[Skiboot] [PATCH 14/33] XIVE: Base XIVE support for OPAL XICS emulation calls
Benjamin Herrenschmidt
benh at kernel.crashing.org
Sat Jun 25 08:47:37 AEST 2016
This provides basic initialization of the XIVE along with some OPAL calls
to emulate an old-style XICS which will initially be used by Linux for
backward compatibility.
The current implementation is limited to one priority and doesn't expose
much to Linux for future exploitation mode yet.
Signed-off-by: Benjamin Herrenschmidt <benh at kernel.crashing.org>
---
core/init.c | 9 +-
hw/Makefile.inc | 2 +-
hw/xive.c | 1985 ++++++++++++++++++++++++++++++++++++++++++++++++++++
include/chip.h | 4 +
include/cpu.h | 4 +
include/opal-api.h | 6 +-
include/xive.h | 363 ++++++++++
7 files changed, 2370 insertions(+), 3 deletions(-)
create mode 100644 hw/xive.c
create mode 100644 include/xive.h
diff --git a/core/init.c b/core/init.c
index 48f5322..d3cc7a6 100644
--- a/core/init.c
+++ b/core/init.c
@@ -43,6 +43,7 @@
#include <timer.h>
#include <ipmi.h>
#include <sensor.h>
+#include <xive.h>
enum proc_gen proc_gen;
@@ -711,9 +712,12 @@ void __noreturn main_cpu_entry(const void *fdt, u32 master_cpu)
/* Allocate our split trace buffers now. Depends add_opal_node() */
init_trace_buffers();
- /* Get the ICPs and make sure they are in a sane state */
+ /* On P7/P8, get the ICPs and make sure they are in a sane state */
init_interrupts();
+ /* On P9, initialize XIVE */
+ init_xive();
+
/* Grab centaurs from device-tree if present (only on FSP-less) */
centaur_init();
@@ -816,6 +820,9 @@ void __noreturn __secondary_cpu_entry(void)
init_hid();
+ /* Some XIVE setup */
+ xive_cpu_callin(cpu);
+
/* Wait for work to do */
while(true) {
int i;
diff --git a/hw/Makefile.inc b/hw/Makefile.inc
index a9dd9f1..9779f06 100644
--- a/hw/Makefile.inc
+++ b/hw/Makefile.inc
@@ -6,7 +6,7 @@ HW_OBJS += homer.o slw.o occ.o fsi-master.o centaur.o
HW_OBJS += nx.o nx-rng.o nx-crypto.o nx-842.o
HW_OBJS += p7ioc.o p7ioc-inits.o p7ioc-phb.o
HW_OBJS += phb3.o sfc-ctrl.o fake-rtc.o bt.o p8-i2c.o prd.o
-HW_OBJS += dts.o lpc-rtc.o npu.o npu-hw-procedures.o
+HW_OBJS += dts.o lpc-rtc.o npu.o npu-hw-procedures.o xive.o
HW=hw/built-in.o
include $(SRC)/hw/fsp/Makefile.inc
diff --git a/hw/xive.c b/hw/xive.c
new file mode 100644
index 0000000..68fa8a2
--- /dev/null
+++ b/hw/xive.c
@@ -0,0 +1,1985 @@
+#include <skiboot.h>
+#include <xscom.h>
+#include <chip.h>
+#include <io.h>
+#include <xive.h>
+#include <xscom-p9-regs.h>
+#include <interrupts.h>
+#include <timebase.h>
+
+/* Use Block group mode to move chip_id into block .... */
+#define USE_BLOCK_GROUP_MODE
+
+/* Indirect mode */
+#define USE_INDIRECT
+
+/* Always notify from EQ to VP (no EOI on EQs). Will speed up
+ * EOIs at the expense of potentially higher powerbus traffic.
+ */
+#define EQ_ALWAYS_NOTIFY
+
+/* Indirect VSDs are little endian (SIMICS bug ?) */
+#undef INDIRECT_IS_LE
+
+/* Verbose debug */
+#undef XIVE_VERBOSE_DEBUG
+
+/* Note on interrupt numbering:
+ *
+ * The way we represent HW interrupt numbers globaly in the system
+ * and in the device-tree is documented in include/interrupts.h
+ *
+ * Basically, the EAS/IVT index is the global interrupt number
+ */
+
+
+/*
+ *
+ * VSDs, blocks, set translation etc...
+ *
+ * This stuff confused me to no end so here's an attempt at explaining
+ * my understanding of it and how I use it in OPAL & Linux
+ *
+ * For the following data structures, the XIVE use a mechanism called
+ * Virtualization Structure Tables (VST) to manage the memory layout
+ * and access: ESBs (Event State Buffers, aka IPI sources), EAS/IVT
+ * (Event assignment structures), END/EQs (Notification descriptors
+ * aka event queues) and NVT/VPD (Notification Virtual Targets).
+ *
+ * These structures divide those tables into 16 "blocks". Each XIVE
+ * instance has a definition for all 16 blocks that can either represent
+ * an actual table in memory or a remote XIVE MMIO port to access a
+ * block that is owned by that remote XIVE.
+ *
+ * Our SW design will consist of allocating one block per chip (and thus
+ * per XIVE instance) for now, thus giving us up to 16 supported chips in
+ * the system. We may have to revisit that if we ever support systems with
+ * more than 16 chips but that isn't on our radar at the moment or if we
+ * want to do like pHyp on some machines and dedicate 2 blocks per chip
+ * for some structures.
+ *
+ * Thus we need to be careful that we never expose to Linux the concept
+ * of block and block boundaries, but instead we provide full number ranges
+ * so that consecutive blocks can be supported.
+ *
+ * We will pre-allocate some of the tables in order to support a "fallback"
+ * mode operations where an old-style XICS is emulated via OPAL calls. This
+ * is achieved by having a default of one VP per physical thread associated
+ * with one EQ and one IPI. There is also enought EATs to cover all the PHBs.
+ *
+ * Similarily, for MMIO access, the BARs support what is called "set
+ * translation" which allows tyhe BAR to be devided into a certain
+ * number of sets. The VC BAR (ESBs, ENDs, ...) supports 64 sets and
+ * the PC BAT supports 16. Each "set" can be routed to a specific
+ * block and offset within a block.
+ *
+ * For now, we will not use much of that functionality. We will use a
+ * fixed split between ESB and ENDs for the VC BAR as defined by the
+ * constants below and we will allocate all the PC BARs set to the
+ * local block of that chip
+ */
+
+
+/* BAR default values (should be initialized by HostBoot but for
+ * now we do it). Based on the memory map document by Dave Larson
+ *
+ * Fixed IC and TM BARs first.
+ */
+/* Use 64K for everything by default */
+#define IC_PAGE_SIZE 0x10000
+#define TM_PAGE_SIZE 0x10000
+
+#define IC_BAR_DEFAULT 0x30203100000ull
+#define IC_BAR_SIZE (8 * IC_PAGE_SIZE)
+#define TM_BAR_DEFAULT 0x30203180000ull
+#define TM_BAR_SIZE (4 * TM_PAGE_SIZE)
+
+/* VC BAR contains set translations for the ESBs and the EQs.
+ *
+ * It's divided in 64 sets, each of which can be either ESB pages or EQ pages.
+ * The table configuring this is the EDT
+ *
+ * Additionally, the ESB pages come in pair of Linux_Trig_Mode isn't enabled
+ * (which we won't enable for now as it assumes write-only permission which
+ * the MMU doesn't support).
+ *
+ * To get started we just hard wire the following setup:
+ *
+ * VC_BAR size is 512G. We split it into 384G of ESBs (48 sets) and 128G
+ * of ENDs (16 sets) for the time being. IE. Each set is thus 8GB
+ */
+
+#define VC_BAR_DEFAULT 0x10000000000ull
+#define VC_BAR_SIZE 0x08000000000ull
+#define VC_ESB_SETS 48
+#define VC_END_SETS 16
+#define VC_MAX_SETS 64
+
+/* PC BAR contains the virtual processors
+ *
+ * The table configuring the set translation (16 sets) is the VDT
+ */
+#define PC_BAR_DEFAULT 0x18000000000ull
+#define PC_BAR_SIZE 0x01000000000ull
+#define PC_MAX_SETS 16
+
+/* XXX This is the currently top limit of number of ESB/SBE entries
+ * and EAS/IVT entries pre-allocated per chip. This should probably
+ * turn into a device-tree property or NVRAM setting, or maybe
+ * calculated from the amount of system RAM...
+ *
+ * This is currently set to 1M
+ *
+ * This is independent of the sizing of the MMIO space.
+ *
+ * WARNING: Due to how XICS emulation works, we cannot support more
+ * interrupts per chip at this stage as the full interrupt number
+ * (block + index) has to fit in a 24-bit number.
+ *
+ * That gives us a pre-allocated space of 256KB per chip for the state
+ * bits and 8M per chip for the EAS/IVT.
+ *
+ * Note: The HW interrupts from PCIe and similar other entities that
+ * use their own state bit array will have to share that IVT space,
+ * so we could potentially make the IVT size twice as big, but for now
+ * we will simply share it and ensure we don't hand out IPIs that
+ * overlap the HW interrupts.
+ */
+#define MAX_INT_ENTRIES (1 * 1024 * 1024)
+
+/* Corresponding direct table sizes */
+#define SBE_SIZE (MAX_INT_ENTRIES / 4)
+#define IVT_SIZE (MAX_INT_ENTRIES * 8)
+
+/* Max number of EQs. We allocate an indirect table big enough so
+ * that when fully populated we can have that many EQs.
+ *
+ * The max number of EQs we support in our MMIO space is 128G/128K
+ * ie. 1M. Since one EQ is 8 words (32 bytes), a 64K page can hold
+ * 2K EQs. We need 512 pointers, ie, 4K of memory for the indirect
+ * table.
+ *
+ * XXX Adjust that based on BAR value ?
+ */
+#ifdef USE_INDIRECT
+#define MAX_EQ_COUNT (1 * 1024 * 1024)
+#define EQ_PER_PAGE (0x10000 / 32) // Use sizeof ?
+#define IND_EQ_TABLE_SIZE ((MAX_EQ_COUNT / EQ_PER_PAGE) * 8)
+#else
+#define MAX_EQ_COUNT (4 * 1024)
+#define EQT_SIZE (MAX_EQ_COUNT * 32)
+#endif
+
+
+/* Max number of VPs. We allocate an indirect table big enough so
+ * that when fully populated we can have that many VPs.
+ *
+ * The max number of VPs we support in our MMIO space is 64G/64K
+ * ie. 1M. Since one VP is 16 words (64 bytes), a 64K page can hold
+ * 1K EQ. We need 1024 pointers, ie, 8K of memory for the indirect
+ * table.
+ *
+ * HOWEVER: A block supports only up to 512K VPs (19 bits of target
+ * in the EQ). Since we currently only support 1 block per chip,
+ * we will allocate half of the above. We might add support for
+ * 2 blocks per chip later if necessary.
+ *
+ * XXX Adjust that based on BAR value ?
+ */
+#ifdef USE_INDIRECT
+#define MAX_VP_COUNT (512 * 1024)
+#define VP_PER_PAGE (0x10000 / 64) // Use sizeof ?
+#define IND_VP_TABLE_SIZE ((MAX_VP_COUNT / VP_PER_PAGE) * 8)
+#else
+#define MAX_VP_COUNT (4 * 1024)
+#define VPT_SIZE (MAX_VP_COUNT * 64)
+#endif
+
+#ifdef USE_BLOCK_GROUP_MODE
+
+/* Initial number of VPs (XXX Make it a variable ?). Round things
+ * up to a max of 32 cores per chip
+ */
+#define INITIAL_VP_BASE 0x80
+#define INITIAL_VP_COUNT 0x80
+
+#else
+
+/* Initial number of VPs on block 0 only */
+#define INITIAL_BLK0_VP_BASE 0x800
+#define INITIAL_BLK0_VP_COUNT (2 * 1024)
+
+#endif
+
+struct xive {
+ uint32_t chip_id;
+ struct dt_node *x_node;
+ struct dt_node *m_node;
+
+ uint64_t xscom_base;
+
+ /* MMIO regions */
+ void *ic_base;
+ uint64_t ic_size;
+ uint32_t ic_shift;
+ void *tm_base;
+ uint64_t tm_size;
+ uint32_t tm_shift;
+ void *pc_base;
+ uint64_t pc_size;
+ void *vc_base;
+ uint64_t vc_size;
+
+ void *esb_mmio;
+ void *eq_mmio;
+
+ /* Set on XSCOM register access error */
+ bool last_reg_error;
+
+ /* Per-XIVE mutex */
+ struct lock lock;
+
+ /* Pre-allocated tables.
+ *
+ * We setup all the VDS for actual tables (ie, by opposition to
+ * forwarding ports) as either direct pre-allocated or indirect
+ * and partially populated.
+ *
+ * Currently, the ESB/SBE and the EAS/IVT tables are direct and
+ * fully pre-allocated based on MAX_INT_ENTRIES.
+ *
+ * The other tables are indirect, we thus pre-allocate the indirect
+ * table (ie, pages of pointers) and populate enough of the pages
+ * for our basic setup using 64K pages.
+ *
+ * The size of the indirect tables are driven by MAX_VP_COUNT and
+ * MAX_EQ_COUNT. The number of pre-allocated ones are driven by
+ * INITIAL_VP_COUNT (number of EQ depends on number of VP) in block
+ * mode, otherwise we only preallocate INITIAL_BLK0_VP_COUNT on
+ * block 0.
+ */
+
+ /* Direct SBE and IVT tables */
+ void *sbe_base;
+ void *ivt_base;
+
+#ifdef USE_INDIRECT
+ /* Indirect END/EQ table. NULL entries are unallocated, count is
+ * the numbre of pointers (ie, sub page placeholders). base_count
+ * is the number of sub-pages that have been pre-allocated (and
+ * thus whose memory is owned by OPAL).
+ */
+ uint64_t *eq_ind_base;
+ uint32_t eq_ind_count;
+ uint32_t eq_alloc_count;
+#else
+ void *eq_base;
+#endif
+
+#ifdef USE_INDIRECT
+ /* Indirect NVT/VP table. NULL entries are unallocated, count is
+ * the numbre of pointers (ie, sub page placeholders).
+ */
+ uint64_t *vp_ind_base;
+ uint64_t vp_ind_count;
+#else
+ void *vp_base;
+#endif
+ /* To ease a possible change to supporting more than one block of
+ * interrupts per chip, we store here the "base" global number
+ * and max number of interrupts for this chip. The global number
+ * encompass the block number and index.
+ */
+ uint32_t int_base;
+ uint32_t int_max;
+
+ /* Due to the overlap between IPIs and HW sources in the IVT table,
+ * we keep some kind of top-down allocator. It is used for HW sources
+ * to "allocate" interrupt entries and will limit what can be handed
+ * out as IPIs. Of course this assumes we "allocate" all HW sources
+ * before we start handing out IPIs.
+ *
+ * Note: The numbers here are global interrupt numbers so that we can
+ * potentially handle more than one block per chip in the future.
+ */
+ uint32_t int_hw_bot; /* Bottom of HW allocation */
+ uint32_t int_ipi_top; /* Highest IPI handed out so far */
+};
+
+/* Conversion between GIRQ and block/index.
+ *
+ * ------------------------------------
+ * |00000000|BLOC| INDEX|
+ * ------------------------------------
+ * 8 4 20
+ *
+ * The global interrupt number is thus limited to 24 bits which is
+ * necessary for our XICS emulation since the top 8 bits are
+ * reserved for the CPPR value.
+ *
+ */
+#define GIRQ_TO_BLK(__g) (((__g) >> 24) & 0xf)
+#define GIRQ_TO_IDX(__g) ((__g) & 0x00ffffff)
+#define BLKIDX_TO_GIRQ(__b,__i) (((uint32_t)(__b)) << 24 | (__i))
+
+/* VP IDs are just the concatenation of the BLK and index as found
+ * in an EQ target field for example
+ */
+
+/* For now, it's one chip per block for both VC and PC */
+#define PC_BLK_TO_CHIP(__b) (__b)
+#define VC_BLK_TO_CHIP(__b) (__b)
+#define GIRQ_TO_CHIP(__isn) (VC_BLK_TO_CHIP(GIRQ_TO_BLK(__isn)))
+
+/* Routing of physical processors to VPs */
+#ifdef USE_BLOCK_GROUP_MODE
+#define PIR2VP_IDX(__pir) (0x80 | P9_PIR2LOCALCPU(__pir))
+#define PIR2VP_BLK(__pir) (P9_PIR2GCID(__pir))
+#define VP2PIR(__blk, __idx) (P9_PIRFROMLOCALCPU(VC_BLK_TO_CHIP(__blk), (__idx) & 0x7f))
+#else
+#define PIR2VP_IDX(__pir) (0x800 | (P9_PIR2GCID(__pir) << 7) | P9_PIR2LOCALCPU(__pir))
+#define PIR2VP_BLK(__pir) (0)
+#define VP2PIR(__blk, __idx) (P9_PIRFROMLOCALCPU(((__idx) >> 7) & 0xf, (__idx) & 0x7f))
+#endif
+
+#define xive_regw(__x, __r, __v) \
+ __xive_regw(__x, __r, X_##__r, __v, #__r)
+#define xive_regr(__x, __r) \
+ __xive_regr(__x, __r, X_##__r, #__r)
+#define xive_regwx(__x, __r, __v) \
+ __xive_regw(__x, 0, X_##__r, __v, #__r)
+#define xive_regrx(__x, __r) \
+ __xive_regr(__x, 0, X_##__r, #__r)
+
+#ifdef XIVE_VERBOSE_DEBUG
+#define xive_vdbg(__x,__fmt,...) prlog(PR_DEBUG,"XIVE[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_vdbg(__c,__fmt,...) prlog(PR_DEBUG,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#else
+#define xive_vdbg(x,fmt,...) do { } while(0)
+#define xive_cpu_vdbg(x,fmt,...) do { } while(0)
+#endif
+
+#define xive_dbg(__x,__fmt,...) prlog(PR_DEBUG,"XIVE[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_dbg(__c,__fmt,...) prlog(PR_DEBUG,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#define xive_warn(__x,__fmt,...) prlog(PR_WARNING,"XIVE[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_warn(__c,__fmt,...) prlog(PR_WARNING,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#define xive_err(__x,__fmt,...) prlog(PR_ERR,"XIVE[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_err(__c,__fmt,...) prlog(PR_ERR,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+
+static void __xive_regw(struct xive *x, uint32_t m_reg, uint32_t x_reg, uint64_t v,
+ const char *rname)
+{
+ bool use_xscom = (m_reg == 0) || !x->ic_base;
+ int64_t rc;
+
+ x->last_reg_error = false;
+
+ if (use_xscom) {
+ assert(x_reg != 0);
+ rc = xscom_write(x->chip_id, x->xscom_base + x_reg, v);
+ if (rc) {
+ if (!rname)
+ rname = "???";
+ xive_err(x, "Error writing register %s\n", rname);
+ /* Anything else we can do here ? */
+ x->last_reg_error = true;
+ }
+ } else {
+ out_be64(x->ic_base + m_reg, v);
+ }
+}
+
+static uint64_t __xive_regr(struct xive *x, uint32_t m_reg, uint32_t x_reg,
+ const char *rname)
+{
+ bool use_xscom = (m_reg == 0) || !x->ic_base;
+ int64_t rc;
+ uint64_t val;
+
+ x->last_reg_error = false;
+
+ if (use_xscom) {
+ rc = xscom_read(x->chip_id, x->xscom_base + x_reg, &val);
+ if (rc) {
+ if (!rname)
+ rname = "???";
+ xive_err(x, "Error reading register %s\n", rname);
+ /* Anything else we can do here ? */
+ x->last_reg_error = true;
+ return -1ull;
+ }
+ } else {
+ val = in_be64(x->ic_base + m_reg);
+ }
+ return val;
+}
+
+/* Locate a controller from an IRQ number */
+static struct xive *xive_from_isn(uint32_t isn)
+{
+ uint32_t chip_id = GIRQ_TO_CHIP(isn);
+ struct proc_chip *c = get_chip(chip_id);
+
+ if (!c)
+ return NULL;
+ return c->xive;
+}
+
+/*
+static struct xive *xive_from_pc_blk(uint32_t blk)
+{
+ uint32_t chip_id = PC_BLK_TO_CHIP(blk);
+ struct proc_chip *c = get_chip(chip_id);
+
+ if (!c)
+ return NULL;
+ return c->xive;
+}
+*/
+
+static struct xive *xive_from_vc_blk(uint32_t blk)
+{
+ uint32_t chip_id = VC_BLK_TO_CHIP(blk);
+ struct proc_chip *c = get_chip(chip_id);
+
+ if (!c)
+ return NULL;
+ return c->xive;
+}
+
+static struct xive_ive *xive_get_ive(struct xive *x, unsigned int isn)
+{
+ struct xive_ive *ivt;
+ uint32_t idx = GIRQ_TO_IDX(isn);
+
+ /* Check the block matches */
+ if (isn < x->int_base || isn >= x->int_max) {
+ xive_err(x, "xive_get_ive, ISN 0x%x not on chip\n", idx);
+ return NULL;
+ }
+ assert (idx < MAX_INT_ENTRIES);
+
+ /* XXX If we support >1 block per chip, fix this */
+ ivt = x->ivt_base;
+ assert(ivt);
+
+ // XXX DBG
+ if (ivt[idx].w != 0)
+ xive_vdbg(x, "xive_get_ive(isn %x), idx=0x%x IVE=%016llx\n",
+ isn, idx, ivt[idx].w);
+
+ return ivt + idx;
+}
+
+static struct xive_eq *xive_get_eq(struct xive *x, unsigned int idx)
+{
+ struct xive_eq *p;
+
+#ifdef USE_INDIRECT
+ if (idx >= (x->eq_ind_count * EQ_PER_PAGE))
+ return NULL;
+#ifdef INDIRECT_IS_LE
+ p = (struct xive_eq *)(le64_to_cpu(x->eq_ind_base[idx / EQ_PER_PAGE]) &
+ VSD_ADDRESS_MASK);
+#else
+ p = (struct xive_eq *)(x->eq_ind_base[idx / EQ_PER_PAGE] &
+ VSD_ADDRESS_MASK);
+#endif
+ if (!p)
+ return NULL;
+
+ return &p[idx % EQ_PER_PAGE];
+#else
+ if (idx >= MAX_EQ_COUNT)
+ return NULL;
+ if (!x->eq_base)
+ return NULL;
+ p = x->eq_base;
+ return p + idx;
+#endif
+}
+
+static struct xive_vp *xive_get_vp(struct xive *x, unsigned int idx)
+{
+ struct xive_vp *p;
+
+#ifdef USE_INDIRECT
+ assert(idx < (x->vp_ind_count * VP_PER_PAGE));
+#ifdef INDIRECT_IS_LE
+ p = (struct xive_vp *)(le64_to_cpu(x->vp_ind_base[idx / VP_PER_PAGE]) &
+ VSD_ADDRESS_MASK);
+#else
+ p = (struct xive_vp *)(x->vp_ind_base[idx / VP_PER_PAGE] &
+ VSD_ADDRESS_MASK);
+#endif
+ assert(p);
+
+ return &p[idx % VP_PER_PAGE];
+#else
+ assert(idx < MAX_VP_COUNT);
+ p = x->vp_base;
+ return p + idx;
+#endif
+}
+
+static void xive_init_vp(struct xive *x __unused, struct xive_vp *vp __unused)
+{
+ /* XXX TODO: Look at the special cache line stuff */
+ vp->w0 = VP_W0_VALID;
+}
+
+static void xive_init_eq(struct xive *x __unused, uint32_t vp_idx,
+ struct xive_eq *eq, void *backing_page)
+{
+ eq->w1 = EQ_W1_GENERATION;
+ eq->w3 = ((uint64_t)backing_page) & 0xffffffff;
+ eq->w2 = (((uint64_t)backing_page)) >> 32 & 0x0fffffff;
+ // IS this right ? Are we limited to 2K VPs per block ? */
+ eq->w6 = SETFIELD(EQ_W6_NVT_BLOCK, 0ul, x->chip_id) |
+ SETFIELD(EQ_W6_NVT_INDEX, 0ul, vp_idx);
+ eq->w7 = SETFIELD(EQ_W7_F0_PRIORITY, 0ul, 0x07);
+ eieio();
+ eq->w0 = EQ_W0_VALID | EQ_W0_ENQUEUE |
+ SETFIELD(EQ_W0_QSIZE, 0ul, EQ_QSIZE_64K);
+#ifdef EQ_ALWAYS_NOTIFY
+ eq->w0 |= EQ_W0_UCOND_NOTIFY;
+#endif
+}
+
+static uint32_t *xive_get_eq_buf(struct xive *x, uint32_t eq_blk __unused,
+ uint32_t eq_idx)
+{
+ struct xive_eq *eq = xive_get_eq(x, eq_idx);
+ uint64_t addr;
+
+ assert(eq);
+ assert(eq->w0 & EQ_W0_VALID);
+ addr = (((uint64_t)eq->w2) & 0x0fffffff) << 32 | eq->w3;
+
+ return (uint32_t *)addr;
+}
+
+#if 0 /* Not used yet. This will be used to kill the cache
+ * of indirect VSDs
+ */
+static int64_t xive_vc_ind_cache_kill(struct xive *x, uint64_t type,
+ uint64_t block, uint64_t idx)
+{
+ uint64_t val;
+
+ xive_regw(x, VC_AT_MACRO_KILL_MASK,
+ SETFIELD(VC_KILL_BLOCK_ID, 0ull, -1ull) |
+ SETFIELD(VC_KILL_OFFSET, 0ull, -1ull));
+ xive_regw(x, VC_AT_MACRO_KILL, VC_KILL_VALID |
+ SETFIELD(VC_KILL_TYPE, 0ull, type) |
+ SETFIELD(VC_KILL_BLOCK_ID, 0ull, block) |
+ SETFIELD(VC_KILL_OFFSET, 0ull, idx));
+
+ /* XXX SIMICS problem ? */
+ if (chip_quirk(QUIRK_SIMICS))
+ return 0;
+
+ /* XXX Add timeout */
+ for (;;) {
+ val = xive_regr(x, VC_AT_MACRO_KILL);
+ if (!(val & VC_KILL_VALID))
+ break;
+ }
+ return 0;
+}
+#endif
+
+enum xive_cache_type {
+ xive_cache_ivc,
+ xive_cache_sbc,
+ xive_cache_eqc,
+ xive_cache_vpc,
+};
+
+static int64_t __xive_cache_scrub(struct xive *x, enum xive_cache_type ctype,
+ uint64_t block, uint64_t idx,
+ bool want_inval, bool want_disable)
+{
+ uint64_t sreg, sregx, mreg, mregx;
+ uint64_t mval, sval;
+
+ switch (ctype) {
+ case xive_cache_ivc:
+ sreg = VC_IVC_SCRUB_TRIG;
+ sregx = X_VC_IVC_SCRUB_TRIG;
+ mreg = VC_IVC_SCRUB_MASK;
+ mregx = X_VC_IVC_SCRUB_MASK;
+ break;
+ case xive_cache_sbc:
+ sreg = VC_SBC_SCRUB_TRIG;
+ sregx = X_VC_SBC_SCRUB_TRIG;
+ mreg = VC_SBC_SCRUB_MASK;
+ mregx = X_VC_SBC_SCRUB_MASK;
+ case xive_cache_eqc:
+ sreg = VC_EQC_SCRUB_TRIG;
+ sregx = X_VC_EQC_SCRUB_TRIG;
+ mreg = VC_EQC_SCRUB_MASK;
+ mregx = X_VC_EQC_SCRUB_MASK;
+ case xive_cache_vpc:
+ sreg = PC_VPC_SCRUB_TRIG;
+ sregx = X_PC_VPC_SCRUB_TRIG;
+ mreg = PC_VPC_SCRUB_MASK;
+ mregx = X_PC_VPC_SCRUB_MASK;
+ }
+ if (ctype == xive_cache_vpc) {
+ mval = PC_SCRUB_BLOCK_ID | PC_SCRUB_OFFSET;
+ sval = SETFIELD(PC_SCRUB_BLOCK_ID, idx, block) |
+ PC_SCRUB_VALID;
+ } else {
+ mval = VC_SCRUB_BLOCK_ID | VC_SCRUB_OFFSET;
+ sval = SETFIELD(VC_SCRUB_BLOCK_ID, idx, block) |
+ VC_SCRUB_VALID;
+ }
+ if (want_inval)
+ sval |= PC_SCRUB_WANT_INVAL;
+ if (want_disable)
+ sval |= PC_SCRUB_WANT_DISABLE;
+
+ __xive_regw(x, mreg, mregx, mval, NULL);
+ __xive_regw(x, sreg, sregx, sval, NULL);
+
+ /* XXX Add timeout !!! */
+ for (;;) {
+ sval = __xive_regr(x, sreg, sregx, NULL);
+ if (!(sval & VC_SCRUB_VALID))
+ break;
+ time_wait_us(1);
+ }
+ return 0;
+}
+
+static int64_t xive_ivc_scrub(struct xive *x, uint64_t block, uint64_t idx)
+{
+ return __xive_cache_scrub(x, xive_cache_ivc, block, idx, false, false);
+}
+
+static void xive_ipi_init(struct xive *x, uint32_t idx)
+{
+ uint8_t *mm = x->esb_mmio + idx * 0x20000;
+
+ /* Clear P and Q */
+ in_8(mm + 0x10c00);
+}
+
+static void xive_ipi_eoi(struct xive *x, uint32_t idx)
+{
+ uint8_t *mm = x->esb_mmio + idx * 0x20000;
+ uint8_t eoi_val;
+
+ /* For EOI, we use the special MMIO that does a clear of both
+ * P and Q and returns the old Q.
+ *
+ * This allows us to then do a re-trigger if Q was set rather
+ * than synthetizing an interrupt in software
+ */
+ eoi_val = in_8(mm + 0x10c00);
+ if (eoi_val & 1) {
+ out_8(mm, 0);
+ }
+}
+
+static void xive_ipi_trigger(struct xive *x, uint32_t idx)
+{
+ uint8_t *mm = x->esb_mmio + idx * 0x20000;
+
+ xive_vdbg(x, "Trigger IPI 0x%x\n", idx);
+
+ out_8(mm, 0);
+}
+
+
+static bool xive_set_vsd(struct xive *x, uint32_t tbl, uint32_t idx, uint64_t v)
+{
+ /* Set VC version */
+ xive_regw(x, VC_VSD_TABLE_ADDR,
+ SETFIELD(VST_TABLE_SELECT, 0ull, tbl) |
+ SETFIELD(VST_TABLE_OFFSET, 0ull, idx));
+ if (x->last_reg_error)
+ return false;
+ xive_regw(x, VC_VSD_TABLE_DATA, v);
+ if (x->last_reg_error)
+ return false;
+
+ /* Except for IRQ table, also set PC version */
+ if (tbl == VST_TSEL_IRQ)
+ return true;
+
+ xive_regw(x, PC_VSD_TABLE_ADDR,
+ SETFIELD(VST_TABLE_SELECT, 0ull, tbl) |
+ SETFIELD(VST_TABLE_OFFSET, 0ull, idx));
+ if (x->last_reg_error)
+ return false;
+ xive_regw(x, PC_VSD_TABLE_DATA, v);
+ if (x->last_reg_error)
+ return false;
+ return true;
+}
+
+static bool xive_set_local_tables(struct xive *x)
+{
+ uint64_t base;
+
+ /* These have to be power of 2 sized */
+ assert(is_pow2(SBE_SIZE));
+ assert(is_pow2(IVT_SIZE));
+
+ /* All tables set as exclusive */
+ base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
+
+ /* Set IVT as direct mode */
+ if (!xive_set_vsd(x, VST_TSEL_IVT, x->chip_id, base |
+ (((uint64_t)x->ivt_base) & VSD_ADDRESS_MASK) |
+ SETFIELD(VSD_TSIZE, 0ull, ilog2(IVT_SIZE) - 12)))
+ return false;
+
+ /* Set SBE as direct mode */
+ if (!xive_set_vsd(x, VST_TSEL_SBE, x->chip_id, base |
+ (((uint64_t)x->sbe_base) & VSD_ADDRESS_MASK) |
+ SETFIELD(VSD_TSIZE, 0ull, ilog2(SBE_SIZE) - 12)))
+ return false;
+
+#ifdef USE_INDIRECT
+ /* Set EQDT as indirect mode with 64K subpages */
+ if (!xive_set_vsd(x, VST_TSEL_EQDT, x->chip_id, base |
+ (((uint64_t)x->eq_ind_base) & VSD_ADDRESS_MASK) |
+ VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull, 4)))
+ return false;
+
+ /* Set VPDT as indirect mode with 64K subpages */
+ if (!xive_set_vsd(x, VST_TSEL_VPDT, x->chip_id, base |
+ (((uint64_t)x->vp_ind_base) & VSD_ADDRESS_MASK) |
+ VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull, 4)))
+ return false;
+#else
+ /* Set EQDT as direct mode */
+ if (!xive_set_vsd(x, VST_TSEL_EQDT, x->chip_id, base |
+ (((uint64_t)x->eq_base) & VSD_ADDRESS_MASK) |
+ SETFIELD(VSD_TSIZE, 0ull, ilog2(EQT_SIZE) - 12)))
+ return false;
+
+ /* Set VPDT as direct mode */
+ if (!xive_set_vsd(x, VST_TSEL_VPDT, x->chip_id, base |
+ (((uint64_t)x->vp_base) & VSD_ADDRESS_MASK) |
+ SETFIELD(VSD_TSIZE, 0ull, ilog2(VPT_SIZE) - 12)))
+ return false;
+#endif
+
+ return true;
+}
+
+static bool xive_read_bars(struct xive *x)
+{
+ uint64_t bar, msk;
+
+ /* Read IC BAR */
+ bar = xive_regrx(x, CQ_IC_BAR);
+ if (bar & CQ_IC_BAR_64K)
+ x->ic_shift = 16;
+ else
+ x->ic_shift = 12;
+ x->ic_size = 8ul << x->ic_shift;
+ x->ic_base = (void *)(bar & 0x00ffffffffffffffull);
+
+ /* Read TM BAR */
+ bar = xive_regrx(x, CQ_TM1_BAR);
+ assert(bar & CQ_TM_BAR_VALID);
+ if (bar & CQ_TM_BAR_64K)
+ x->tm_shift = 16;
+ else
+ x->tm_shift = 12;
+ x->tm_size = 4ul << x->tm_shift;
+ x->tm_base = (void *)(bar & 0x00ffffffffffffffull);
+
+ /* Read PC BAR */
+ bar = xive_regr(x, CQ_PC_BAR);
+ msk = xive_regr(x, CQ_PC_BARM) | 0xffffffc000000000ul;
+ assert(bar & CQ_PC_BAR_VALID);
+ x->pc_size = (~msk) + 1;
+ x->pc_base = (void *)(bar & 0x00ffffffffffffffull);
+
+ /* Read VC BAR */
+ bar = xive_regr(x, CQ_VC_BAR);
+ msk = xive_regr(x, CQ_VC_BARM) | 0xfffff80000000000ul;
+ assert(bar & CQ_VC_BAR_VALID);
+ x->vc_size = (~msk) + 1;
+ x->vc_base = (void *)(bar & 0x00ffffffffffffffull);
+
+ return true;
+}
+
+static bool xive_configure_bars(struct xive *x)
+{
+ uint64_t mmio_base, chip_base, val;
+
+ /* Calculate MMIO base offset for that chip */
+ mmio_base = 0x006000000000000ull;
+ chip_base = mmio_base | (0x40000000000ull * (uint64_t)x->chip_id);
+
+ /* IC BAR. We use 4K pages here, 64K doesn't seem implemented
+ * in SIMCIS
+ */
+ x->ic_base = (void *)(chip_base | IC_BAR_DEFAULT);
+ x->ic_size = IC_BAR_SIZE;
+ val = (uint64_t)x->ic_base | CQ_IC_BAR_VALID;
+ if (IC_PAGE_SIZE == 0x10000) {
+ val |= CQ_IC_BAR_64K;
+ x->ic_shift = 16;
+ } else
+ x->ic_shift = 12;
+ xive_regwx(x, CQ_IC_BAR, val);
+ if (x->last_reg_error)
+ return false;
+
+ /* TM BAR, only configure TM1. Note that this has the same address
+ * for each chip !!!
+ */
+ x->tm_base = (void *)(mmio_base | TM_BAR_DEFAULT);
+ x->tm_size = TM_BAR_SIZE;
+ val = (uint64_t)x->tm_base | CQ_TM_BAR_VALID;
+ if (TM_PAGE_SIZE == 0x10000) {
+ x->tm_shift = 16;
+ val |= CQ_TM_BAR_64K;
+ } else
+ x->tm_shift = 12;
+ xive_regwx(x, CQ_TM1_BAR, val);
+ if (x->last_reg_error)
+ return false;
+ xive_regwx(x, CQ_TM2_BAR, 0);
+ if (x->last_reg_error)
+ return false;
+
+ /* PC BAR. Clear first, write mask, then write value */
+ x->pc_base = (void *)(chip_base | PC_BAR_DEFAULT);
+ x->pc_size = PC_BAR_SIZE;
+ xive_regwx(x, CQ_PC_BAR, 0);
+ if (x->last_reg_error)
+ return false;
+ val = ~(PC_BAR_SIZE - 1) & CQ_PC_BARM_MASK;
+ xive_regwx(x, CQ_PC_BARM, val);
+ if (x->last_reg_error)
+ return false;
+ val = (uint64_t)x->pc_base | CQ_PC_BAR_VALID;
+ xive_regwx(x, CQ_PC_BAR, val);
+ if (x->last_reg_error)
+ return false;
+
+ /* VC BAR. Clear first, write mask, then write value */
+ x->vc_base = (void *)(chip_base | VC_BAR_DEFAULT);
+ x->vc_size = VC_BAR_SIZE;
+ xive_regwx(x, CQ_VC_BAR, 0);
+ if (x->last_reg_error)
+ return false;
+ val = ~(VC_BAR_SIZE - 1) & CQ_VC_BARM_MASK;
+ xive_regwx(x, CQ_VC_BARM, val);
+ if (x->last_reg_error)
+ return false;
+ val = (uint64_t)x->vc_base | CQ_VC_BAR_VALID;
+ xive_regwx(x, CQ_VC_BAR, val);
+ if (x->last_reg_error)
+ return false;
+
+ return true;
+}
+
+static void xive_dump_mmio(struct xive *x)
+{
+ prlog(PR_DEBUG, " CQ_CFG_PB_GEN = %016llx\n",
+ in_be64(x->ic_base + CQ_CFG_PB_GEN));
+ prlog(PR_DEBUG, " CQ_MSGSND = %016llx\n",
+ in_be64(x->ic_base + CQ_MSGSND));
+}
+
+static bool xive_check_update_bars(struct xive *x)
+{
+ uint64_t val;
+ bool force_assign;
+
+ /* Check if IC BAR is enabled */
+ val = xive_regrx(x, CQ_IC_BAR);
+ if (x->last_reg_error)
+ return false;
+
+ /* Check if device-tree tells us to force-assign the BARs */
+ force_assign = dt_has_node_property(x->x_node,
+ "force-assign-bars", NULL);
+ if ((val & CQ_IC_BAR_VALID) && !force_assign) {
+ xive_dbg(x, "IC BAR valid, using existing values\n");
+ if (!xive_read_bars(x))
+ return false;
+ } else {
+ xive_warn(x, "IC BAR invalid, reconfiguring\n");
+ if (!xive_configure_bars(x))
+ return false;
+ }
+
+ /* Calculate some MMIO bases in the VC BAR */
+ x->esb_mmio = x->vc_base;
+ x->eq_mmio = x->vc_base + (x->vc_size / VC_MAX_SETS) * VC_ESB_SETS;
+
+ /* Print things out */
+ xive_dbg(x, "IC: %14p [0x%012llx/%d]\n", x->ic_base, x->ic_size, x->ic_shift);
+ xive_dbg(x, "TM: %14p [0x%012llx/%d]\n", x->tm_base, x->tm_size, x->tm_shift);
+ xive_dbg(x, "PC: %14p [0x%012llx]\n", x->pc_base, x->pc_size);
+ xive_dbg(x, "VC: %14p [0x%012llx]\n", x->vc_base, x->vc_size);
+
+ return true;
+}
+
+static bool xive_config_init(struct xive *x)
+{
+ uint64_t val __unused;
+
+ /* Configure PC and VC page sizes and disable Linux trigger mode */
+ xive_regwx(x, CQ_PBI_CTL, CQ_PBI_PC_64K | CQ_PBI_VC_64K);
+ if (x->last_reg_error)
+ return false;
+
+ /*** The rest can use MMIO ***/
+
+#ifdef USE_INDIRECT
+ /* Enable indirect mode in VC config */
+ val = xive_regr(x, VC_GLOBAL_CONFIG);
+ val |= VC_GCONF_INDIRECT;
+ xive_regw(x, VC_GLOBAL_CONFIG, val);
+
+ /* Enable indirect mode in PC config */
+ val = xive_regr(x, PC_GLOBAL_CONFIG);
+ val |= PC_GCONF_INDIRECT;
+ xive_regw(x, PC_GLOBAL_CONFIG, val);
+#endif
+
+#ifdef USE_BLOCK_GROUP_MODE
+ val = xive_regr(x, PC_TCTXT_CFG);
+ val |= PC_TCTXT_CFG_BLKGRP_EN | PC_TCTXT_CFG_HARD_CHIPID_BLK;
+ xive_regw(x, PC_TCTXT_CFG, val);
+#endif
+ return true;
+}
+
+static bool xive_setup_set_xlate(struct xive *x)
+{
+ unsigned int i;
+
+ /* Configure EDT for ESBs (aka IPIs) */
+ xive_regw(x, CQ_TAR, CQ_TAR_TBL_AUTOINC | CQ_TAR_TSEL_EDT);
+ if (x->last_reg_error)
+ return false;
+ for (i = 0; i < VC_ESB_SETS; i++) {
+ xive_regw(x, CQ_TDR,
+ /* IPI type */
+ (1ull << 62) |
+ /* block is chip_ID */
+ (((uint64_t)x->chip_id) << 48) |
+ /* offset */
+ (((uint64_t)i) << 32));
+ if (x->last_reg_error)
+ return false;
+ }
+
+ /* Configure EDT for ENDs (aka EQs) */
+ for (i = 0; i < VC_END_SETS; i++) {
+ xive_regw(x, CQ_TDR,
+ /* EQ type */
+ (2ull << 62) |
+ /* block is chip_ID */
+ (((uint64_t)x->chip_id) << 48) |
+ /* offset */
+ (((uint64_t)i) << 32));
+ if (x->last_reg_error)
+ return false;
+ }
+
+ /* Configure VDT */
+ xive_regw(x, CQ_TAR, CQ_TAR_TBL_AUTOINC | CQ_TAR_TSEL_VDT);
+ if (x->last_reg_error)
+ return false;
+ for (i = 0; i < PC_MAX_SETS; i++) {
+ xive_regw(x, CQ_TDR,
+ /* Valid bit */
+ (1ull << 63) |
+ /* block is chip_ID */
+ (((uint64_t)x->chip_id) << 48) |
+ /* offset */
+ (((uint64_t)i) << 32));
+ if (x->last_reg_error)
+ return false;
+ }
+ return true;
+}
+
+static struct xive_vp *xive_alloc_init_vp(struct xive *x, unsigned int idx)
+{
+ struct xive_vp *vp = xive_get_vp(x, idx);
+ struct xive_eq *eq = xive_get_eq(x, idx);
+ void *p;
+
+ assert(vp);
+ assert(eq);
+
+ xive_init_vp(x, vp);
+
+ p = local_alloc(x->chip_id, 0x10000, 0x10000);
+ if (!p) {
+ xive_err(x, "Failed to allocate EQ backing store\n");
+ return NULL;
+ }
+ xive_init_eq(x, idx, eq, p);
+
+ return vp;
+}
+
+static bool xive_prealloc_tables(struct xive *x)
+{
+ unsigned int i, vp_init_count, vp_init_base;
+ unsigned int pbase __unused, pend __unused;
+ uint64_t al __unused;
+
+ /* ESB/SBE has 4 entries per byte */
+ x->sbe_base = local_alloc(x->chip_id, SBE_SIZE, SBE_SIZE);
+ if (!x->sbe_base) {
+ xive_err(x, "Failed to allocate SBE\n");
+ return false;
+ }
+ /* SBEs are initialized to 0b01 which corresponds to "ints off" */
+ memset(x->sbe_base, 0x55, SBE_SIZE);
+
+ /* EAS/IVT entries are 8 bytes */
+ x->ivt_base = local_alloc(x->chip_id, IVT_SIZE, IVT_SIZE);
+ if (!x->ivt_base) {
+ xive_err(x, "Failed to allocate IVT\n");
+ return false;
+ }
+ /* We clear the entries (non-valid). They will be initialized
+ * when actually used
+ */
+ memset(x->ivt_base, 0, IVT_SIZE);
+
+#ifdef USE_INDIRECT
+ /* Indirect EQ table. (XXX Align to 64K until I figure out the
+ * HW requirements)
+ */
+ al = (IND_EQ_TABLE_SIZE + 0xffff) & ~0xffffull;
+ x->eq_ind_base = local_alloc(x->chip_id, al, al);
+ if (!x->eq_ind_base) {
+ xive_err(x, "Failed to allocate EQ indirect table\n");
+ return false;
+ }
+ memset(x->eq_ind_base, 0, al);
+ x->eq_ind_count = IND_EQ_TABLE_SIZE / 8;
+
+ /* Indirect VP table. (XXX Align to 64K until I figure out the
+ * HW requirements)
+ */
+ al = (IND_VP_TABLE_SIZE + 0xffff) & ~0xffffull;
+ x->vp_ind_base = local_alloc(x->chip_id, al, al);
+ if (!x->vp_ind_base) {
+ xive_err(x, "Failed to allocate VP indirect table\n");
+ return false;
+ }
+ x->vp_ind_count = IND_VP_TABLE_SIZE / 8;
+ memset(x->vp_ind_base, 0, al);
+
+#else /* USE_INDIRECT */
+
+ x->eq_base = local_alloc(x->chip_id, EQT_SIZE, EQT_SIZE);
+ if (!x->eq_base) {
+ xive_err(x, "Failed to allocate EQ table\n");
+ return false;
+ }
+ memset(x->eq_base, 0, EQT_SIZE);
+
+ /* EAS/IVT entries are 8 bytes */
+ x->vp_base = local_alloc(x->chip_id, VPT_SIZE, VPT_SIZE);
+ if (!x->vp_base) {
+ xive_err(x, "Failed to allocate VP table\n");
+ return false;
+ }
+ /* We clear the entries (non-valid). They will be initialized
+ * when actually used
+ */
+ memset(x->vp_base, 0, VPT_SIZE);
+
+#endif /* USE_INDIRECT */
+
+ /* Populate/initialize VP/EQs */
+#ifdef USE_BLOCK_GROUP_MODE
+ vp_init_count = INITIAL_VP_COUNT;
+ vp_init_base = INITIAL_VP_BASE;
+#else
+ vp_init_count = x->chip_id == 0 ? INITIAL_BLK0_VP_COUNT : 0;
+ vp_init_base = INITIAL_BLK0_VP_BASE;
+#endif
+
+#ifdef USE_INDIRECT
+ /* Allocate pages for some VPs and EQs in indirect mode */
+ pbase = vp_init_base / VP_PER_PAGE;
+ pend = (vp_init_base + vp_init_count) / VP_PER_PAGE;
+ xive_dbg(x, "Allocating pages %d to %d of VPs (for %d VPs)\n",
+ pbase, pend, INITIAL_VP_COUNT);
+ for (i = pbase; i <= pend; i++) {
+ void *page;
+
+ /* Indirect entries have a VSD format */
+ page = local_alloc(x->chip_id, 0x10000, 0x10000);
+ if (!page) {
+ xive_err(x, "Failed to allocate VP page\n");
+ return false;
+ }
+ memset(page, 0, 0x10000);
+ x->vp_ind_base[i] = ((uint64_t)page) & VSD_ADDRESS_MASK;
+ x->vp_ind_base[i] |= SETFIELD(VSD_TSIZE, 0ull, 4);
+
+ page = local_alloc(x->chip_id, 0x10000, 0x10000);
+ if (!page) {
+ xive_err(x, "Failed to allocate EQ page\n");
+ return false;
+ }
+ memset(page, 0, 0x10000);
+ x->eq_ind_base[i] = ((uint64_t)page) & VSD_ADDRESS_MASK;
+ x->eq_ind_base[i] |= SETFIELD(VSD_TSIZE, 0ull, 4);
+
+#ifdef INDIRECT_IS_LE
+ x->vp_ind_base[i] = cpu_to_le64(x->vp_ind_base[i]);
+ x->eq_ind_base[i] = cpu_to_le64(x->eq_ind_base[i]);
+#endif
+ }
+#endif /* USE_INDIRECT */
+
+ /* Allocate the initial EQs backing store and initialize EQs and VPs */
+ for (i = vp_init_base; i < (vp_init_base + vp_init_count); i++)
+ if (xive_alloc_init_vp(x, i) == NULL) {
+ xive_err(x, "Base VP initialization failed\n");
+ return false;
+ }
+
+ return true;
+}
+
+static void xive_create_mmio_dt_node(struct xive *x)
+{
+ x->m_node = dt_new_addr(dt_root, "interrupt-controller",
+ (uint64_t)x->ic_base);
+ assert(x->m_node);
+
+ dt_add_property_u64s(x->m_node, "reg",
+ (uint64_t)x->ic_base, x->ic_size,
+ (uint64_t)x->tm_base, x->tm_size,
+ (uint64_t)x->pc_base, x->pc_size,
+ (uint64_t)x->vc_base, x->vc_size);
+
+ /* XXX Only put in "ibm,power9-xive" when we support the exploitation
+ * related APIs and properties
+ */
+ dt_add_property_strings(x->m_node, "compatible", /*"ibm,power9-xive",*/ "ibm,opal-intc");
+
+ dt_add_property_cells(x->m_node, "ibm,xive-max-sources",
+ MAX_INT_ENTRIES);
+}
+
+static void late_init_one_xive(struct xive *x __unused)
+{
+ // XXX Setup fwd ports
+}
+
+uint32_t xive_alloc_hw_irqs(uint32_t chip_id, uint32_t count, uint32_t align)
+{
+ struct proc_chip *chip = get_chip(chip_id);
+ struct xive *x;
+ uint32_t base, i;
+
+ assert(chip);
+ assert(is_pow2(align));
+
+ x = chip->xive;
+ assert(x);
+
+ /* Allocate the HW interrupts */
+ base = x->int_hw_bot - count;
+ base &= ~(align - 1);
+ if (base < x->int_ipi_top) {
+ xive_err(x,
+ "HW alloc request for %d interrupts aligned to %d failed\n",
+ count, align);
+ return XIVE_IRQ_ERROR;
+ }
+ x->int_hw_bot = base;
+
+ /* Initialize the corresponding IVT entries to sane defaults,
+ * IE entry is valid, not routed and masked, EQ data is set
+ * to the GIRQ number.
+ */
+ for (i = 0; i < count; i++) {
+ struct xive_ive *ive = xive_get_ive(x, base + i);
+
+ ive->w = IVE_VALID | IVE_MASKED | SETFIELD(IVE_EQ_DATA, 0ul, base + i);
+ }
+ return base;
+}
+
+uint32_t xive_alloc_ipi_irqs(uint32_t chip_id, uint32_t count, uint32_t align)
+{
+ struct proc_chip *chip = get_chip(chip_id);
+ struct xive *x;
+ uint32_t base, i;
+
+ assert(chip);
+ assert(is_pow2(align));
+
+ x = chip->xive;
+ assert(x);
+
+ /* Allocate the IPI interrupts */
+ base = x->int_ipi_top + (align - 1);
+ base &= ~(align - 1);
+ if (base >= x->int_hw_bot) {
+ xive_err(x,
+ "IPI alloc request for %d interrupts aligned to %d failed\n",
+ count, align);
+ return XIVE_IRQ_ERROR;
+ }
+ x->int_ipi_top = base + count;
+
+ /* Initialize the corresponding IVT entries to sane defaults,
+ * IE entry is valid, not routed and masked, EQ data is set
+ * to the GIRQ number.
+ */
+ for (i = 0; i < count; i++) {
+ struct xive_ive *ive = xive_get_ive(x, base + i);
+
+ ive->w = IVE_VALID | IVE_MASKED | SETFIELD(IVE_EQ_DATA, 0ul, base + i);
+ }
+
+ return base;
+}
+
+uint64_t xive_get_notify_port(uint32_t chip_id, uint32_t ent)
+{
+ struct proc_chip *chip = get_chip(chip_id);
+ struct xive *x;
+ uint32_t offset = 0;
+
+ assert(chip);
+ x = chip->xive;
+ assert(x);
+
+ /* This is where we can assign a different HW queue to a different
+ * source by offsetting into the cache lines of the notify port
+ *
+ * For now we keep it very basic, this will have to be looked at
+ * again on real HW with some proper performance analysis.
+ *
+ * Here's what Florian says on the matter:
+ *
+ * <<
+ * The first 2k of the notify port page can all be used for PCIe triggers
+ *
+ * However the idea would be that we try to use the first 4 cache lines to
+ * balance the PCIe Interrupt requests to use the least used snoop buses
+ * (we went from 2 to 4 snoop buses for P9). snoop 0 is heavily used
+ * (I think TLBIs are using that in addition to the normal addresses),
+ * snoop 3 is used for all Int commands, so I think snoop 2 (CL 2 in the
+ * page) is the least used overall. So we probably should that one for
+ * the Int commands from PCIe.
+ *
+ * In addition, our EAS cache supports hashing to provide "private" cache
+ * areas for the PHBs in the shared 1k EAS cache. This allows e.g. to avoid
+ * that one "thrashing" PHB thrashes the EAS cache for everyone, or provide
+ * a PHB with a private area that would allow high cache hits in case of a
+ * device using very few interrupts. The hashing is based on the offset within
+ * the cache line. So using that, you can e.g. set the EAS cache up so that
+ * IPIs use 512 entries, the x16 PHB uses 256 entries and the x8 PHBs 128
+ * entries each - or IPIs using all entries and sharing with PHBs, so PHBs
+ * would use 512 entries and 256 entries respectively.
+ *
+ * This is a tuning we would probably do later in the lab, but as a "prep"
+ * we should set up the different PHBs such that they are using different
+ * 8B-aligned offsets within the cache line, so e.g.
+ * PH4_0 addr 0x100 (CL 2 DW0
+ * PH4_1 addr 0x108 (CL 2 DW1)
+ * PH4_2 addr 0x110 (CL 2 DW2)
+ * etc.
+ * >>
+ */
+ switch(ent) {
+ case XIVE_HW_SRC_PHBn(0):
+ offset = 0x100;
+ break;
+ case XIVE_HW_SRC_PHBn(1):
+ offset = 0x108;
+ break;
+ case XIVE_HW_SRC_PHBn(2):
+ offset = 0x110;
+ break;
+ case XIVE_HW_SRC_PHBn(3):
+ offset = 0x118;
+ break;
+ case XIVE_HW_SRC_PHBn(4):
+ offset = 0x120;
+ break;
+ case XIVE_HW_SRC_PHBn(5):
+ offset = 0x128;
+ break;
+ case XIVE_HW_SRC_PSI:
+ offset = 0x130;
+ break;
+ default:
+ assert(false);
+ return 0;
+ }
+
+ /* Notify port is the second page of the IC BAR */
+ return ((uint64_t)x->ic_base) + (1ul << x->ic_shift) + offset;
+}
+
+static void init_one_xive(struct dt_node *np)
+{
+ struct xive *x;
+ struct proc_chip *chip;
+
+ x = zalloc(sizeof(struct xive));
+ assert(x);
+ x->xscom_base = dt_get_address(np, 0, NULL);
+ x->chip_id = dt_get_chip_id(np);
+ x->x_node = np;
+ init_lock(&x->lock);
+
+ chip = get_chip(x->chip_id);
+ assert(chip);
+ xive_dbg(x, "Initializing...\n");
+ chip->xive = x;
+
+ /* Base interrupt numbers and allocator init */
+ x->int_base = BLKIDX_TO_GIRQ(x->chip_id, 0);
+ x->int_max = x->int_base + MAX_INT_ENTRIES;
+ x->int_hw_bot = x->int_max;
+ x->int_ipi_top = x->int_base;
+
+ /* Make sure we never hand out "2" as it's reserved for XICS emulation
+ * IPI returns. Generally start handing out at 0x10
+ */
+ if (x->int_ipi_top < 0x10)
+ x->int_ipi_top = 0x10;
+
+ xive_dbg(x, "Handling interrupts [%08x..%08x]\n", x->int_base, x->int_max - 1);
+
+ /* System dependant values that must be set before BARs */
+ //xive_regwx(x, CQ_CFG_PB_GEN, xx);
+ //xive_regwx(x, CQ_MSGSND, xx);
+
+ /* Verify the BARs are initialized and if not, setup a default layout */
+ xive_check_update_bars(x);
+
+ /* Some basic global inits such as page sizes etc... */
+ if (!xive_config_init(x))
+ goto fail;
+
+ /* Configure the set translations for MMIO */
+ if (!xive_setup_set_xlate(x))
+ goto fail;
+
+ /* Dump some MMIO registers for diagnostics */
+ xive_dump_mmio(x);
+
+ /* Pre-allocate a number of tables */
+ if (!xive_prealloc_tables(x))
+ goto fail;
+
+ /* Configure local tables in VSDs (forward ports will be handled later) */
+ if (!xive_set_local_tables(x))
+ goto fail;
+
+ /* Create a device-tree node for Linux use */
+ xive_create_mmio_dt_node(x);
+
+ return;
+ fail:
+ xive_err(x, "Initialization failed...\n");
+
+ /* Should this be fatal ? */
+ //assert(false);
+}
+
+/*
+ * XICS emulation
+ */
+struct xive_cpu_state {
+ struct xive *xive;
+ void *tm_ring1;
+ uint32_t vp_blk;
+ uint32_t vp_idx;
+ struct lock lock;
+ uint8_t cppr;
+ uint8_t mfrr;
+ uint8_t pending;
+ uint8_t prev_cppr;
+ uint32_t *eqbuf;
+ uint32_t eqidx;
+ uint32_t eqmsk;
+ uint8_t eqgen;
+ void *eqmmio;
+ uint32_t ipi_irq;
+};
+
+void xive_cpu_callin(struct cpu_thread *cpu)
+{
+ struct xive_cpu_state *xs = cpu->xstate;
+ struct proc_chip *chip = get_chip(cpu->chip_id);
+ struct xive *x = chip->xive;
+ uint32_t fc, bit;
+
+ if (!xs)
+ return;
+
+ /* First enable us in PTER. We currently assume that the
+ * PIR bits can be directly used to index in PTER. That might
+ * need to be verified
+ */
+
+ /* Get fused core number */
+ fc = (cpu->pir >> 3) & 0xf;
+ /* Get bit in register */
+ bit = cpu->pir & 0x3f;
+ /* Get which register to access */
+ if (fc < 8)
+ xive_regw(x, PC_THREAD_EN_REG0_SET, PPC_BIT(bit));
+ else
+ xive_regw(x, PC_THREAD_EN_REG1_SET, PPC_BIT(bit));
+
+ /* Set CPPR to 0 */
+ out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, 0);
+
+ /* Set VT to 1 */
+ out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2, 0x80);
+
+ xive_cpu_dbg(cpu, "Initialized interrupt management area\n");
+
+ /* Now unmask the IPI */
+ xive_ipi_init(x, GIRQ_TO_IDX(xs->ipi_irq));
+}
+
+static void xive_init_cpu(struct cpu_thread *c)
+{
+ struct proc_chip *chip = get_chip(c->chip_id);
+ struct xive *x = chip->xive;
+ struct xive_cpu_state *xs;
+
+ if (!x)
+ return;
+
+ /* First, if we are the first CPU of an EX pair, we need to
+ * setup the special BAR
+ */
+ /* XXX This is very P9 specific ... */
+ if ((c->pir & 0x7) == 0) {
+ uint64_t xa, val;
+ int64_t rc;
+
+ xive_cpu_dbg(c, "Setting up special BAR\n");
+ xa = XSCOM_ADDR_P9_EX(pir_to_core_id(c->pir), P9X_EX_NCU_SPEC_BAR);
+ printf("NCU_SPEC_BAR_XA=%08llx\n", xa);
+ val = (uint64_t)x->tm_base | P9X_EX_NCU_SPEC_BAR_ENABLE;
+ if (x->tm_shift == 16)
+ val |= P9X_EX_NCU_SPEC_BAR_256K;
+ rc = xscom_write(c->chip_id, xa, val);
+ if (rc) {
+ xive_cpu_err(c, "Failed to setup NCU_SPEC_BAR\n");
+ /* XXXX what do do now ? */
+ }
+ }
+
+ /* Initialize the state structure */
+ c->xstate = xs = local_alloc(c->chip_id, sizeof(struct xive_cpu_state), 1);
+ assert(xs);
+ xs->xive = x;
+
+ init_lock(&xs->lock);
+
+ xs->vp_blk = PIR2VP_BLK(c->pir);
+ xs->vp_idx = PIR2VP_IDX(c->pir);
+ xs->cppr = 0;
+ xs->mfrr = 0xff;
+
+ /* XXX Find the one eq buffer associated with the VP, for now same BLK/ID */
+ xs->eqbuf = xive_get_eq_buf(x, xs->vp_blk, xs->vp_idx);
+ xs->eqidx = 0;
+ xs->eqmsk = (0x10000/4) - 1;
+ xs->eqgen = false;
+ xs->eqmmio = x->eq_mmio + xs->vp_idx * 0x20000;
+ assert(xs->eqbuf);
+
+ /* Shortcut to TM HV ring */
+ xs->tm_ring1 = x->tm_base + (1u << x->tm_shift);
+
+ /* Allocate an IPI */
+ xs->ipi_irq = xive_alloc_ipi_irqs(c->chip_id, 1, 1);
+ xive_set_eq_info(xs->ipi_irq, c->pir, 0x7);
+ xive_cpu_dbg(c, "CPU IPI is irq %08x\n", xs->ipi_irq);
+}
+
+bool xive_get_eq_info(uint32_t isn, uint32_t *out_target, uint8_t *out_prio)
+{
+ struct xive_ive *ive;
+ struct xive *x, *eq_x;
+ struct xive_eq *eq;
+ uint32_t eq_blk, eq_idx;
+ uint32_t vp_blk, vp_idx;
+ uint32_t prio, server;
+
+ /* Find XIVE on which the IVE resides */
+ x = xive_from_isn(isn);
+ if (!x)
+ return false;
+ /* Grab the IVE */
+ ive = xive_get_ive(x, isn);
+ if (!ive)
+ return false;
+ if (!(ive->w & IVE_VALID)) {
+ xive_err(x, "ISN %x lead to invalid IVE !\n", isn);
+ return false;
+ }
+ /* Find the EQ and its xive instance */
+ eq_blk = GETFIELD(IVE_EQ_BLOCK, ive->w);
+ eq_idx = GETFIELD(IVE_EQ_INDEX, ive->w);
+ eq_x = xive_from_vc_blk(eq_blk);
+ if (!eq_x) {
+ xive_err(x, "Can't find controller for EQ BLK %d\n", eq_blk);
+ return false;
+ }
+ eq = xive_get_eq(eq_x, eq_idx);
+ if (!eq) {
+ xive_err(eq_x, "Can't locate EQ %d\n", eq_idx);
+ return false;
+ }
+ /* XXX Check valid and format 0 */
+
+ /* No priority conversion, return the actual one ! */
+ prio = GETFIELD(EQ_W7_F0_PRIORITY, eq->w7);
+ if (out_prio)
+ *out_prio = prio;
+
+ vp_blk = GETFIELD(EQ_W6_NVT_BLOCK, eq->w6);
+ vp_idx = GETFIELD(EQ_W6_NVT_INDEX, eq->w6);
+ server = VP2PIR(vp_blk, vp_idx);
+
+ if (out_target)
+ *out_target = server;
+ xive_vdbg(eq_x, "EQ info for ISN %x: prio=%d, server=0x%x (VP %x/%x)\n",
+ isn, prio, server, vp_blk, vp_idx);
+ return true;
+}
+
+static inline bool xive_eq_for_target(uint32_t target, uint8_t prio __unused,
+ uint32_t *eq_blk, uint32_t *eq_idx)
+{
+ uint32_t vp_blk = PIR2VP_BLK(target);
+ uint32_t vp_idx = PIR2VP_IDX(target);
+
+ /* XXX We currently have EQ BLK/IDX == VP BLK/IDX. This will change
+ * when we support priorities.
+ */
+ if (eq_blk)
+ *eq_blk = vp_blk;
+ if (eq_idx)
+ *eq_idx = vp_idx;
+ return true;
+}
+
+bool xive_set_eq_info(uint32_t isn, uint32_t target, uint8_t prio)
+{
+ struct xive *x;
+ struct xive_ive *ive;
+ uint32_t eq_blk, eq_idx;
+
+ /* Find XIVE on which the IVE resides */
+ x = xive_from_isn(isn);
+ if (!x)
+ return false;
+ /* Grab the IVE */
+ ive = xive_get_ive(x, isn);
+ if (!ive)
+ return false;
+ if (!(ive->w & IVE_VALID)) {
+ xive_err(x, "ISN %x lead to invalid IVE !\n", isn);
+ return false;
+ }
+
+ /* Are we masking ? */
+ if (prio == 0xff) {
+ /* Masking, just set the M bit */
+ ive->w |= IVE_MASKED;
+
+ xive_vdbg(x, "ISN %x masked !\n", isn);
+ } else {
+ uint64_t new_ive;
+
+ /* Unmasking, re-target the IVE. First find the EQ
+ * correponding to the target
+ */
+ if (!xive_eq_for_target(target, prio, &eq_blk, &eq_idx)) {
+ xive_err(x, "Can't find EQ for target/prio 0x%x/%d\n",
+ target, prio);
+ return false;
+ }
+
+ /* Try to update it atomically to avoid an intermediary
+ * stale state
+ */
+ new_ive = ive->w & ~IVE_MASKED;
+ new_ive = SETFIELD(IVE_EQ_BLOCK, new_ive, eq_blk);
+ new_ive = SETFIELD(IVE_EQ_INDEX, new_ive, eq_idx);
+ sync();
+ ive->w = new_ive;
+
+ xive_vdbg(x,"ISN %x routed to eq %x/%x IVE=%016llx !\n",
+ isn, eq_blk, eq_idx, new_ive);
+ }
+
+ /* Scrub IVE from cache */
+ xive_ivc_scrub(x, x->chip_id, GIRQ_TO_IDX(isn));
+
+ return true;
+}
+
+
+static uint32_t xive_read_eq(struct xive_cpu_state *xs, bool just_peek)
+{
+ uint32_t cur;
+
+ xive_cpu_vdbg(this_cpu(), " EQ %s... IDX=%x MSK=%x G=%d\n",
+ just_peek ? "peek" : "read",
+ xs->eqidx, xs->eqmsk, xs->eqgen);
+ cur = xs->eqbuf[xs->eqidx];
+ xive_cpu_vdbg(this_cpu(), " cur: %08x [%08x %08x %08x ...]\n", cur,
+ xs->eqbuf[(xs->eqidx + 1) & xs->eqmsk],
+ xs->eqbuf[(xs->eqidx + 2) & xs->eqmsk],
+ xs->eqbuf[(xs->eqidx + 3) & xs->eqmsk]);
+ if ((cur >> 31) == xs->eqgen)
+ return 0;
+ if (!just_peek) {
+ xs->eqidx = (xs->eqidx + 1) & xs->eqmsk;
+ if (xs->eqidx == 0)
+ xs->eqgen = !xs->eqgen;
+ }
+ return cur & 0x00ffffff;
+}
+
+static uint8_t xive_sanitize_cppr(uint8_t cppr)
+{
+ if (cppr == 0xff || cppr == 0)
+ return cppr;
+ else
+ return 7;
+}
+
+static inline uint8_t opal_xive_check_pending(struct xive_cpu_state *xs,
+ uint8_t cppr)
+{
+ uint8_t mask = (cppr > 7) ? 0xff : ((1 << cppr) - 1);
+
+ return xs->pending & mask;
+}
+
+static int64_t opal_xive_eoi(uint32_t xirr)
+{
+ struct cpu_thread *c = this_cpu();
+ struct xive_cpu_state *xs = c->xstate;
+ uint32_t isn = xirr & 0x00ffffff;
+ uint8_t cppr, irqprio;
+ struct xive *src_x;
+ bool special_ipi = false;
+
+ if (!xs)
+ return OPAL_INTERNAL_ERROR;
+
+ xive_cpu_vdbg(c, "EOI xirr=%08x cur_cppr=%d\n", xirr, xs->cppr);
+
+ /* Limit supported CPPR values from OS */
+ cppr = xive_sanitize_cppr(xirr >> 24);
+
+ lock(&xs->lock);
+
+ /* Snapshor current CPPR, it's assumed to be our IRQ priority */
+ irqprio = xs->cppr;
+
+ /* If this was our magic IPI, convert to IRQ number */
+ if (isn == 2) {
+ isn = xs->ipi_irq;
+ special_ipi = true;
+ xive_cpu_vdbg(c, "User EOI for IPI !\n");
+ }
+
+ /* First check if we have stuff in that queue. If we do, don't bother with
+ * doing an EOI on the EQ. Just mark that priority pending, we'll come
+ * back later.
+ *
+ * If/when supporting multiple queues we would have to check them all
+ * in ascending prio order up to the passed-in CPPR value (exclusive).
+ */
+ if (xive_read_eq(xs, true)) {
+ xive_cpu_vdbg(c, " isn %08x, skip, queue non empty\n", xirr);
+ xs->pending |= 1 << irqprio;
+ }
+#ifndef EQ_ALWAYS_NOTIFY
+ else {
+ uint8_t eoi_val;
+
+ /* Perform EQ level EOI. Only one EQ for now ...
+ *
+ * Note: We aren't doing an actual EOI. Instead we are clearing
+ * both P and Q and will re-check the queue if Q was set.
+ */
+ eoi_val = in_8(xs->eqmmio + 0xc00);
+ xive_cpu_vdbg(c, " isn %08x, eoi_val=%02x\n", xirr, eoi_val);
+
+ /* Q was set ? Check EQ again after doing a sync to ensure
+ * ordering.
+ */
+ if (eoi_val & 1) {
+ sync();
+ if (xive_read_eq(xs, true))
+ xs->pending |= 1 << irqprio;
+ }
+ }
+#endif
+
+ /* Perform source level EOI if it's a HW interrupt, otherwise,
+ * EOI ourselves
+ */
+ src_x = xive_from_isn(isn);
+ if (src_x) {
+ uint32_t idx = GIRQ_TO_IDX(isn);
+
+ /* Is it an IPI ? */
+ if (idx < src_x->int_ipi_top) {
+ xive_vdbg(src_x, "EOI of IDX %x in IPI range\n", idx);
+ xive_ipi_eoi(src_x, idx);
+
+ /* It was a special IPI, check mfrr and eventually
+ * re-trigger. We check against the new CPPR since
+ * we are about to update the HW.
+ */
+ if (special_ipi && xs->mfrr < cppr)
+ xive_ipi_trigger(src_x, idx);
+ } else {
+ xive_vdbg(src_x, "EOI of IDX %x in EXT range\n", idx);
+ irq_source_eoi(isn);
+ }
+ } else {
+ xive_cpu_err(c, " EOI unknown ISN %08x\n", isn);
+ }
+
+ /* Finally restore CPPR */
+ xs->cppr = cppr;
+ out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, cppr);
+
+ xive_cpu_vdbg(c, " pending=0x%x cppr=%d\n", xs->pending, cppr);
+
+ unlock(&xs->lock);
+
+ /* Return whether something is pending that is suitable for
+ * delivery considering the new CPPR value. This can be done
+ * without lock as these fields are per-cpu.
+ */
+ return opal_xive_check_pending(xs, cppr);
+}
+
+static int64_t opal_xive_get_xirr(uint32_t *out_xirr, bool just_poll)
+{
+ struct cpu_thread *c = this_cpu();
+ struct xive_cpu_state *xs = c->xstate;
+ uint16_t ack;
+ uint8_t active, old_cppr;
+
+ if (!xs)
+ return OPAL_INTERNAL_ERROR;
+ if (!out_xirr)
+ return OPAL_PARAMETER;
+
+ *out_xirr = 0;
+
+ lock(&xs->lock);
+
+ /*
+ * Due to the need to fetch multiple interrupts from the EQ, we
+ * need to play some tricks.
+ *
+ * The "pending" byte in "xs" keeps track of the priorities that
+ * are known to have stuff to read (currently we only use one).
+ *
+ * It is set in EOI and cleared when consumed here. We don't bother
+ * looking ahead here, EOI will do it.
+ *
+ * We do need to still do an ACK every time in case a higher prio
+ * exception occurred (though we don't do prio yet... right ? still
+ * let's get the basic design right !).
+ *
+ * Note that if we haven't found anything via ack, but did find
+ * something in the queue, we must also raise CPPR back.
+ */
+
+ /* Perform the HV Ack cycle */
+ if (just_poll)
+ ack = in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS) >> 48;
+ else
+ ack = in_be16(xs->tm_ring1 + TM_SPC_ACK_HV_REG);
+ xive_cpu_vdbg(c, "get_xirr,%s=%04x\n", just_poll ? "POLL" : "ACK", ack);
+
+ /* Capture the old CPPR which we will return with the interrupt */
+ old_cppr = xs->cppr;
+
+ switch(GETFIELD(TM_QW3_NSR_HE, (ack >> 8))) {
+ case TM_QW3_NSR_HE_NONE:
+ break;
+ case TM_QW3_NSR_HE_POOL:
+ break;
+ case TM_QW3_NSR_HE_PHYS:
+ /* Mark pending and keep track of the CPPR update */
+ if (!just_poll) {
+ xs->cppr = ack & 0xff;
+ xs->pending |= 1 << xs->cppr;
+ }
+ break;
+ case TM_QW3_NSR_HE_LSI:
+ break;
+ }
+
+ /* Calculate "active" lines as being the pending interrupts
+ * masked by the "old" CPPR
+ */
+ active = opal_xive_check_pending(xs, old_cppr);
+
+ xive_cpu_vdbg(c, " cppr=%d->%d pending=0x%x active=%x\n",
+ old_cppr, xs->cppr, xs->pending, active);
+ if (active) {
+ /* Find highest pending */
+ uint8_t prio = ffs(active) - 1;
+ uint32_t val;
+
+ /* XXX Use "p" to select queue */
+ val = xive_read_eq(xs, just_poll);
+
+ /* Convert to magic IPI if needed */
+ if (val == xs->ipi_irq)
+ val = 2;
+
+ *out_xirr = (old_cppr << 24) | val;
+
+ /* If we are polling, that's it */
+ if (just_poll)
+ goto skip;
+
+ /* Clear the pending bit. EOI will set it again if needed. We
+ * could check the queue but that's not really critical here.
+ */
+ xs->pending &= ~(1 << prio);
+
+ /* There should always be an interrupt here I think, unless
+ * some race occurred, but let's be safe. If we don't find
+ * anything, we just return.
+ */
+ if (!val)
+ goto skip;
+
+ xive_cpu_vdbg(c, " found irq, prio=%d\n", prio);
+
+ /* We could have fetched a pending interrupt left over
+ * by a previous EOI, so the CPPR might need adjusting
+ */
+ if (xs->cppr > prio) {
+ xs->cppr = prio;
+ out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, prio);
+ xive_cpu_vdbg(c, " adjusted CPPR\n");
+ }
+ }
+ skip:
+
+ xive_cpu_vdbg(c, " returning XIRR=%08x, pending=0x%x\n",
+ *out_xirr, xs->pending);
+
+ unlock(&xs->lock);
+
+ return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_set_cppr(uint8_t cppr)
+{
+ struct cpu_thread *c = this_cpu();
+ struct xive_cpu_state *xs = c->xstate;
+
+ /* Limit supported CPPR values */
+ cppr = xive_sanitize_cppr(cppr);
+
+ if (!xs)
+ return OPAL_INTERNAL_ERROR;
+ xive_cpu_vdbg(c, "CPPR setting to %d\n", cppr);
+
+ lock(&xs->lock);
+ c->xstate->cppr = cppr;
+ out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, cppr);
+
+ unlock(&xs->lock);
+
+ return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_set_mfrr(uint32_t cpu, uint8_t mfrr)
+{
+ struct cpu_thread *c = find_cpu_by_server(cpu);
+ struct xive_cpu_state *xs;
+ uint8_t old_mfrr;
+
+ if (!c)
+ return OPAL_PARAMETER;
+ xs = c->xstate;
+ if (!xs)
+ return OPAL_INTERNAL_ERROR;
+
+ lock(&xs->lock);
+ old_mfrr = xs->mfrr;
+ xive_cpu_vdbg(c, " Setting MFRR to %x, old is %x\n", mfrr, old_mfrr);
+ xs->mfrr = mfrr;
+ if (old_mfrr > mfrr && mfrr < xs->cppr)
+ xive_ipi_trigger(xs->xive, GIRQ_TO_IDX(xs->ipi_irq));
+ unlock(&xs->lock);
+
+ return OPAL_SUCCESS;
+}
+
+void init_xive(void)
+{
+ struct dt_node *np;
+ struct proc_chip *chip;
+ struct cpu_thread *cpu;
+
+ /* Look for xive nodes and do basic inits */
+ dt_for_each_compatible(dt_root, np, "ibm,power9-xive-x") {
+ init_one_xive(np);
+ }
+
+ /* Some inits must be done after all xive have been created
+ * such as setting up the forwarding ports
+ */
+ for_each_chip(chip) {
+ if (chip->xive)
+ late_init_one_xive(chip->xive);
+ }
+
+ /* Initialize XICS emulation per-cpu structures */
+ for_each_cpu(cpu) {
+ xive_init_cpu(cpu);
+ }
+
+ /* Calling boot CPU */
+ xive_cpu_callin(this_cpu());
+
+ /* Register XICS emulation calls */
+ opal_register(OPAL_INT_GET_XIRR, opal_xive_get_xirr, 2);
+ opal_register(OPAL_INT_SET_CPPR, opal_xive_set_cppr, 1);
+ opal_register(OPAL_INT_EOI, opal_xive_eoi, 1);
+ opal_register(OPAL_INT_SET_MFRR, opal_xive_set_mfrr, 2);
+}
diff --git a/include/chip.h b/include/chip.h
index 4541368..1f31a13 100644
--- a/include/chip.h
+++ b/include/chip.h
@@ -106,6 +106,7 @@
struct dt_node;
struct centaur_chip;
struct mfsi;
+struct xive;
/* Chip type */
enum proc_chip_type {
@@ -201,6 +202,9 @@ struct proc_chip {
/* Used by hw/fsi-master.c */
struct mfsi *fsi_masters;
+
+ /* Used by hw/xive.c */
+ struct xive *xive;
};
extern uint32_t pir_to_chip_id(uint32_t pir);
diff --git a/include/cpu.h b/include/cpu.h
index 587cd52..59923d5 100644
--- a/include/cpu.h
+++ b/include/cpu.h
@@ -41,6 +41,7 @@ enum cpu_thread_state {
};
struct cpu_job;
+struct xive_cpu_state;
struct cpu_thread {
uint32_t pir;
@@ -86,6 +87,9 @@ struct cpu_thread {
/* Mask to indicate thread id in core. */
uint8_t thread_mask;
bool tb_invalid;
+
+ /* For use by XICS emulation on XIVE */
+ struct xive_cpu_state *xstate;
};
/* This global is set to 1 to allow secondaries to callin,
diff --git a/include/opal-api.h b/include/opal-api.h
index 917d751..fa76b8d 100644
--- a/include/opal-api.h
+++ b/include/opal-api.h
@@ -167,7 +167,11 @@
#define OPAL_PCI_GET_PRESENCE_STATE 119
#define OPAL_PCI_GET_POWER_STATE 120
#define OPAL_PCI_SET_POWER_STATE 121
-#define OPAL_LAST 121
+#define OPAL_INT_GET_XIRR 122
+#define OPAL_INT_SET_CPPR 123
+#define OPAL_INT_EOI 124
+#define OPAL_INT_SET_MFRR 125
+#define OPAL_LAST 125
/* Device tree flags */
diff --git a/include/xive.h b/include/xive.h
new file mode 100644
index 0000000..df65c44
--- /dev/null
+++ b/include/xive.h
@@ -0,0 +1,363 @@
+#ifndef __XIVE_H__
+#define __XIVE_H__
+
+/* IC register offsets */
+#define CQ_SWI_CMD_HIST 0x020
+#define CQ_SWI_CMD_POLL 0x028
+#define CQ_SWI_CMD_BCAST 0x030
+#define CQ_SWI_CMD_ASSIGN 0x038
+#define CQ_SWI_CMD_BLK_UPD 0x040
+#define CQ_SWI_RSP 0x048
+#define X_CQ_CFG_PB_GEN 0x0a
+#define CQ_CFG_PB_GEN 0x050
+#define X_CQ_IC_BAR 0x10
+#define X_CQ_MSGSND 0x0b
+#define CQ_MSGSND 0x058
+#define CQ_CNPM_SEL 0x078
+#define CQ_IC_BAR 0x080
+#define CQ_IC_BAR_VALID PPC_BIT(0)
+#define CQ_IC_BAR_64K PPC_BIT(1)
+#define X_CQ_TM1_BAR 0x12
+#define CQ_TM1_BAR 0x90
+#define X_CQ_TM2_BAR 0x014
+#define CQ_TM2_BAR 0x0a0
+#define CQ_TM_BAR_VALID PPC_BIT(0)
+#define CQ_TM_BAR_64K PPC_BIT(1)
+#define X_CQ_PC_BAR 0x16
+#define CQ_PC_BAR 0x0b0
+#define CQ_PC_BAR_VALID PPC_BIT(0)
+#define X_CQ_PC_BARM 0x17
+#define CQ_PC_BARM 0x0b8
+#define CQ_PC_BARM_MASK PPC_BITMASK(26,38)
+#define X_CQ_VC_BAR 0x18
+#define CQ_VC_BAR 0x0c0
+#define CQ_VC_BAR_VALID PPC_BIT(0)
+#define X_CQ_VC_BARM 0x19
+#define CQ_VC_BARM 0x0c8
+#define CQ_VC_BARM_MASK PPC_BITMASK(21,37)
+#define X_CQ_TAR 0x1e
+#define CQ_TAR 0x0f0
+#define CQ_TAR_TBL_AUTOINC PPC_BIT(0)
+#define CQ_TAR_TSEL_BLK PPC_BIT(12)
+#define CQ_TAR_TSEL_MIG PPC_BIT(13)
+#define CQ_TAR_TSEL_VDT PPC_BIT(14)
+#define CQ_TAR_TSEL_EDT PPC_BIT(15)
+#define X_CQ_TDR 0x1f
+#define CQ_TDR 0x0f8
+#define X_CQ_PBI_CTL 0x20
+#define CQ_PBI_CTL 0x100
+#define CQ_PBI_PC_64K PPC_BIT(5)
+#define CQ_PBI_VC_64K PPC_BIT(6)
+#define CQ_PBI_LNX_TRIG PPC_BIT(7)
+#define CQ_PBO_CTL 0x108
+#define CQ_AIB_CTL 0x110
+#define X_CQ_RST_CTL 0x23
+#define CQ_RST_CTL 0x118
+
+/* PC LBS1 register offsets */
+#define X_PC_TCTXT_CFG 0x100
+#define PC_TCTXT_CFG 0x400
+#define PC_TCTXT_CFG_BLKGRP_EN PPC_BIT(0)
+#define PC_TCTXT_CFG_HARD_CHIPID_BLK PPC_BIT(8)
+#define X_PC_THREAD_EN_REG0 0x108
+#define PC_THREAD_EN_REG0 0x440
+#define X_PC_THREAD_EN_REG0_SET 0x109
+#define PC_THREAD_EN_REG0_SET 0x448
+#define X_PC_THREAD_EN_REG0_CLR 0x10a
+#define PC_THREAD_EN_REG0_CLR 0x450
+#define X_PC_THREAD_EN_REG1 0x10c
+#define PC_THREAD_EN_REG1 0x460
+#define X_PC_THREAD_EN_REG1_SET 0x10d
+#define PC_THREAD_EN_REG1_SET 0x468
+#define X_PC_THREAD_EN_REG1_CLR 0x10e
+#define PC_THREAD_EN_REG1_CLR 0x470
+#define X_PC_GLOBAL_CONFIG 0x110
+#define PC_GLOBAL_CONFIG 0x480
+#define PC_GCONF_INDIRECT PPC_BIT(32)
+#define X_PC_VSD_TABLE_ADDR 0x111
+#define PC_VSD_TABLE_ADDR 0x488
+#define X_PC_VSD_TABLE_DATA 0x112
+#define PC_VSD_TABLE_DATA 0x490
+
+/* PC LBS2 register offsets */
+#define X_PC_VPC_CACHE_ENABLE 0x161
+#define PC_VPC_CACHE_ENABLE 0x708
+#define PC_VPC_CACHE_EN_MASK PPC_BITMASK(0,31)
+#define X_PC_VPC_SCRUB_TRIG 0x162
+#define PC_VPC_SCRUB_TRIG 0x710
+#define X_PC_VPC_SCRUB_MASK 0x163
+#define PC_VPC_SCRUB_MASK 0x718
+#define PC_SCRUB_VALID PPC_BIT(0)
+#define PC_SCRUB_WANT_DISABLE PPC_BIT(1)
+#define PC_SCRUB_WANT_INVAL PPC_BIT(2)
+#define PC_SCRUB_BLOCK_ID PPC_BITMASK(27,31)
+#define PC_SCRUB_OFFSET PPC_BITMASK(45,63)
+
+/* VC0 register offsets */
+#define X_VC_GLOBAL_CONFIG 0x200
+#define VC_GLOBAL_CONFIG 0x800
+#define VC_GCONF_INDIRECT PPC_BIT(32)
+#define X_VC_VSD_TABLE_ADDR 0x201
+#define VC_VSD_TABLE_ADDR 0x808
+#define X_VC_VSD_TABLE_DATA 0x202
+#define VC_VSD_TABLE_DATA 0x810
+#define VC_IVE_ISB_BLOCK_MODE 0x818
+#define VC_EQD_BLOCK_MODE 0x820
+#define VC_VPS_BLOCK_MODE 0x828
+#define VC_IRQ_CONFIG_IPI 0x840
+#define VC_IRQ_CONFIG_HW 0x848
+#define VC_IRQ_CONFIG_CASCADE1 0x850
+#define VC_IRQ_CONFIG_CASCADE2 0x858
+#define VC_IRQ_CONFIG_REDIST 0x860
+#define VC_IRQ_CONFIG_IPI_CASC 0x868
+#define X_VC_AT_MACRO_KILL 0x23e
+#define VC_AT_MACRO_KILL 0x8b0
+#define X_VC_AT_MACRO_KILL_MASK 0x23f
+#define VC_AT_MACRO_KILL_MASK 0x8b8
+#define VC_KILL_VALID PPC_BIT(0)
+#define VC_KILL_TYPE PPC_BITMASK(14,15)
+#define VC_KILL_IRQ 0
+#define VC_KILL_IVC 1
+#define VC_KILL_SBC 2
+#define VC_KILL_EQD 3
+#define VC_KILL_BLOCK_ID PPC_BITMASK(27,31)
+#define VC_KILL_OFFSET PPC_BITMASK(48,60)
+#define X_VC_EQC_CACHE_ENABLE 0x211
+#define VC_EQC_CACHE_ENABLE 0x908
+#define VC_EQC_CACHE_EN_MASK PPC_BITMASK(0,15)
+#define X_VC_EQC_SCRUB_TRIG 0x212
+#define VC_EQC_SCRUB_TRIG 0x910
+#define X_VC_EQC_SCRUB_MASK 0x213
+#define VC_EQC_SCRUB_MASK 0x918
+#define X_VC_IVC_SCRUB_TRIG 0x222
+#define VC_IVC_SCRUB_TRIG 0x990
+#define X_VC_IVC_SCRUB_MASK 0x223
+#define VC_IVC_SCRUB_MASK 0x998
+#define X_VC_SBC_SCRUB_TRIG 0x232
+#define VC_SBC_SCRUB_TRIG 0xa10
+#define X_VC_SBC_SCRUB_MASK 0x233
+#define VC_SBC_SCRUB_MASK 0xa18
+#define VC_SCRUB_VALID PPC_BIT(0)
+#define VC_SCRUB_WANT_DISABLE PPC_BIT(1)
+#define VC_SCRUB_WANT_INVAL PPC_BIT(2) /* EQC and SBC only */
+#define VC_SCRUB_BLOCK_ID PPC_BITMASK(28,31)
+#define VC_SCRUB_OFFSET PPC_BITMASK(41,63)
+#define X_VC_IVC_CACHE_ENABLE 0x221
+#define VC_IVC_CACHE_ENABLE 0x988
+#define VC_IVC_CACHE_EN_MASK PPC_BITMASK(0,15)
+#define X_VC_SBC_CACHE_ENABLE 0x231
+#define VC_SBC_CACHE_ENABLE 0xa08
+#define VC_SBC_CACHE_EN_MASK PPC_BITMASK(0,15)
+#define VC_IVC_CACHE_SCRUB_TRIG 0x990
+#define VC_IVC_CACHE_SCRUB_MASK 0x998
+#define VC_SBC_CACHE_ENABLE 0xa08
+#define VC_SBC_CACHE_SCRUB_TRIG 0xa10
+#define VC_SBC_CACHE_SCRUB_MASK 0xa18
+#define VC_SBC_CONFIG 0xa20
+
+/* VC1 register offsets */
+
+/* VSD Table address register definitions (shared) */
+#define VST_ADDR_AUTOINC PPC_BIT(0)
+#define VST_TABLE_SELECT PPC_BITMASK(13,15)
+#define VST_TSEL_IVT 0
+#define VST_TSEL_SBE 1
+#define VST_TSEL_EQDT 2
+#define VST_TSEL_VPDT 3
+#define VST_TSEL_IRQ 4 /* VC only */
+#define VST_TABLE_OFFSET PPC_BITMASK(27,31)
+
+/* Bits in a VSD entry.
+ *
+ * Note: the address is naturally aligned, we don't use a PPC_BITMASK,
+ * but just a mask to apply to the address before OR'ing it in.
+ */
+#define VSD_MODE PPC_BITMASK(0,1)
+#define VSD_MODE_SHARED 1
+#define VSD_MODE_EXCLUSIVE 2
+#define VSD_MODE_FORWARD 3
+#define VSD_ADDRESS_MASK 0x0ffffffffffff000ull
+#define VSD_MIGRATION_REG PPC_BITMASK(52,55)
+#define VSD_INDIRECT PPC_BIT(56)
+#define VSD_TSIZE PPC_BITMASK(59,63)
+
+/*
+ * TM registers are special, see below
+ */
+
+/* TM register offsets */
+#define TM_QW0_USER 0x000 /* All rings */
+#define TM_QW1_OS 0x010 /* Ring 0..2 */
+#define TM_QW2_HV_POOL 0x020 /* Ring 0..1 */
+#define TM_QW3_HV_PHYS 0x030 /* Ring 0..1 */
+
+/* Byte offsets inside a QW QW0 QW1 QW2 QW3 */
+#define TM_NSR 0x0 /* + + - + */
+#define TM_CPPR 0x1 /* - + - + */
+#define TM_IPB 0x2 /* - + + + */
+#define TM_LSMFB 0x3 /* - + + + */
+#define TM_ACK_CNT 0x4 /* - + - - */
+#define TM_INC 0x5 /* - + - + */
+#define TM_AGE 0x6 /* - + - + */
+#define TM_PIPR 0x7 /* - + - + */
+
+/* QW word 2 contains the valid bit at the top and other fields
+ * depending on the QW
+ */
+#define TM_WORD2 0x8
+#define TM_QW0W2_VU PPC_BIT32(0)
+#define TM_QW0W2_LOGIC_SERV PPC_BITMASK32(1,31) // XX 2,31 ?
+#define TM_QW1W2_VO PPC_BIT32(0)
+#define TM_QW1W2_OS_CAM PPC_BITMASK32(8,31)
+#define TM_QW2W2_VP PPC_BIT32(0)
+#define TM_QW2W2_POOL_CAM PPC_BITMASK32(8,31)
+#define TM_QW3W2_VT PPC_BIT32(0)
+#define TM_QW3W2_LP PPC_BIT32(6)
+#define TM_QW3W2_LE PPC_BIT32(7)
+#define TM_QW3W2_T PPC_BIT32(31)
+
+/* In addition to normal loads to "peek" and writes (only when invalid)
+ * using 4 and 8 bytes accesses, the above registers support these
+ * "special" byte operations:
+ *
+ * - Byte load from QW0[NSR] - User level NSR (EBB)
+ * - Byte store to QW0[NSR] - User level NSR (EBB)
+ * - Byte load/store to QW1[CPPR] and QW3[CPPR] - CPPR access
+ * - Byte load from QW3[TM_WORD2] - Read VT||00000||LP||LE on thrd 0
+ * otherwise VT||0000000
+ * - Byte store to QW3[TM_WORD2] - Set VT bit (and LP/LE if present)
+ *
+ * Then we have all these "special" CI ops at these offset that trigger
+ * all sorts of side effects:
+ */
+#define TM_SPC_ACK_EBB 0x800 /* Load8 ack EBB to reg*/
+#define TM_SPC_ACK_OS_REG 0x810 /* Load16 ack OS irq to reg */
+#define TM_SPC_ACK_OS_EL 0xc10 /* Store8 ack OS irq to even line */
+#define TM_SPC_PUSH_USR_CTX 0x808 /* Store32 Push/Validate user context */
+#define TM_SPC_PULL_USR_CTX 0x808 /* Load32 Pull/Invalidate user context */
+#define TM_SPC_PULL_USR_CTX_OL 0xc08 /* Store8 Pull/Inval usr ctx to odd line */
+#define TM_SPC_SET_OS_PENDING 0x812 /* Store8 Set OS irq pending bit */
+#define TM_SPC_ACK_HV_REG 0x830 /* Load16 ack HV irq to reg */
+#define TM_SPC_ACK_HV_POOL_EL 0xc20 /* Store8 ack HV evt pool to even line */
+#define TM_SPC_ACK_HV_EL 0xc30 /* Store8 ack HV irq to even line */
+/* XXX more... */
+
+/* NSR fields for the various QW ack types */
+#define TM_QW0_NSR_EB PPC_BIT8(0)
+#define TM_QW1_NSR_EO PPC_BIT8(0)
+#define TM_QW3_NSR_HE PPC_BITMASK8(0,1)
+#define TM_QW3_NSR_HE_NONE 0
+#define TM_QW3_NSR_HE_POOL 1
+#define TM_QW3_NSR_HE_PHYS 2
+#define TM_QW3_NSR_HE_LSI 3
+#define TM_QW3_NSR_I PPC_BIT8(2)
+#define TM_QW3_NSR_GRP_LVL PPC_BIT8(3,7)
+
+/*
+ * Definition of the XIVE in-memory tables
+ */
+
+/* IVE/EAS
+ *
+ * One per interrupt source. Targets that interrupt to a given EQ
+ * and provides the corresponding logical interrupt number (EQ data)
+ */
+struct xive_ive {
+ /* Use a single 64-bit definition to make it easier to
+ * perform atomic updates
+ */
+ uint64_t w;
+#define IVE_VALID PPC_BIT(0)
+#define IVE_EQ_BLOCK PPC_BITMASK(4,7) /* Destination EQ block# */
+#define IVE_EQ_INDEX PPC_BITMASK(8,31) /* Destination EQ index */
+#define IVE_MASKED PPC_BIT(32) /* Masked */
+#define IVE_EQ_DATA PPC_BITMASK(33,63) /* Data written to the EQ */
+};
+
+/* EQ */
+struct xive_eq {
+ uint32_t w0;
+#define EQ_W0_VALID PPC_BIT32(0)
+#define EQ_W0_ENQUEUE PPC_BIT32(1)
+#define EQ_W0_UCOND_NOTIFY PPC_BIT32(2)
+#define EQ_W0_BACKLOG PPC_BIT32(3)
+#define EQ_W0_PRECL_ESC_CTL PPC_BIT32(4)
+#define EQ_W0_ESCALATE_CTL PPC_BIT32(5)
+#define EQ_W0_END_OF_INTR PPC_BIT32(6)
+#define EQ_W0_QSIZE PPC_BITMASK32(12,15)
+#define EQ_QSIZE_4K 0
+#define EQ_QSIZE_64K 4
+#define EQ_W0_HWDEP PPC_BITMASK32(24,31)
+ uint32_t w1;
+#define EQ_W1_ESn PPC_BITMASK32(0,1)
+#define EQ_W1_ESe PPC_BITMASK32(2,3)
+#define EQ_W1_GENERATION PPC_BIT32(9)
+#define EQ_W1_PAGE_OFF PPC_BITMASK32(10,31)
+ uint32_t w2;
+#define EQ_W2_MIGRATION_REG PPC_BITMASK32(0,3)
+#define EQ_W2_OP_DESC_HI PPC_BITMASK32(4,31)
+ uint32_t w3;
+#define EQ_W3_OP_DESC_LO PPC_BITMASK32(0,31)
+ uint32_t w4;
+#define EQ_W4_ESC_EQ_BLOCK PPC_BITMASK32(4,7)
+#define EQ_W4_ESC_EQ_INDEX PPC_BITMASK32(8,31)
+ uint32_t w5;
+#define EQ_W5_ESC_EQ_DATA PPC_BITMASK32(1,31)
+ uint32_t w6;
+#define EQ_W6_FORMAT_BIT PPC_BIT32(8)
+#define EQ_W6_NVT_BLOCK PPC_BITMASK32(9,12)
+#define EQ_W6_NVT_INDEX PPC_BITMASK32(13,31)
+ uint32_t w7;
+#define EQ_W7_F0_IGNORE PPC_BIT32(0)
+#define EQ_W7_F0_BLK_GROUPING PPC_BIT32(1)
+#define EQ_W7_F0_PRIORITY PPC_BITMASK32(8,15)
+#define EQ_W7_F1_WAKEZ PPC_BIT32(0)
+#define EQ_W7_F1_LOG_SERVER_ID PPC_BITMASK32(1,31)
+};
+
+/* VP */
+struct xive_vp {
+ uint32_t w0;
+#define VP_W0_VALID PPC_BIT32(0)
+ uint32_t w1;
+ uint32_t w2;
+ uint32_t w3;
+ uint32_t w4;
+ uint32_t w5;
+ uint32_t w6;
+ uint32_t w7;
+ uint32_t w8;
+#define VP_W8_GRP_VALID PPC_BIT32(0)
+ uint32_t w9;
+ uint32_t wa;
+ uint32_t wb;
+ uint32_t wc;
+ uint32_t wd;
+ uint32_t we;
+ uint32_t wf;
+};
+
+/* Internal APIs to other modules */
+
+/* IRQ allocators return this on failure */
+#define XIVE_IRQ_ERROR 0xffffffff
+
+void init_xive(void);
+
+/* Allocate a chunk of HW sources */
+uint32_t xive_alloc_hw_irqs(uint32_t chip_id, uint32_t count, uint32_t align);
+/* Allocate a chunk of IPI sources */
+uint32_t xive_alloc_ipi_irqs(uint32_t chip_id, uint32_t count, uint32_t align);
+
+/* Get notification port address for a HW source entity */
+#define XIVE_HW_SRC_PHBn(__n) (__n)
+#define XIVE_HW_SRC_PSI 8
+
+uint64_t xive_get_notify_port(uint32_t chip_id, uint32_t ent);
+
+bool xive_get_eq_info(uint32_t isn, uint32_t *out_target, uint8_t *out_prio);
+bool xive_set_eq_info(uint32_t isn, uint32_t target, uint8_t prio);
+
+void xive_cpu_callin(struct cpu_thread *cpu);
+
+#endif /* __XIVE_H__ */
--
2.7.4
More information about the Skiboot
mailing list