PARAMETER;
+
+	idx = GIRQ_TO_IDX(girq);
+
+	lock(&x->lock);
+
+	ive = xive_get_ive(x, girq);
+	if (!ive) {
+		unlock(&x->lock);
+		return OPAL_PARAMETER;
+	}
+
+	/* Mask the interrupt source */
+	xive_update_irq_mask(s, girq - s->esb_base, true);
+
+	/* Mark the IVE masked and invalid */
+	ive->w = IVE_MASKED | IVE_VALID;
+	xive_ivc_scrub(x, x->block_id, idx);
+
+	/* Free it */
+	if (!bitmap_tst_bit(*x->ipi_alloc_map, idx)) {
+		unlock(&x->lock);
+		return OPAL_PARAMETER;
+	}
+	bitmap_clr_bit(*x->ipi_alloc_map, idx);
+	bitmap_clr_bit(*x->int_enabled_map, idx);
+	unlock(&x->lock);
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_dump_tm(uint32_t offset, const char *n, uint32_t pir)
+{
+	struct cpu_thread *c = find_cpu_by_pir(pir);
+	struct xive_cpu_state *xs;
+	struct xive *x;
+	void *ind_tm_base;
+	uint64_t v0,v1;
+
+	if (!c)
+		return OPAL_PARAMETER;
+	xs = c->xstate;
+	if (!xs || !xs->tm_ring1)
+		return OPAL_INTERNAL_ERROR;
+	x = xs->xive;
+	ind_tm_base = x->ic_base + (4 << x->ic_shift);
+
+	lock(&x->lock);
+
+	/* Setup indirect access to the corresponding thread */
+	xive_regw(x, PC_TCTXT_INDIR0,
+		  PC_TCTXT_INDIR_VALID |
+		  SETFIELD(PC_TCTXT_INDIR_THRDID, 0ull, pir & 0xff));
+
+	/* Workaround for HW issue: Need to read the above register
+	 * back before doing the subsequent accesses
+	 */
+	xive_regr(x, PC_TCTXT_INDIR0);
+
+	v0 = in_be64(ind_tm_base + offset);
+	if (offset == TM_QW3_HV_PHYS) {
+		v1 = in_8(ind_tm_base + offset + 8);
+		v1 <<= 56;
+	} else {
+		v1 = in_be32(ind_tm_base + offset + 8);
+		v1 <<= 32;
+	}
+	prlog(PR_INFO, "CPU[%04x]: TM state for QW %s\n", pir, n);
+	prlog(PR_INFO, "CPU[%04x]: NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
+	      " W2       W3\n", pir);
+	prlog(PR_INFO, "CPU[%04x]: %02x  %02x   %02x  %02x    %02x   "
+	       "%02x  %02x  %02x   %08x %08x\n", pir,
+	      (uint8_t)(v0 >> 58) & 0xff, (uint8_t)(v0 >> 48) & 0xff,
+	      (uint8_t)(v0 >> 40) & 0xff, (uint8_t)(v0 >> 32) & 0xff,
+	      (uint8_t)(v0 >> 24) & 0xff, (uint8_t)(v0 >> 16) & 0xff,
+	      (uint8_t)(v0 >>  8) & 0xff, (uint8_t)(v0      ) & 0xff,
+	      (uint32_t)(v1 >> 32) & 0xffffffff,
+	      (uint32_t)(v1 & 0xffffffff));
+
+
+	xive_regw(x, PC_TCTXT_INDIR0, 0);
+	unlock(&x->lock);
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_dump_vp(uint32_t vp_id)
+{
+	uint32_t blk, idx;
+	uint8_t order;
+	bool group;
+	struct xive *x;
+	struct xive_vp *vp;
+	uint32_t *vpw;
+
+	if (!xive_decode_vp(vp_id, &blk, &idx, &order, &group))
+		return OPAL_PARAMETER;
+
+	x = xive_from_vc_blk(blk);
+	if (!x)
+		return OPAL_PARAMETER;
+	vp = xive_get_vp(x, idx);
+	if (!vp)
+		return OPAL_PARAMETER;
+	lock(&x->lock);
+
+	xive_vpc_scrub_clean(x, blk, idx);
+
+	vpw = ((uint32_t *)vp) + (group ? 8 : 0);
+	prlog(PR_INFO, "VP[%08x]: 0..3: %08x %08x %08x %08x\n", vp_id,
+	      vpw[0], vpw[1], vpw[2], vpw[3]);
+	prlog(PR_INFO, "VP[%08x]: 4..7: %08x %08x %08x %08x\n", vp_id,
+	      vpw[4], vpw[5], vpw[6], vpw[7]);
+	unlock(&x->lock);
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t __opal_xive_dump_emu(struct xive_cpu_state *xs, uint32_t pir)
+{
+	struct xive_eq *eq;
+	uint32_t ipi_target;
+	uint8_t *mm, pq;
+
+	prlog(PR_INFO, "CPU[%04x]: XIVE emulation state\n", pir);
+
+	prlog(PR_INFO, "CPU[%04x]: cppr=%02x mfrr=%02x pend=%02x"
+	      " prev_cppr=%02x total_irqs=%llx\n", pir,
+	      xs->cppr, xs->mfrr, xs->pending, xs->prev_cppr, xs->total_irqs);
+
+	prlog(PR_INFO, "CPU[%04x]: EQ IDX=%x MSK=%x G=%d [%08x %08x %08x > %08x %08x %08x %08x ...]\n",
+	      pir,  xs->eqptr, xs->eqmsk, xs->eqgen,
+	      xs->eqbuf[(xs->eqptr - 3) & xs->eqmsk],
+	      xs->eqbuf[(xs->eqptr - 2) & xs->eqmsk],
+	      xs->eqbuf[(xs->eqptr - 1) & xs->eqmsk],
+	      xs->eqbuf[(xs->eqptr + 0) & xs->eqmsk],
+	      xs->eqbuf[(xs->eqptr + 1) & xs->eqmsk],
+	      xs->eqbuf[(xs->eqptr + 2) & xs->eqmsk],
+	      xs->eqbuf[(xs->eqptr + 3) & xs->eqmsk]);
+
+	mm = xs->xive->esb_mmio + GIRQ_TO_IDX(xs->ipi_irq) * 0x20000;
+	pq = in_8(mm + 0x10800);
+	if (xive_get_irq_targetting(xs->ipi_irq, &ipi_target, NULL, NULL))
+		prlog(PR_INFO, "CPU[%04x]: IPI #%08x PQ=%x target=%08x\n",
+				pir, xs->ipi_irq, pq, ipi_target);
+	else
+		prlog(PR_INFO, "CPU[%04x]: IPI #%08x PQ=%x target=??\n",
+				pir, xs->ipi_irq, pq);
+
+
+
+	__xive_cache_scrub(xs->xive, xive_cache_eqc, xs->eq_blk,
+			   xs->eq_idx + XIVE_EMULATION_PRIO,
+			   false, false);
+	eq = xive_get_eq(xs->xive, xs->eq_idx + XIVE_EMULATION_PRIO);
+	prlog(PR_INFO, "CPU[%04x]: EQ @%p W0=%08x W1=%08x qbuf @%p\n",
+	      pir, eq, eq->w0, eq->w1, xs->eqbuf);
+
+	return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_dump_emu(uint32_t pir)
+{
+	struct cpu_thread *c = find_cpu_by_pir(pir);
+	struct xive_cpu_state *xs;
+	int64_t rc;
+
+	if (!c)
+		return OPAL_PARAMETER;
+
+	xs = c->xstate;
+	if (!xs) {
+		prlog(PR_INFO, "  <none>\n");
+		return OPAL_SUCCESS;
+	}
+	lock(&xs->lock);
+	rc = __opal_xive_dump_emu(xs, pir);
+	log_print(xs);
+	unlock(&xs->lock);
+
+	return rc;
+}
+
+static int64_t opal_xive_sync_irq_src(uint32_t girq)
+{
+	struct xive *x = xive_from_isn(girq);
+
+	if (!x)
+		return OPAL_PARAMETER;
+	return xive_sync(x);
+}
+
+static int64_t opal_xive_sync_irq_target(uint32_t girq)
+{
+	uint32_t target, vp_blk;
+	struct xive *x;
+
+	if (!xive_get_irq_targetting(girq, &target, NULL, NULL))
+		return OPAL_PARAMETER;
+	if (!xive_decode_vp(target, &vp_blk, NULL, NULL, NULL))
+		return OPAL_PARAMETER;
+	x = xive_from_pc_blk(vp_blk);
+	if (!x)
+		return OPAL_PARAMETER;
+	return xive_sync(x);
+}
+
+static int64_t opal_xive_sync(uint32_t type, uint32_t id)
+{
+	int64_t rc = OPAL_SUCCESS;;
+
+	if (type & XIVE_SYNC_EAS)
+		rc = opal_xive_sync_irq_src(id);
+	if (rc)
+		return rc;
+	if (type & XIVE_SYNC_QUEUE)
+		rc = opal_xive_sync_irq_target(id);
+	if (rc)
+		return rc;
+
+	/* Add more ... */
+
+	return rc;
+}
+
+static int64_t opal_xive_dump(uint32_t type, uint32_t id)
+{
+	switch (type) {
+	case XIVE_DUMP_TM_HYP:
+		return opal_xive_dump_tm(TM_QW3_HV_PHYS, "PHYS", id);
+	case XIVE_DUMP_TM_POOL:
+		return opal_xive_dump_tm(TM_QW2_HV_POOL, "POOL", id);
+	case XIVE_DUMP_TM_OS:
+		return opal_xive_dump_tm(TM_QW1_OS, "OS  ", id);
+	case XIVE_DUMP_TM_USER:
+		return opal_xive_dump_tm(TM_QW0_USER, "USER", id);
+	case XIVE_DUMP_VP:
+		return opal_xive_dump_vp(id);
+	case XIVE_DUMP_EMU_STATE:
+		return opal_xive_dump_emu(id);
+	default:
+		return OPAL_PARAMETER;
+	}
+}
+
+static void xive_init_globals(void)
+{
+	uint32_t i;
+
+	for (i = 0; i < XIVE_MAX_CHIPS; i++)
+		xive_block_to_chip[i] = XIVE_INVALID_CHIP;
+}
+
+static void xive_p9_init(const char *compat)
+{
+	struct dt_node *np;
+	struct proc_chip *chip;
+	struct cpu_thread *cpu;
+	struct xive *one_xive;
+	bool first = true;
+
+	/* Look for xive nodes and do basic inits */
+	dt_for_each_compatible(dt_root, np, compat) {
+		struct xive *x;
+
+		/* Initialize some global stuff */
+		if (first)
+			xive_init_globals();
+
+		/* Create/initialize the xive instance */
+		x = init_one_xive(np);
+		if (first)
+			one_xive = x;
+		first = false;
+	}
+	if (first)
+		return;
+
+	xive_mode = XIVE_MODE_EMU;
+
+	/* Init VP allocator */
+	xive_init_vp_allocator();
+
+	/* Create a device-tree node for Linux use */
+	xive_create_mmio_dt_node(one_xive);
+
+	/* Some inits must be done after all xive have been created
+	 * such as setting up the forwarding ports
+	 */
+	for_each_chip(chip) {
+		if (chip->xive)
+			late_init_one_xive(chip->xive);
+	}
+
+	/* Initialize XICS emulation per-cpu structures */
+	for_each_present_cpu(cpu) {
+		xive_init_cpu(cpu);
+	}
+	/* Add interrupts propertie to each CPU node */
+	for_each_present_cpu(cpu) {
+		if (cpu_is_thread0(cpu))
+			xive_init_cpu_properties(cpu);
+	}
+
+	/* Calling boot CPU */
+	xive_cpu_callin(this_cpu());
+
+	/* Register XICS emulation calls */
+	opal_register(OPAL_INT_GET_XIRR, opal_xive_get_xirr, 2);
+	opal_register(OPAL_INT_SET_CPPR, opal_xive_set_cppr, 1);
+	opal_register(OPAL_INT_EOI, opal_xive_eoi, 1);
+	opal_register(OPAL_INT_SET_MFRR, opal_xive_set_mfrr, 2);
+
+	/* Register XIVE exploitation calls */
+	opal_register(OPAL_XIVE_RESET, opal_xive_reset, 1);
+	opal_register(OPAL_XIVE_GET_IRQ_INFO, opal_xive_get_irq_info, 6);
+	opal_register(OPAL_XIVE_GET_IRQ_CONFIG, opal_xive_get_irq_config, 4);
+	opal_register(OPAL_XIVE_SET_IRQ_CONFIG, opal_xive_set_irq_config, 4);
+	opal_register(OPAL_XIVE_GET_QUEUE_INFO, opal_xive_get_queue_info, 7);
+	opal_register(OPAL_XIVE_SET_QUEUE_INFO, opal_xive_set_queue_info, 5);
+	opal_register(OPAL_XIVE_DONATE_PAGE, opal_xive_donate_page, 2);
+	opal_register(OPAL_XIVE_ALLOCATE_IRQ, opal_xive_allocate_irq, 1);
+	opal_register(OPAL_XIVE_FREE_IRQ, opal_xive_free_irq, 1);
+	opal_register(OPAL_XIVE_ALLOCATE_VP_BLOCK, opal_xive_alloc_vp_block, 1);
+	opal_register(OPAL_XIVE_FREE_VP_BLOCK, opal_xive_free_vp_block, 1);
+	opal_register(OPAL_XIVE_GET_VP_INFO, opal_xive_get_vp_info, 5);
+	opal_register(OPAL_XIVE_SET_VP_INFO, opal_xive_set_vp_info, 3);
+	opal_register(OPAL_XIVE_SYNC, opal_xive_sync, 2);
+	opal_register(OPAL_XIVE_DUMP, opal_xive_dump, 2);
+	opal_register(OPAL_XIVE_GET_QUEUE_STATE, opal_xive_get_queue_state, 4);
+	opal_register(OPAL_XIVE_SET_QUEUE_STATE, opal_xive_set_queue_state, 4);
+	opal_register(OPAL_XIVE_GET_VP_STATE, opal_xive_get_vp_state, 2);
+}
+
+struct xive_ops xive_p9_ops = {
+	.name		    = "POWER9 Interrupt Controller (XIVE) new driver",
+	.compat		    = "ibm,power9-xive-x",
+
+	.init		    = xive_p9_init,
+	.late_init	    = xive_p9_late_init,
+	.reset		    = xive_p9_reset,
+	.alloc_hw_irqs	    = xive_p9_alloc_hw_irqs,
+	.alloc_ipi_irqs	    = xive_p9_alloc_ipi_irqs,
+	.get_trigger_port   = xive_p9_get_trigger_port,
+	.get_notify_port    = xive_p9_get_notify_port,
+	.get_notify_base    = xive_p9_get_notify_base,
+	.register_hw	    = xive_p9_register_hw_source,
+	.register_ipi	    = xive_p9_register_ipi_source,
+	.cpu_reset	    = xive_p9_cpu_reset,
+	.cpu_callin	    = xive_p9_cpu_callin,
+};
diff --git a/hw/xive.c b/hw/xive.c
index 13c985536720..3fc6836d9f6b 100644
--- a/hw/xive.c
+++ b/hw/xive.c
@@ -5524,8 +5524,8 @@ void xive_late_init(void)
 	xive_ops->late_init();
 }
 
-struct xive_ops xive_p9_ops = {
-	.name		    = "POWER9 Interrupt Controller (XIVE)",
+struct xive_ops xive_legacy_ops = {
+	.name		    = "POWER9 Interrupt Controller (XIVE) legacy",
 	.compat		    = "ibm,power9-xive-x",
 
 	.init		    = xive_p9_init,
@@ -5544,6 +5544,7 @@ struct xive_ops xive_p9_ops = {
 
 static struct xive_ops *xive_ops_table[] = {
 	&xive_p9_ops,
+	&xive_legacy_ops,
 };
 
 static struct xive_ops *xive_ops_match(void)
diff --git a/hw/Makefile.inc b/hw/Makefile.inc
index b708bdfe7630..40ea45b7aaf4 100644
--- a/hw/Makefile.inc
+++ b/hw/Makefile.inc
@@ -4,7 +4,7 @@ HW_OBJS  = xscom.o chiptod.o lpc.o lpc-uart.o psi.o
 HW_OBJS += homer.o slw.o occ.o fsi-master.o centaur.o imc.o
 HW_OBJS += nx.o nx-rng.o nx-crypto.o nx-compress.o nx-842.o nx-gzip.o
 HW_OBJS += phb3.o sfc-ctrl.o fake-rtc.o bt.o p8-i2c.o prd.o
-HW_OBJS += dts.o lpc-rtc.o npu.o npu-hw-procedures.o xive.o phb4.o
+HW_OBJS += dts.o lpc-rtc.o npu.o npu-hw-procedures.o xive.o phb4.o xive-p9.o
 HW_OBJS += fake-nvram.o lpc-mbox.o npu2.o npu2-hw-procedures.o
 HW_OBJS += npu2-common.o npu2-opencapi.o phys-map.o sbe-p9.o capp.o
 HW_OBJS += occ-sensor.o vas.o sbe-p8.o dio-p9.o lpc-port80h.o cache-p9.o
-- 
2.21.0



More information about the Skiboot mailing list