[Skiboot] skiboot 5.11-rc1 released
Stewart Smith
stewart at linux.ibm.com
Wed Mar 28 16:56:16 AEDT 2018
skiboot-5.11-rc1
****************
skiboot v5.11-rc1 was released on Wednesday March 28th 2018. It is the
first release candidate of skiboot 5.11, which will become the new
stable release of skiboot following the 5.10 release, first released
February 23rd 2018.
It is not expected to keep the 5.11 branch around for long, and
instead quickly move onto a 6.0, which will mark the basis for op-
build v2.0 and will be required for POWER9 systems.
skiboot v5.11-rc1 contains all bug fixes as of skiboot-5.10.3 and
*skiboot-5.4.9* (the currently maintained stable releases). There may
be more 5.10.x stable releases, it will depend on demand.
For how the skiboot stable releases work, see Skiboot stable tree
rules and releases for details.
The current plan is to cut the final 5.11 in March, with skiboot 5.11
being for all POWER8 and POWER9 platforms in op-build v1.22. This
release is targeted to early POWER9 systems.
Over skiboot-5.10, we have the following changes:
New Platforms
=============
* Add VESNIN platform support
The Vesnin platform from YADRO is a 4 socked POWER8 system with up
to 8TB of memory with 460GB/s of memory bandwidth in only 2U. Many
kudos to the team from Yadro for submitting their code upstream!
New Features
============
* fast-reboot: enable by default for POWER9
* Fast reboot is disabled if NPU2 is present or CAPI2/OpenCAPI is
used
* PCI tunneled operations on PHB4
* phb4: set PBCQ Tunnel BAR for tunneled operations
P9 supports PCI tunneled operations (atomics and as_notify) that
are initiated by devices.
A subset of the tunneled operations require a response, that must
be sent back from the host to the device. For example, an atomic
compare and swap will return the compare status, as swap will only
performed in case of success. Similarly, as_notify reports if the
target thread has been woken up or not, because the operation may
fail.
To enable tunneled operations, a device driver must tell the host
where it expects tunneled operation responses, by setting the PBCQ
Tunnel BAR Response register with a specific value within the
range of its BARs.
This register is currently initialized by enable_capi_mode(). But,
as tunneled operations may also operate in PCI mode, a new API is
required to set the PBCQ Tunnel BAR Response register, without
switching to CAPI mode.
This patch provides two new OPAL calls to get/set the PBCQ Tunnel
BAR Response register.
Note: as there is only one PBCQ Tunnel BAR register, shared
between all the devices connected to the same PHB, only one of
these devices will be able to use tunneled operations, at any
time.
* phb4: set PHB CMPM registers for tunneled operations
P9 supports PCI tunneled operations (atomics and as_notify) that
require setting the PHB ASN Compare/Mask register with a 16-bit
indication.
This register is currently initialized by enable_capi_mode(). But,
as tunneled operations may also work in PCI mode, the ASN
Compare/Mask register should rather be initialized in
phb4_init_ioda3().
This patch also adds “ibm,phb-indications” to the device tree, to
tell Linux the values of CAPI, ASN, and NBW indications, when
supported.
Tunneled operations tested by IBM in CAPI mode, by Mellanox
Technologies in PCI mode.
* Tie tm-suspend fw-feature and opal_reinit_cpus() together
Currently opal_reinit_cpus(OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED)
always returns OPAL_UNSUPPORTED.
This ties the tm suspend fw-feature to the
opal_reinit_cpus(OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED) so that when
tm suspend is disabled, we correctly report it to the kernel. For
backwards compatibility, it’s assumed tm suspend is available if the
fw-feature is not present.
Currently hostboot will clear fw-feature(TM_SUSPEND_ENABLED) on P9N
DD2.1. P9N DD2.2 will set fw-feature(TM_SUSPEND_ENABLED). DD2.0 and
below has TM disabled completely (not just suspend).
We are using opal_reinit_cpus() to determine this setting (rather
than the device tree/HDAT) as some future firmware may let us change
this dynamically after boot. That is not the case currently though.
Power Management
================
* SLW: Increase stop4-5 residency by 10x
Using DGEMM benchmark we observed there was a drop of 5-9%
throughput with and without stop4/5. In this benchmark the GPU waits
on the cpu to wakeup and provide the subsequent data block to
compute. The wakup latency accumulates over the run and shows up as
a performance drop.
Linux enters stop4/5 more aggressively for its wakeup latency.
Increasing the residency from 1ms to 10ms makes the performance drop
<1%
* occ: Set up OCC messaging even if we fail to setup pstates
This means that we no longer hit this bug if we fail to get valid
pstates from the OCC.
[console-pexpect]#echo 1 > //sys/firmware/opal/sensor_groups//occ-csm0/clear
echo 1 > //sys/firmware/opal/sensor_groups//occ-csm0/clear
[ 94.019971181,5] CPU ATTEMPT TO RE-ENTER FIRMWARE! PIR=083d cpu @0x33cf4000 -> pir=083d token=8
[ 94.020098392,5] CPU ATTEMPT TO RE-ENTER FIRMWARE! PIR=083d cpu @0x33cf4000 -> pir=083d token=8
[ 10.318805] Disabling lock debugging due to kernel taint
[ 10.318808] Severe Machine check interrupt [Not recovered]
[ 10.318812] NIP [000000003003e434]: 0x3003e434
[ 10.318813] Initiator: CPU
[ 10.318815] Error type: Real address [Load/Store (foreign)]
[ 10.318817] opal: Hardware platform error: Unrecoverable Machine Check exception
[ 10.318821] CPU: 117 PID: 2745 Comm: sh Tainted: G M 4.15.9-openpower1 #3
[ 10.318823] NIP: 000000003003e434 LR: 000000003003025c CTR: 0000000030030240
[ 10.318825] REGS: c00000003fa7bd80 TRAP: 0200 Tainted: G M (4.15.9-openpower1)
[ 10.318826] MSR: 9000000000201002 <SF,HV,ME,RI> CR: 48002888 XER: 20040000
[ 10.318831] CFAR: 0000000030030258 DAR: 394a00147d5a03a6 DSISR: 00000008 SOFTE: 1
mbox based platforms
--------------------
For platforms using the mbox protocol for host flash access (all BMC
based OpenPOWER systems, most OpenBMC based systems) there have been
some hardening efforts in the event of the BMC being poorly behaved.
* mbox: Reduce default BMC timeouts
Rebooting a BMC can take 70 seconds. Skiboot cannot possibly spin
for 70 seconds waiting for a BMC to come back. This also makes the
current default of 30 seconds a bit pointless, is it far too short
to be a worse case wait time but too long to avoid hitting
hardlockup detectors and wrecking havoc inside host linux.
Just change it to three seconds so that host linux will survive and
that, reads and writes will fail but at least the host stays up.
Also refactored the waiting loop just a bit so that it’s easier to
read.
* mbox: Harden against BMC daemon errors
Bugs present in the BMC daemon mean that skiboot gets presented with
mbox windows of size zero. These windows cannot be valid and skiboot
already detects these conditions.
Currently skiboot warns quite strongly about the occurrence of these
problems. The problem for skiboot is that it doesn’t take any
action. Initially I wanting to avoid putting policy like this into
skiboot but since these bugs aren’t going away and skiboot barfing
is leading to lockups and ultimately the host going down something
needs to be done.
I propose that when we detect the problem we fail the mbox call and
punt the problem back up to Linux. I don’t like it but at least it
will cause errors to cascade and won’t bring the host down. I’m not
sure how Linux is supposed to detect this or what it can even do but
this is better than a crash.
Diagnosing a failure to boot if skiboot its self fails to read flash
may be marginally more difficult with this patch. This is because
skiboot will now only print one warning about the zero sized window
rather than continuously spitting it out.
Fast Reboot Improvements
========================
Around fast-reboot we have made several improvements to harden the
fast reboot code paths and resort to a full IPL if something doesn’t
look right.
* core/fast-reboot: zero memory after fast reboot
This improves the security and predictability of the fast reboot
environment.
There can not be a secure fence between fast reboots, because a
malicious OS can modify the firmware itself. However a well-behaved
OS can have a reasonable expectation that OS memory regions it has
modified will be cleared upon fast reboot.
The memory is zeroed after all other CPUs come up from fast reboot,
just before the new kernel is loaded and booted into. This allows
image preloading to run concurrently, and will allow parallelisation
of the clearing in future.
* core/fast-reboot: verify mem regions before fast reboot
Run the mem_region sanity checkers before proceeding with fast
reboot.
This is the beginning of proactive sanity checks on opal data for
fast reboot (with complements the reactive disable_fast_reboot
cases). This is encouraged to re-use and share any kind of debug
code and unit test code.
* fast-reboot: occ: Only delete /ibm, opal/power-mgt nodes if they
exist
* core/fast-reboot: disable fast reboot upon fundamental
entry/exit/locking errors
This disables fast reboot in several more cases where serious errors
like lock corruption or call re-entrancy are detected.
* capp: Disable fast-reboot whenever enable_capi_mode() is called
This patch updates phb4_set_capi_mode() to disable fast-reboot
whenever enable_capi_mode() is called, irrespective to its return
value. This should prevent against a possibility of not disabling
fast-reboot when some changes to enable_capi_mode() causing return
of an error and leaving CAPP in enabled mode.
* fast-reboot: occ: Delete OCC child nodes in /ibm, opal/power-mgt
Fast-reboot in P8 fails to re-init OCC data as there are chipwise
OCC nodes which are already present in the /ibm,opal/power-mgt node.
These per-chip nodes hold the voltage IDs for each pstate and these
can be changed on OCC pstate table biasing. So delete these before
calling the re-init code to re-parse and populate the pstate data.
Debugging/SRESET improvemens
============================
* core/opal: allow some re-entrant calls
This allows a small number of OPAL calls to succeed despite re-
entering the firmware, and rejects others rather than aborting.
This allows a system reset interrupt that interrupts OPAL to do
something useful. Sreset other CPUs, use the console, which allows
xmon to work or stack traces to be printed, reboot the system.
Use OPAL_INTERNAL_ERROR when rejecting, rather than OPAL_BUSY, which
is used for many other things that does not mean a serious permanent
error.
* core/opal: abort in case of re-entrant OPAL call
The stack is already destroyed by the time we get here, so there is
not much point continuing.
* core/lock: Add lock timeout warnings
There are currently no timeout warnings for locks in skiboot. We
assume that the lock will eventually become free, which may not
always be the case.
This patch adds timeout warnings for locks. Any lock which spins for
more than 5 seconds will throw a warning and stacktrace for that
thread. This is useful for debugging siturations where a lock which
hang, waiting for the lock to be freed.
* core/lock: Add deadlock detection
This adds simple deadlock detection. The detection looks for
circular dependencies in the lock requests. It will abort and
display a stack trace when a deadlock occurs. The detection is
enabled by DEBUG_LOCKS (enabled by default). While the detection may
have a slight performance overhead, as there are not a huge number
of locks in skiboot this overhead isn’t significant.
* core/hmi: report processor recovery reason from core FIR bits on
P9
When an error is encountered that causes processor recovery, HMI is
generated if the recovery was successful. The reason is recorded in
the core FIR, which gets copied into the WOF.
In this case dump the WOF register and an error string into the OPAL
msglog.
A broken init setting led to HMIs reported in Linux as:
[ 3.591547] Harmless Hypervisor Maintenance interrupt [Recovered]
[ 3.591648] Error detail: Processor Recovery done
[ 3.591714] HMER: 2040000000000000
This patch would have been useful because it tells us exactly that
the problem is in the d-side ERAT:
[ 414.489690798,7] HMI: Received HMI interrupt: HMER = 0x2040000000000000
[ 414.489693339,7] HMI: [Loc: UOPWR.0000000-Node0-Proc0]: P:0 C:1 T:1: Processor recovery occurred.
[ 414.489699837,7] HMI: Core WOF = 0x0000000410000000 recovered error:
[ 414.489701543,7] HMI: LSU - SRAM (DCACHE parity, etc)
[ 414.489702341,7] HMI: LSU - ERAT multi hit
In future it will be good to unify this reporting, so Linux could
print something more useful. Until then, this gives some good data.
NPU2/NVLink2 Fixes
==================
* npu2: Add performance tuning SCOM inits
Peer-to-peer GPU bandwidth latency testing has produced some tunable
values that improve performance. Add them to our device
initialization.
File these under things that need to be cleaned up with nice
#defines for the register names and bitfields when we get time.
A few of the settings are dependent on the system’s particular
NVLink topology, so introduce a helper to determine how many links
go to a single GPU.
* hw/npu2: Assign a unique LPARSHORTID per GPU
This gets used elsewhere to index items in the XTS tables.
* NPU2: dump NPU2 registers on npu2 HMI
Due to the nature of debugging npu2 issues, folk are wanting the
full list of NPU2 registers dumped when there’s a problem.
* npu2: Remove DD1 support
Major changes in the NPU between DD1 and DD2 necessitated a fair bit
of revision-specific code.
Now that all our lab machines are DD2, we no longer test anything on
DD1 and it’s time to get rid of it.
Remove DD1-specific code and abort probe if we’re running on a DD1
machine.
* npu2: Disable fast reboot
Fast reboot does not yet work right with the NPU. It’s been disabled
on NVLink and OpenCAPI machines. Do the same for NVLink2.
This amounts to a port of 3e4577939bbf (“npu: Fix broken fast
reset”) from the npu code to npu2.
* npu2: Use unfiltered mode in XTS tables
The XTS_PID context table is limited to 256 possible pids/contexts.
To relieve this limitation, make use of “unfiltered mode” instead.
If an entry in the XTS_BDF table has the bit for unfiltered mode
set, we can just use one context for that entire bdf/lpar,
regardless of pid. Instead of of searching the XTS_PID table, the
NMMU checkout request will simply use the entry indexed by lparshort
id instead.
Change opal_npu_init_context() to create these lparshort-indexed
wildcard entries (0-15) instead of allocating one for each pid.
Check that multiple calls for the same bdf all specify the same msr
value.
In opal_npu_destroy_context(), continue validating the bdf argument,
ensuring that it actually maps to an lpar, but no longer remove
anything from the XTS_PID table. If/when we start supporting
virtualized GPUs, we might consider actually removing these wildcard
entries by keeping a refcount, but keep things simple for now.
CAPI/OpenCAPI
=============
* npu2-opencapi: Add OpenCAPI OPAL API calls
Add three OPAL API calls that are required by the ocxl driver.
* OPAL_NPU_SPA_SETUP
The Shared Process Area (SPA) is a table containing one entry (a
“Process Element”) per memory context which can be accessed by the
OpenCAPI device.
* OPAL_NPU_SPA_CLEAR_CACHE
The NPU keeps a cache of recently accessed memory contexts. When a
Process Element is removed from the SPA, the cache for the link
must be cleared.
* OPAL_NPU_TL_SET
The Transaction Layer specification defines several templates for
messages to be exchanged on the link. During link setup, the host
and device must negotiate what templates are supported on both
sides and at what rates those messages can be sent.
* npu2-opencapi: Train OpenCAPI links and setup devices
Scan the OpenCAPI links under the NPU, and for each link, reset the
card, set up a device, train the link and register a PHB.
Implement the necessary operations for the OpenCAPI PHB type.
For bringup, test and debug purposes, we allow an NVRAM setting,
“opencapi-link-training” that can be set to either disable link
training completely or to use the prbs31 test pattern.
To disable link training:
nvram -p ibm,skiboot --update-config opencapi-link-training=none
To use prbs31:
nvram -p ibm,skiboot --update-config opencapi-link-training=prbs31
* npu2-hw-procedures: Add support for OpenCAPI PHY link training
Unlike NVLink, which uses the pci-virt framework to fake a PCI
configuration space for NVLink devices, the OpenCAPI device model
presents us with a real configuration space handled by the device
over the OpenCAPI link.
As a result, we have to train the OpenCAPI link in skiboot before we
do PCI probing, so that config space can be accessed, rather than
having link training being triggered by the Linux driver.
* npu2-opencapi: Configure NPU for OpenCAPI
Scan the device tree for NPUs with OpenCAPI links and configure the
NPU per the initialisation sequence in the NPU OpenCAPI workbook.
* capp: Make error in capp timebase sync a non-fatal error
Presently when we encounter an error while synchronizing capp
timebase with chip-tod at the end of enable_capi_mode() we return an
error. This has an to unintended consequences. First this will
prevent disabling of fast-reboot even though CAPP is already enabled
by this point. Secondly, failure during timebase sync is a non fatal
error or capp initialization as CAPP/PSL can continue working after
this and an AFU will only see an error when it tries to read the
timebase value from PSL.
So this patch updates enable_capi_mode() to not return an error in
case call to chiptod_capp_timebase_sync() fails. The function will
now just log an error and continue further with capp init sequence.
This make the current implementation align with the one in kernel
‘cxl’ driver which also assumes the PSL timebase sync errors as non-
fatal init error.
* npu2-opencapi: Fix assert on link reset during init
We don’t support resetting an opencapi link yet.
Commit fe6d86b9 (“pci: Make fast reboot creset PHBs in parallel”)
tries resetting any PHB whose slot defines a ‘run_sm’ callback. It
raises an assert when applied to an opencapi PHB, as ‘run_sm’ calls
the ‘freset’ callback, which is not yet defined for opencapi.
Fix it for now by removing the currently useless definition of
‘run_sm’ on the opencapi slot. It will print a message in the
skiboot log because the PHB cannot be reset, which is correct. It
will all go away when we add support for resetting an opencapi link.
* capp: Add lid definition for P9 DD-2.2
Update fsp_lid_map to include CAPP ucode lid for phb4-chipid ==
0x202d1 that corresponds to P9 DD-2.2 chip.
* capp: Disable fast-reboot when capp is enabled
PCI
===
* pci: Reduce log level of error message
If a link doesn’t train, we can end up with error messages like
this:
[ 63.027261959,3] PHB#0032[8:2]: LINK: Timeout waiting for electrical link
[ 63.027265573,3] PHB#0032:00:00.0 Error -6 resetting
The first message is useful but the second message is just debug
from the core PCI code and is confusing to print to the console.
This reduces the second print to debug level so it’s not seen by the
console by default.
* Revert “platforms/astbmc/slots.c: Allow comparison of bus numbers
when matching slots”
This reverts commit bda7cc4d0354eb3f66629d410b2afc08c79f795f.
Ben says: It’s on purpose that we do NOT compare the bus numbers,
they are always 0 in the slot table we do a hierarchical walk of the
tree, matching only the devfn’s along the way bcs the bus numbering
isn’t fixed this breaks all slot naming etc… stuff on anything using
the “skiboot” slot tables (P8 opp typically)
* core/pci-dt-slot: Fix booting with no slot map
Currently if you don’t have a slot map in the device tree in /ibm
,pcie-slots, you can crash with a back trace like this:
CPU 0034 Backtrace:
S: 0000000031cd3370 R: 000000003001362c .backtrace+0x48
S: 0000000031cd3410 R: 0000000030019e38 ._abort+0x4c
S: 0000000031cd3490 R: 000000003002760c .exception_entry+0x180
S: 0000000031cd3670 R: 0000000000001f10 *
S: 0000000031cd3850 R: 00000000300b4f3e * cpu_features_table+0x1d9e
S: 0000000031cd38e0 R: 000000003002682c .dt_node_is_compatible+0x20
S: 0000000031cd3960 R: 0000000030030e08 .map_pci_dev_to_slot+0x16c
S: 0000000031cd3a30 R: 0000000030091054 .dt_slot_get_slot_info+0x28
S: 0000000031cd3ac0 R: 000000003001e27c .pci_scan_one+0x2ac
S: 0000000031cd3ba0 R: 000000003001e588 .pci_scan_bus+0x70
S: 0000000031cd3cb0 R: 000000003001ee74 .pci_scan_phb+0x100
S: 0000000031cd3d40 R: 0000000030017ff0 .cpu_process_jobs+0xdc
S: 0000000031cd3e00 R: 0000000030014cb0 .__secondary_cpu_entry+0x44
S: 0000000031cd3e80 R: 0000000030014d04 .secondary_cpu_entry+0x34
S: 0000000031cd3f00 R: 0000000030002770 secondary_wait+0x8c
[ 73.016947149,3] Fatal MCE at 0000000030026054 .dt_find_property+0x30
[ 73.017073254,3] CFAR : 0000000030026040
[ 73.017138048,3] SRR0 : 0000000030026054 SRR1 : 9000000000201000
[ 73.017198375,3] HSRR0: 0000000000000000 HSRR1: 0000000000000000
[ 73.017263210,3] DSISR: 00000008 DAR : 7c7b1b7848002524
[ 73.017352517,3] LR : 000000003002602c CTR : 000000003009102c
[ 73.017419778,3] CR : 20004204 XER : 20040000
[ 73.017502425,3] GPR00: 000000003002682c GPR16: 0000000000000000
[ 73.017586924,3] GPR01: 0000000031c23670 GPR17: 0000000000000000
[ 73.017643873,3] GPR02: 00000000300fd500 GPR18: 0000000000000000
[ 73.017767091,3] GPR03: fffffffffffffff8 GPR19: 0000000000000000
[ 73.017855707,3] GPR04: 00000000300b3dc6 GPR20: 0000000000000000
[ 73.017943944,3] GPR05: 0000000000000000 GPR21: 00000000300bb6d2
[ 73.018024709,3] GPR06: 0000000031c23910 GPR22: 0000000000000000
[ 73.018117716,3] GPR07: 0000000031c23930 GPR23: 0000000000000000
[ 73.018195974,3] GPR08: 0000000000000000 GPR24: 0000000000000000
[ 73.018278350,3] GPR09: 0000000000000000 GPR25: 0000000000000000
[ 73.018353795,3] GPR10: 0000000000000028 GPR26: 00000000300be6fb
[ 73.018424362,3] GPR11: 0000000000000000 GPR27: 0000000000000000
[ 73.018533159,3] GPR12: 0000000020004208 GPR28: 0000000030767d38
[ 73.018642725,3] GPR13: 0000000031c20000 GPR29: 00000000300b3dc6
[ 73.018737925,3] GPR14: 0000000000000000 GPR30: 0000000000000010
[ 73.018794428,3] GPR15: 0000000000000000 GPR31: 7c7b1b7848002514
This has been seen in the lab on a witherspoon using the device tree
entry point (ie. no HDAT).
This fixes the null pointer deref.
Bugs Fixed
==========
* xive: fix opal_xive_set_vp_info() error path
In case of error, opal_xive_set_vp_info() will return without
unlocking the xive object. This is most certainly a typo.
* hw/imc: don’t access homer memory if it was not initialised
This can happen under mambo, at least.
* nvram: run nvram_validate() after nvram_reformat()
nvram_reformat() sets nvram_valid = true, but it does not set
skiboot_part_hdr. Call nvram_validate() instead, which sets
everything up properly.
* dts: Zero struct to avoid using uninitialised value
* hw/imc: Don’t dereference possible NULL
* libstb/create-container: munmap() signature file address
* npu2-opencapi: Fix memory leak
* npu2: Fix possible NULL dereference
* occ-sensors: Remove NULL checks after dereference
* core/ipmi-opal: Add interrupt-parent property for ipmi node on P9
and above.
dtc complains below warning with newer 4.2+ kernels.
dts: Warning (interrupts_property): Missing interrupt-parent for /ibm,opal/ipmi
This fix adds interrupt-parent property under /ibm,opal/ipmi DT node
on P9 and above, which allows ipmi-opal to properly use the OPAL
irqchip.
Other fixes and improvements
============================
* core/cpu: discover stack region size before initialising memory
regions
Stack allocation first allocates a memory region sized to hold
stacks for all possible CPUs up to the maximum PIR of the
architecture, zeros the region, then initialises all stacks. Max PIR
is 32768 on POWER9, which is 512MB for stacks.
The stack region is then shrunk after CPUs are discovered, but this
is a bit of a hack, and it leaves a hole in the memory allocation
regions as it’s done after mem regions are initialised.
0x000000000000..00002fffffff : ibm,os-reserve - OS
0x000030000000..0000303fffff : ibm,firmware-code - OPAL
0x000030400000..000030ffffff : ibm,firmware-heap - OPAL
0x000031000000..000031bfffff : ibm,firmware-data - OPAL
0x000031c00000..000031c0ffff : ibm,firmware-stacks - OPAL
*** gap ***
0x000051c00000..000051d01fff : ibm,firmware-allocs-memory at 0 - OPAL
0x000051d02000..00007fffffff : ibm,firmware-allocs-memory at 0 - OS
0x000080000000..000080b3cdff : initramfs - OPAL
0x000080b3ce00..000080b7cdff : ibm,fake-nvram - OPAL
0x000080b7ce00..0000ffffffff : ibm,firmware-allocs-memory at 0 - OS
This change moves zeroing into the per-cpu stack setup. The boot CPU
stack is set up based on the current PIR. Then the size of the stack
region is set, by discovering the maximum PIR of the system from the
device tree, before mem regions are intialised.
This results in all memory being accounted within memory regions,
and less memory fragmentation of OPAL allocations.
* Make gard display show that a record is cleared
When clearing gard records, Hostboot only modifies the record_id
portion to be 0xFFFFFFFF. The remainder of the entry remains.
Without this change it can be confusing to users to know that the
record they are looking at is no longer valid.
* Reserve OPAL API number for opal_handle_hmi2 function.
* dts: spl_wakeup: Remove all workarounds in the spl wakeup logic
We coded few workarounds in special wakeup logic to handle the buggy
firmware. Now that is fixed remove them as they break the special
wakeup protocol. As per the spec we should not de-assert beofre
assert is complete. So follow this protocol.
* build: use thin archives rather than incremental linking
This changes to build system to use thin archives rather than
incremental linking for built-in.o, similar to recent change to
Linux. built-in.o is renamed to built-in.a, and is created as a thin
archive with no index, for speed and size. All built-in.a are
aggregated into a skiboot.tmp.a which is a thin archive built with
an index, making it suitable or linking. This is input into the
final link.
The advantags of build size and linker code placement flexibility
are not as great with skiboot as a bigger project like Linux, but
it’s a conceptually better way to build, and is more compatible with
link time optimisation in toolchains which might be interesting for
skiboot particularly for size reductions.
Size of build tree before this patch is 34.4MB, afterwards 23.1MB.
* core/init: Assert when kernel not found
If the kernel doesn’t load out of flash or there is nothing at
KERNEL_LOAD_BASE, we end up with an esoteric message as we try to
branch to out of skiboot into nothing
[ 0.007197688,3] INIT: ELF header not found. Assuming raw binary.
[ 0.014035267,5] INIT: Starting kernel at 0x0, fdt at 0x3044ad90 13029
[ 0.014042254,3] ***********************************************
[ 0.014069947,3] Fatal Exception 0xe40 at 0000000000000000
[ 0.014085574,3] CFAR : 00000000300051c4
[ 0.014090118,3] SRR0 : 0000000000000000 SRR1 : 0000000000000000
[ 0.014096243,3] HSRR0: 0000000000000000 HSRR1: 9000000000001000
[ 0.014102546,3] DSISR: 00000000 DAR : 0000000000000000
[ 0.014108538,3] LR : 00000000300144c8 CTR : 0000000000000000
[ 0.014114756,3] CR : 40002202 XER : 00000000
[ 0.014120301,3] GPR00: 000000003001447c GPR16: 0000000000000000
This improves the message and asserts in this case:
[ 0.014042685,5] INIT: Starting kernel at 0x0, fdt at 0x3044ad90 13049 bytes)
[ 0.014049556,0] FATAL: Kernel is zeros, can't execute!
[ 0.014054237,0] Assert fail: core/init.c:566:0
[ 0.014060472,0] Aborting!
* core: Fix ‘opal-runtime-size’ property
We are populating ‘opal-runtime-size’ before calculating actual
stack size. Hence we endup having wrong runtime size (ex: on P9 it
shows ~540MB while actual size is around ~40MB). Note that only
device tree property is shows wrong value, but reserved-memory
reflects correct size.
init_all_cpus() calculates and updates actual stack size. Hence move
this function call before add_opal_node().
* mambo: Add fw-feature flags for security related settings
Newer firmwares report some feature flags related to security
settings via HDAT. On real hardware skiboot translates these into
device tree properties. For testing purposes just create the
properties manually in the tcl.
These values don’t exactly match any actual chip revision, but the
code should not rely on any exact set of values anyway. We just
define the most interesting flags, that if toggled to “disable” will
change Linux behaviour. You can see the actual values in the
hostboot source in src/usr/hdat/hdatiplparms.H.
Also add an environment variable for easily toggling the top-level
“security on” setting.
* direct-controls: mambo fix for multiple chips
* libflash/blocklevel: Correct miscalculation in
blocklevel_smart_erase()
If blocklevel_smart_erase() detects that the smart erase fits entire
in one erase block, it has an early bail path. In this path it
miscaculates where in the buffer the backend needs to read from to
perform the final write.
* libstb/secureboot: Fix logging of secure verify messages.
Currently we are logging secure verify/enforce messages in PR_EMERG
level even when there is no secureboot mode enabled. So reduce the
log level to PR_ERR when secureboot mode is OFF.
Testing / Code coverage improvements
====================================
Improvements in gcov support include support for newer GCCs as well as
easily exporting the area of memory you need to dump to feed to
*extract-gcov*.
* cpu_idle_job: relax a bit
This *dramatically* improves kernel boot time with GCOV builds
from ~3minutes between loading kernel and switching the HILE bit
down to around 10 seconds.
* gcov: Another GCC, another gcov tweak
* Keep constructors with priorities
Fixes GCOV builds with gcc7, which uses this.
* gcov: Add gcov data struct to sysfs
Extracting the skiboot gcov data is currently a tedious process
which involves taking a mem dump of skiboot and searching for the
gcov_info struct. This patch adds the gcov struct to sysfs under
/opal/exports. Allowing the data to be copied directly into
userspace and processed.
--
Stewart Smith
OPAL Architect, IBM.
More information about the Skiboot
mailing list