[PATCH 11/42]: ppc64: move code to powerpc directory from ppc64

Linas Vepstas linas at linas.org
Fri Nov 4 11:57:35 EST 2005


11-eeh-move-to-powerpc.patch

Move arch/ppc64/kernel/eeh.c to arch//powerpc/platforms/pseries/eeh.c
No other changes (except for Makefile to build it)

Signed-off-by: Linas Vepstas <linas at austin.ibm.com>

Index: linux-2.6.14-git3/arch/ppc64/kernel/eeh.c
===================================================================
--- linux-2.6.14-git3.orig/arch/ppc64/kernel/eeh.c	2005-11-02 14:29:22.485829789 -0600
+++ /dev/null	1970-01-01 00:00:00.000000000 +0000
@@ -1,1093 +0,0 @@
-/*
- * eeh.c
- * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
- */
-
-#include <linux/init.h>
-#include <linux/list.h>
-#include <linux/notifier.h>
-#include <linux/pci.h>
-#include <linux/proc_fs.h>
-#include <linux/rbtree.h>
-#include <linux/seq_file.h>
-#include <linux/spinlock.h>
-#include <asm/atomic.h>
-#include <asm/eeh.h>
-#include <asm/io.h>
-#include <asm/machdep.h>
-#include <asm/rtas.h>
-#include <asm/atomic.h>
-#include <asm/systemcfg.h>
-#include <asm/ppc-pci.h>
-
-#undef DEBUG
-
-/** Overview:
- *  EEH, or "Extended Error Handling" is a PCI bridge technology for
- *  dealing with PCI bus errors that can't be dealt with within the
- *  usual PCI framework, except by check-stopping the CPU.  Systems
- *  that are designed for high-availability/reliability cannot afford
- *  to crash due to a "mere" PCI error, thus the need for EEH.
- *  An EEH-capable bridge operates by converting a detected error
- *  into a "slot freeze", taking the PCI adapter off-line, making
- *  the slot behave, from the OS'es point of view, as if the slot
- *  were "empty": all reads return 0xff's and all writes are silently
- *  ignored.  EEH slot isolation events can be triggered by parity
- *  errors on the address or data busses (e.g. during posted writes),
- *  which in turn might be caused by low voltage on the bus, dust,
- *  vibration, humidity, radioactivity or plain-old failed hardware.
- *
- *  Note, however, that one of the leading causes of EEH slot
- *  freeze events are buggy device drivers, buggy device microcode,
- *  or buggy device hardware.  This is because any attempt by the
- *  device to bus-master data to a memory address that is not
- *  assigned to the device will trigger a slot freeze.   (The idea
- *  is to prevent devices-gone-wild from corrupting system memory).
- *  Buggy hardware/drivers will have a miserable time co-existing
- *  with EEH.
- *
- *  Ideally, a PCI device driver, when suspecting that an isolation
- *  event has occured (e.g. by reading 0xff's), will then ask EEH
- *  whether this is the case, and then take appropriate steps to
- *  reset the PCI slot, the PCI device, and then resume operations.
- *  However, until that day,  the checking is done here, with the
- *  eeh_check_failure() routine embedded in the MMIO macros.  If
- *  the slot is found to be isolated, an "EEH Event" is synthesized
- *  and sent out for processing.
- */
-
-/* EEH event workqueue setup. */
-static DEFINE_SPINLOCK(eeh_eventlist_lock);
-LIST_HEAD(eeh_eventlist);
-static void eeh_event_handler(void *);
-DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL);
-
-static struct notifier_block *eeh_notifier_chain;
-
-/* If a device driver keeps reading an MMIO register in an interrupt
- * handler after a slot isolation event has occurred, we assume it
- * is broken and panic.  This sets the threshold for how many read
- * attempts we allow before panicking.
- */
-#define EEH_MAX_FAILS	100000
-
-/* RTAS tokens */
-static int ibm_set_eeh_option;
-static int ibm_set_slot_reset;
-static int ibm_read_slot_reset_state;
-static int ibm_read_slot_reset_state2;
-static int ibm_slot_error_detail;
-
-static int eeh_subsystem_enabled;
-
-/* Lock to avoid races due to multiple reports of an error */
-static DEFINE_SPINLOCK(confirm_error_lock);
-
-/* Buffer for reporting slot-error-detail rtas calls */
-static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
-static DEFINE_SPINLOCK(slot_errbuf_lock);
-static int eeh_error_buf_size;
-
-/* System monitoring statistics */
-static DEFINE_PER_CPU(unsigned long, no_device);
-static DEFINE_PER_CPU(unsigned long, no_dn);
-static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
-static DEFINE_PER_CPU(unsigned long, ignored_check);
-static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
-static DEFINE_PER_CPU(unsigned long, false_positives);
-static DEFINE_PER_CPU(unsigned long, ignored_failures);
-static DEFINE_PER_CPU(unsigned long, slot_resets);
-
-/**
- * The pci address cache subsystem.  This subsystem places
- * PCI device address resources into a red-black tree, sorted
- * according to the address range, so that given only an i/o
- * address, the corresponding PCI device can be **quickly**
- * found. It is safe to perform an address lookup in an interrupt
- * context; this ability is an important feature.
- *
- * Currently, the only customer of this code is the EEH subsystem;
- * thus, this code has been somewhat tailored to suit EEH better.
- * In particular, the cache does *not* hold the addresses of devices
- * for which EEH is not enabled.
- *
- * (Implementation Note: The RB tree seems to be better/faster
- * than any hash algo I could think of for this problem, even
- * with the penalty of slow pointer chases for d-cache misses).
- */
-struct pci_io_addr_range
-{
-	struct rb_node rb_node;
-	unsigned long addr_lo;
-	unsigned long addr_hi;
-	struct pci_dev *pcidev;
-	unsigned int flags;
-};
-
-static struct pci_io_addr_cache
-{
-	struct rb_root rb_root;
-	spinlock_t piar_lock;
-} pci_io_addr_cache_root;
-
-static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
-{
-	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
-
-	while (n) {
-		struct pci_io_addr_range *piar;
-		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
-
-		if (addr < piar->addr_lo) {
-			n = n->rb_left;
-		} else {
-			if (addr > piar->addr_hi) {
-				n = n->rb_right;
-			} else {
-				pci_dev_get(piar->pcidev);
-				return piar->pcidev;
-			}
-		}
-	}
-
-	return NULL;
-}
-
-/**
- * pci_get_device_by_addr - Get device, given only address
- * @addr: mmio (PIO) phys address or i/o port number
- *
- * Given an mmio phys address, or a port number, find a pci device
- * that implements this address.  Be sure to pci_dev_put the device
- * when finished.  I/O port numbers are assumed to be offset
- * from zero (that is, they do *not* have pci_io_addr added in).
- * It is safe to call this function within an interrupt.
- */
-static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
-{
-	struct pci_dev *dev;
-	unsigned long flags;
-
-	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
-	dev = __pci_get_device_by_addr(addr);
-	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
-	return dev;
-}
-
-#ifdef DEBUG
-/*
- * Handy-dandy debug print routine, does nothing more
- * than print out the contents of our addr cache.
- */
-static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
-{
-	struct rb_node *n;
-	int cnt = 0;
-
-	n = rb_first(&cache->rb_root);
-	while (n) {
-		struct pci_io_addr_range *piar;
-		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
-		printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
-		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
-		       piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
-		cnt++;
-		n = rb_next(n);
-	}
-}
-#endif
-
-/* Insert address range into the rb tree. */
-static struct pci_io_addr_range *
-pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
-		      unsigned long ahi, unsigned int flags)
-{
-	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
-	struct rb_node *parent = NULL;
-	struct pci_io_addr_range *piar;
-
-	/* Walk tree, find a place to insert into tree */
-	while (*p) {
-		parent = *p;
-		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
-		if (ahi < piar->addr_lo) {
-			p = &parent->rb_left;
-		} else if (alo > piar->addr_hi) {
-			p = &parent->rb_right;
-		} else {
-			if (dev != piar->pcidev ||
-			    alo != piar->addr_lo || ahi != piar->addr_hi) {
-				printk(KERN_WARNING "PIAR: overlapping address range\n");
-			}
-			return piar;
-		}
-	}
-	piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
-	if (!piar)
-		return NULL;
-
-	piar->addr_lo = alo;
-	piar->addr_hi = ahi;
-	piar->pcidev = dev;
-	piar->flags = flags;
-
-#ifdef DEBUG
-	printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
-	                  alo, ahi, pci_name (dev));
-#endif
-
-	rb_link_node(&piar->rb_node, parent, p);
-	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
-
-	return piar;
-}
-
-static void __pci_addr_cache_insert_device(struct pci_dev *dev)
-{
-	struct device_node *dn;
-	struct pci_dn *pdn;
-	int i;
-	int inserted = 0;
-
-	dn = pci_device_to_OF_node(dev);
-	if (!dn) {
-		printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
-		return;
-	}
-
-	/* Skip any devices for which EEH is not enabled. */
-	pdn = PCI_DN(dn);
-	if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
-	    pdn->eeh_mode & EEH_MODE_NOCHECK) {
-#ifdef DEBUG
-		printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
-		       pci_name(dev), pdn->node->full_name);
-#endif
-		return;
-	}
-
-	/* The cache holds a reference to the device... */
-	pci_dev_get(dev);
-
-	/* Walk resources on this device, poke them into the tree */
-	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
-		unsigned long start = pci_resource_start(dev,i);
-		unsigned long end = pci_resource_end(dev,i);
-		unsigned int flags = pci_resource_flags(dev,i);
-
-		/* We are interested only bus addresses, not dma or other stuff */
-		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
-			continue;
-		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
-			 continue;
-		pci_addr_cache_insert(dev, start, end, flags);
-		inserted = 1;
-	}
-
-	/* If there was nothing to add, the cache has no reference... */
-	if (!inserted)
-		pci_dev_put(dev);
-}
-
-/**
- * pci_addr_cache_insert_device - Add a device to the address cache
- * @dev: PCI device whose I/O addresses we are interested in.
- *
- * In order to support the fast lookup of devices based on addresses,
- * we maintain a cache of devices that can be quickly searched.
- * This routine adds a device to that cache.
- */
-static void pci_addr_cache_insert_device(struct pci_dev *dev)
-{
-	unsigned long flags;
-
-	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
-	__pci_addr_cache_insert_device(dev);
-	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
-}
-
-static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
-{
-	struct rb_node *n;
-	int removed = 0;
-
-restart:
-	n = rb_first(&pci_io_addr_cache_root.rb_root);
-	while (n) {
-		struct pci_io_addr_range *piar;
-		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
-
-		if (piar->pcidev == dev) {
-			rb_erase(n, &pci_io_addr_cache_root.rb_root);
-			removed = 1;
-			kfree(piar);
-			goto restart;
-		}
-		n = rb_next(n);
-	}
-
-	/* The cache no longer holds its reference to this device... */
-	if (removed)
-		pci_dev_put(dev);
-}
-
-/**
- * pci_addr_cache_remove_device - remove pci device from addr cache
- * @dev: device to remove
- *
- * Remove a device from the addr-cache tree.
- * This is potentially expensive, since it will walk
- * the tree multiple times (once per resource).
- * But so what; device removal doesn't need to be that fast.
- */
-static void pci_addr_cache_remove_device(struct pci_dev *dev)
-{
-	unsigned long flags;
-
-	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
-	__pci_addr_cache_remove_device(dev);
-	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
-}
-
-/**
- * pci_addr_cache_build - Build a cache of I/O addresses
- *
- * Build a cache of pci i/o addresses.  This cache will be used to
- * find the pci device that corresponds to a given address.
- * This routine scans all pci busses to build the cache.
- * Must be run late in boot process, after the pci controllers
- * have been scaned for devices (after all device resources are known).
- */
-void __init pci_addr_cache_build(void)
-{
-	struct pci_dev *dev = NULL;
-
-	if (!eeh_subsystem_enabled)
-		return;
-
-	spin_lock_init(&pci_io_addr_cache_root.piar_lock);
-
-	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
-		/* Ignore PCI bridges ( XXX why ??) */
-		if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
-			continue;
-		}
-		pci_addr_cache_insert_device(dev);
-	}
-
-#ifdef DEBUG
-	/* Verify tree built up above, echo back the list of addrs. */
-	pci_addr_cache_print(&pci_io_addr_cache_root);
-#endif
-}
-
-/* --------------------------------------------------------------- */
-/* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
-
-void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
-{
-	unsigned long flags;
-	int rc;
-
-	/* Log the error with the rtas logger */
-	spin_lock_irqsave(&slot_errbuf_lock, flags);
-	memset(slot_errbuf, 0, eeh_error_buf_size);
-
-	rc = rtas_call(ibm_slot_error_detail,
-	               8, 1, NULL, pdn->eeh_config_addr,
-	               BUID_HI(pdn->phb->buid),
-	               BUID_LO(pdn->phb->buid), NULL, 0,
-	               virt_to_phys(slot_errbuf),
-	               eeh_error_buf_size,
-	               severity);
-
-	if (rc == 0)
-		log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
-	spin_unlock_irqrestore(&slot_errbuf_lock, flags);
-}
-
-/**
- * eeh_register_notifier - Register to find out about EEH events.
- * @nb: notifier block to callback on events
- */
-int eeh_register_notifier(struct notifier_block *nb)
-{
-	return notifier_chain_register(&eeh_notifier_chain, nb);
-}
-
-/**
- * eeh_unregister_notifier - Unregister to an EEH event notifier.
- * @nb: notifier block to callback on events
- */
-int eeh_unregister_notifier(struct notifier_block *nb)
-{
-	return notifier_chain_unregister(&eeh_notifier_chain, nb);
-}
-
-/**
- * read_slot_reset_state - Read the reset state of a device node's slot
- * @dn: device node to read
- * @rets: array to return results in
- */
-static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
-{
-	int token, outputs;
-
-	if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
-		token = ibm_read_slot_reset_state2;
-		outputs = 4;
-	} else {
-		token = ibm_read_slot_reset_state;
-		rets[2] = 0; /* fake PE Unavailable info */
-		outputs = 3;
-	}
-
-	return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
-			 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
-}
-
-/**
- * eeh_panic - call panic() for an eeh event that cannot be handled.
- * The philosophy of this routine is that it is better to panic and
- * halt the OS than it is to risk possible data corruption by
- * oblivious device drivers that don't know better.
- *
- * @dev pci device that had an eeh event
- * @reset_state current reset state of the device slot
- */
-static void eeh_panic(struct pci_dev *dev, int reset_state)
-{
-	/*
-	 * XXX We should create a separate sysctl for this.
-	 *
-	 * Since the panic_on_oops sysctl is used to halt the system
-	 * in light of potential corruption, we can use it here.
-	 */
-	if (panic_on_oops) {
-		struct device_node *dn = pci_device_to_OF_node(dev);
-		eeh_slot_error_detail (PCI_DN(dn), 2 /* Permanent Error */);
-		panic("EEH: MMIO failure (%d) on device:%s\n", reset_state,
-		      pci_name(dev));
-	}
-	else {
-		__get_cpu_var(ignored_failures)++;
-		printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s\n",
-		       reset_state, pci_name(dev));
-	}
-}
-
-/**
- * eeh_event_handler - dispatch EEH events.  The detection of a frozen
- * slot can occur inside an interrupt, where it can be hard to do
- * anything about it.  The goal of this routine is to pull these
- * detection events out of the context of the interrupt handler, and
- * re-dispatch them for processing at a later time in a normal context.
- *
- * @dummy - unused
- */
-static void eeh_event_handler(void *dummy)
-{
-	unsigned long flags;
-	struct eeh_event	*event;
-
-	while (1) {
-		spin_lock_irqsave(&eeh_eventlist_lock, flags);
-		event = NULL;
-		if (!list_empty(&eeh_eventlist)) {
-			event = list_entry(eeh_eventlist.next, struct eeh_event, list);
-			list_del(&event->list);
-		}
-		spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
-		if (event == NULL)
-			break;
-
-		printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device "
-		       "%s\n", event->reset_state,
-		       pci_name(event->dev));
-
-		notifier_call_chain (&eeh_notifier_chain,
-				     EEH_NOTIFY_FREEZE, event);
-
-		pci_dev_put(event->dev);
-		kfree(event);
-	}
-}
-
-/**
- * eeh_token_to_phys - convert EEH address token to phys address
- * @token i/o token, should be address in the form 0xA....
- */
-static inline unsigned long eeh_token_to_phys(unsigned long token)
-{
-	pte_t *ptep;
-	unsigned long pa;
-
-	ptep = find_linux_pte(init_mm.pgd, token);
-	if (!ptep)
-		return token;
-	pa = pte_pfn(*ptep) << PAGE_SHIFT;
-
-	return pa | (token & (PAGE_SIZE-1));
-}
-
-/** 
- * Return the "partitionable endpoint" (pe) under which this device lies
- */
-static struct device_node * find_device_pe(struct device_node *dn)
-{
-	while ((dn->parent) && PCI_DN(dn->parent) &&
-	      (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
-		dn = dn->parent;
-	}
-	return dn;
-}
-
-/** Mark all devices that are peers of this device as failed.
- *  Mark the device driver too, so that it can see the failure
- *  immediately; this is critical, since some drivers poll
- *  status registers in interrupts ... If a driver is polling,
- *  and the slot is frozen, then the driver can deadlock in
- *  an interrupt context, which is bad.
- */
-
-static inline void __eeh_mark_slot (struct device_node *dn)
-{
-	while (dn) {
-		PCI_DN(dn)->eeh_mode |= EEH_MODE_ISOLATED;
-
-		if (dn->child)
-			__eeh_mark_slot (dn->child);
-		dn = dn->sibling;
-	}
-}
-
-static inline void __eeh_clear_slot (struct device_node *dn)
-{
-	while (dn) {
-		PCI_DN(dn)->eeh_mode &= ~EEH_MODE_ISOLATED;
-		if (dn->child)
-			__eeh_clear_slot (dn->child);
-		dn = dn->sibling;
-	}
-}
-
-static inline void eeh_clear_slot (struct device_node *dn)
-{
-	unsigned long flags;
-	spin_lock_irqsave(&confirm_error_lock, flags);
-	__eeh_clear_slot (dn);
-	spin_unlock_irqrestore(&confirm_error_lock, flags);
-}
-
-/**
- * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
- * @dn device node
- * @dev pci device, if known
- *
- * Check for an EEH failure for the given device node.  Call this
- * routine if the result of a read was all 0xff's and you want to
- * find out if this is due to an EEH slot freeze.  This routine
- * will query firmware for the EEH status.
- *
- * Returns 0 if there has not been an EEH error; otherwise returns
- * a non-zero value and queues up a slot isolation event notification.
- *
- * It is safe to call this routine in an interrupt context.
- */
-int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
-{
-	int ret;
-	int rets[3];
-	unsigned long flags;
-	int reset_state;
-	struct eeh_event  *event;
-	struct pci_dn *pdn;
-	struct device_node *pe_dn;
-	int rc = 0;
-
-	__get_cpu_var(total_mmio_ffs)++;
-
-	if (!eeh_subsystem_enabled)
-		return 0;
-
-	if (!dn) {
-		__get_cpu_var(no_dn)++;
-		return 0;
-	}
-	pdn = PCI_DN(dn);
-
-	/* Access to IO BARs might get this far and still not want checking. */
-	if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
-	    pdn->eeh_mode & EEH_MODE_NOCHECK) {
-		__get_cpu_var(ignored_check)++;
-#ifdef DEBUG
-		printk ("EEH:ignored check (%x) for %s %s\n", 
-		        pdn->eeh_mode, pci_name (dev), dn->full_name);
-#endif
-		return 0;
-	}
-
-	if (!pdn->eeh_config_addr) {
-		__get_cpu_var(no_cfg_addr)++;
-		return 0;
-	}
-
-	/* If we already have a pending isolation event for this
-	 * slot, we know it's bad already, we don't need to check.
-	 * Do this checking under a lock; as multiple PCI devices
-	 * in one slot might report errors simultaneously, and we
-	 * only want one error recovery routine running.
-	 */
-	spin_lock_irqsave(&confirm_error_lock, flags);
-	rc = 1;
-	if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
-		pdn->eeh_check_count ++;
-		if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
-			printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
-			        pdn->eeh_check_count);
-			dump_stack();
-			
-			/* re-read the slot reset state */
-			if (read_slot_reset_state(pdn, rets) != 0)
-				rets[0] = -1;	/* reset state unknown */
-
-			/* If we are here, then we hit an infinite loop. Stop. */
-			panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
-		}
-		goto dn_unlock;
-	}
-
-	/*
-	 * Now test for an EEH failure.  This is VERY expensive.
-	 * Note that the eeh_config_addr may be a parent device
-	 * in the case of a device behind a bridge, or it may be
-	 * function zero of a multi-function device.
-	 * In any case they must share a common PHB.
-	 */
-	ret = read_slot_reset_state(pdn, rets);
-
-	/* If the call to firmware failed, punt */
-	if (ret != 0) {
-		printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
-		       ret, dn->full_name);
-		__get_cpu_var(false_positives)++;
-		rc = 0;
-		goto dn_unlock;
-	}
-
-	/* If EEH is not supported on this device, punt. */
-	if (rets[1] != 1) {
-		printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
-		       ret, dn->full_name);
-		__get_cpu_var(false_positives)++;
-		rc = 0;
-		goto dn_unlock;
-	}
-
-	/* If not the kind of error we know about, punt. */
-	if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
-		__get_cpu_var(false_positives)++;
-		rc = 0;
-		goto dn_unlock;
-	}
-
-	/* Note that config-io to empty slots may fail;
-	 * we recognize empty because they don't have children. */
-	if ((rets[0] == 5) && (dn->child == NULL)) {
-		__get_cpu_var(false_positives)++;
-		rc = 0;
-		goto dn_unlock;
-	}
-
-	__get_cpu_var(slot_resets)++;
- 
-	/* Avoid repeated reports of this failure, including problems
-	 * with other functions on this device, and functions under
-	 * bridges. */
-	pe_dn = find_device_pe (dn);
-	__eeh_mark_slot (pe_dn);
-	spin_unlock_irqrestore(&confirm_error_lock, flags);
-
-	reset_state = rets[0];
-
-	eeh_slot_error_detail (pdn, 1 /* Temporary Error */);
-
-	printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n",
-	       rets[0], dn->name, dn->full_name);
-	event = kmalloc(sizeof(*event), GFP_ATOMIC);
-	if (event == NULL) {
-		eeh_panic(dev, reset_state);
-		return 1;
- 	}
-
-	event->dev = dev;
-	event->dn = dn;
-	event->reset_state = reset_state;
-
-	/* We may or may not be called in an interrupt context */
-	spin_lock_irqsave(&eeh_eventlist_lock, flags);
-	list_add(&event->list, &eeh_eventlist);
-	spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
-
-	/* Most EEH events are due to device driver bugs.  Having
-	 * a stack trace will help the device-driver authors figure
-	 * out what happened.  So print that out. */
-	if (rets[0] != 5) dump_stack();
-	schedule_work(&eeh_event_wq);
-
-	return 1;
-
-dn_unlock:
-	spin_unlock_irqrestore(&confirm_error_lock, flags);
-	return rc;
-}
-
-EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
-
-/**
- * eeh_check_failure - check if all 1's data is due to EEH slot freeze
- * @token i/o token, should be address in the form 0xA....
- * @val value, should be all 1's (XXX why do we need this arg??)
- *
- * Check for an EEH failure at the given token address.  Call this
- * routine if the result of a read was all 0xff's and you want to
- * find out if this is due to an EEH slot freeze event.  This routine
- * will query firmware for the EEH status.
- *
- * Note this routine is safe to call in an interrupt context.
- */
-unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
-{
-	unsigned long addr;
-	struct pci_dev *dev;
-	struct device_node *dn;
-
-	/* Finding the phys addr + pci device; this is pretty quick. */
-	addr = eeh_token_to_phys((unsigned long __force) token);
-	dev = pci_get_device_by_addr(addr);
-	if (!dev) {
-		__get_cpu_var(no_device)++;
-		return val;
-	}
-
-	dn = pci_device_to_OF_node(dev);
-	eeh_dn_check_failure (dn, dev);
-
-	pci_dev_put(dev);
-	return val;
-}
-
-EXPORT_SYMBOL(eeh_check_failure);
-
-struct eeh_early_enable_info {
-	unsigned int buid_hi;
-	unsigned int buid_lo;
-};
-
-/* Enable eeh for the given device node. */
-static void *early_enable_eeh(struct device_node *dn, void *data)
-{
-	struct eeh_early_enable_info *info = data;
-	int ret;
-	char *status = get_property(dn, "status", NULL);
-	u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
-	u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
-	u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
-	u32 *regs;
-	int enable;
-	struct pci_dn *pdn = PCI_DN(dn);
-
-	pdn->eeh_mode = 0;
-	pdn->eeh_check_count = 0;
-	pdn->eeh_freeze_count = 0;
-
-	if (status && strcmp(status, "ok") != 0)
-		return NULL;	/* ignore devices with bad status */
-
-	/* Ignore bad nodes. */
-	if (!class_code || !vendor_id || !device_id)
-		return NULL;
-
-	/* There is nothing to check on PCI to ISA bridges */
-	if (dn->type && !strcmp(dn->type, "isa")) {
-		pdn->eeh_mode |= EEH_MODE_NOCHECK;
-		return NULL;
-	}
-
-	/*
-	 * Now decide if we are going to "Disable" EEH checking
-	 * for this device.  We still run with the EEH hardware active,
-	 * but we won't be checking for ff's.  This means a driver
-	 * could return bad data (very bad!), an interrupt handler could
-	 * hang waiting on status bits that won't change, etc.
-	 * But there are a few cases like display devices that make sense.
-	 */
-	enable = 1;	/* i.e. we will do checking */
-	if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
-		enable = 0;
-
-	if (!enable)
-		pdn->eeh_mode |= EEH_MODE_NOCHECK;
-
-	/* Ok... see if this device supports EEH.  Some do, some don't,
-	 * and the only way to find out is to check each and every one. */
-	regs = (u32 *)get_property(dn, "reg", NULL);
-	if (regs) {
-		/* First register entry is addr (00BBSS00)  */
-		/* Try to enable eeh */
-		ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
-				regs[0], info->buid_hi, info->buid_lo,
-				EEH_ENABLE);
-		if (ret == 0) {
-			eeh_subsystem_enabled = 1;
-			pdn->eeh_mode |= EEH_MODE_SUPPORTED;
-			pdn->eeh_config_addr = regs[0];
-#ifdef DEBUG
-			printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
-#endif
-		} else {
-
-			/* This device doesn't support EEH, but it may have an
-			 * EEH parent, in which case we mark it as supported. */
-			if (dn->parent && PCI_DN(dn->parent)
-			    && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
-				/* Parent supports EEH. */
-				pdn->eeh_mode |= EEH_MODE_SUPPORTED;
-				pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
-				return NULL;
-			}
-		}
-	} else {
-		printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
-		       dn->full_name);
-	}
-
-	return NULL;
-}
-
-/*
- * Initialize EEH by trying to enable it for all of the adapters in the system.
- * As a side effect we can determine here if eeh is supported at all.
- * Note that we leave EEH on so failed config cycles won't cause a machine
- * check.  If a user turns off EEH for a particular adapter they are really
- * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
- * grant access to a slot if EEH isn't enabled, and so we always enable
- * EEH for all slots/all devices.
- *
- * The eeh-force-off option disables EEH checking globally, for all slots.
- * Even if force-off is set, the EEH hardware is still enabled, so that
- * newer systems can boot.
- */
-void __init eeh_init(void)
-{
-	struct device_node *phb, *np;
-	struct eeh_early_enable_info info;
-
-	spin_lock_init(&confirm_error_lock);
-	spin_lock_init(&slot_errbuf_lock);
-
-	np = of_find_node_by_path("/rtas");
-	if (np == NULL)
-		return;
-
-	ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
-	ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
-	ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
-	ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
-	ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
-
-	if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
-		return;
-
-	eeh_error_buf_size = rtas_token("rtas-error-log-max");
-	if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
-		eeh_error_buf_size = 1024;
-	}
-	if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
-		printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
-		      "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
-		eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
-	}
-
-	/* Enable EEH for all adapters.  Note that eeh requires buid's */
-	for (phb = of_find_node_by_name(NULL, "pci"); phb;
-	     phb = of_find_node_by_name(phb, "pci")) {
-		unsigned long buid;
-
-		buid = get_phb_buid(phb);
-		if (buid == 0 || PCI_DN(phb) == NULL)
-			continue;
-
-		info.buid_lo = BUID_LO(buid);
-		info.buid_hi = BUID_HI(buid);
-		traverse_pci_devices(phb, early_enable_eeh, &info);
-	}
-
-	if (eeh_subsystem_enabled)
-		printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
-	else
-		printk(KERN_WARNING "EEH: No capable adapters found\n");
-}
-
-/**
- * eeh_add_device_early - enable EEH for the indicated device_node
- * @dn: device node for which to set up EEH
- *
- * This routine must be used to perform EEH initialization for PCI
- * devices that were added after system boot (e.g. hotplug, dlpar).
- * This routine must be called before any i/o is performed to the
- * adapter (inluding any config-space i/o).
- * Whether this actually enables EEH or not for this device depends
- * on the CEC architecture, type of the device, on earlier boot
- * command-line arguments & etc.
- */
-void eeh_add_device_early(struct device_node *dn)
-{
-	struct pci_controller *phb;
-	struct eeh_early_enable_info info;
-
-	if (!dn || !PCI_DN(dn))
-		return;
-	phb = PCI_DN(dn)->phb;
-	if (NULL == phb || 0 == phb->buid) {
-		printk(KERN_WARNING "EEH: Expected buid but found none for %s\n",
-		       dn->full_name);
-		dump_stack();
-		return;
-	}
-
-	info.buid_hi = BUID_HI(phb->buid);
-	info.buid_lo = BUID_LO(phb->buid);
-	early_enable_eeh(dn, &info);
-}
-EXPORT_SYMBOL_GPL(eeh_add_device_early);
-
-/**
- * eeh_add_device_late - perform EEH initialization for the indicated pci device
- * @dev: pci device for which to set up EEH
- *
- * This routine must be used to complete EEH initialization for PCI
- * devices that were added after system boot (e.g. hotplug, dlpar).
- */
-void eeh_add_device_late(struct pci_dev *dev)
-{
-	struct device_node *dn;
-
-	if (!dev || !eeh_subsystem_enabled)
-		return;
-
-#ifdef DEBUG
-	printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
-#endif
-
-	pci_dev_get (dev);
-	dn = pci_device_to_OF_node(dev);
-	PCI_DN(dn)->pcidev = dev;
-
-	pci_addr_cache_insert_device (dev);
-}
-EXPORT_SYMBOL_GPL(eeh_add_device_late);
-
-/**
- * eeh_remove_device - undo EEH setup for the indicated pci device
- * @dev: pci device to be removed
- *
- * This routine should be when a device is removed from a running
- * system (e.g. by hotplug or dlpar).
- */
-void eeh_remove_device(struct pci_dev *dev)
-{
-	struct device_node *dn;
-	if (!dev || !eeh_subsystem_enabled)
-		return;
-
-	/* Unregister the device with the EEH/PCI address search system */
-#ifdef DEBUG
-	printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
-#endif
-	pci_addr_cache_remove_device(dev);
-
-	dn = pci_device_to_OF_node(dev);
-	PCI_DN(dn)->pcidev = NULL;
-	pci_dev_put (dev);
-}
-EXPORT_SYMBOL_GPL(eeh_remove_device);
-
-static int proc_eeh_show(struct seq_file *m, void *v)
-{
-	unsigned int cpu;
-	unsigned long ffs = 0, positives = 0, failures = 0;
-	unsigned long resets = 0;
-	unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
-
-	for_each_cpu(cpu) {
-		ffs += per_cpu(total_mmio_ffs, cpu);
-		positives += per_cpu(false_positives, cpu);
-		failures += per_cpu(ignored_failures, cpu);
-		resets += per_cpu(slot_resets, cpu);
-		no_dev += per_cpu(no_device, cpu);
-		no_dn += per_cpu(no_dn, cpu);
-		no_cfg += per_cpu(no_cfg_addr, cpu);
-		no_check += per_cpu(ignored_check, cpu);
-	}
-
-	if (0 == eeh_subsystem_enabled) {
-		seq_printf(m, "EEH Subsystem is globally disabled\n");
-		seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
-	} else {
-		seq_printf(m, "EEH Subsystem is enabled\n");
-		seq_printf(m,
-				"no device=%ld\n"
-				"no device node=%ld\n"
-				"no config address=%ld\n"
-				"check not wanted=%ld\n"
-				"eeh_total_mmio_ffs=%ld\n"
-				"eeh_false_positives=%ld\n"
-				"eeh_ignored_failures=%ld\n"
-				"eeh_slot_resets=%ld\n",
-				no_dev, no_dn, no_cfg, no_check,
-				ffs, positives, failures, resets);
-	}
-
-	return 0;
-}
-
-static int proc_eeh_open(struct inode *inode, struct file *file)
-{
-	return single_open(file, proc_eeh_show, NULL);
-}
-
-static struct file_operations proc_eeh_operations = {
-	.open      = proc_eeh_open,
-	.read      = seq_read,
-	.llseek    = seq_lseek,
-	.release   = single_release,
-};
-
-static int __init eeh_init_proc(void)
-{
-	struct proc_dir_entry *e;
-
-	if (systemcfg->platform & PLATFORM_PSERIES) {
-		e = create_proc_entry("ppc64/eeh", 0, NULL);
-		if (e)
-			e->proc_fops = &proc_eeh_operations;
-	}
-
-	return 0;
-}
-__initcall(eeh_init_proc);
Index: linux-2.6.14-git3/arch/ppc64/kernel/Makefile
===================================================================
--- linux-2.6.14-git3.orig/arch/ppc64/kernel/Makefile	2005-11-02 14:29:22.485829789 -0600
+++ linux-2.6.14-git3/arch/ppc64/kernel/Makefile	2005-11-02 14:30:49.805589414 -0600
@@ -35,7 +35,6 @@
 			 bpa_iic.o spider-pic.o
 
 obj-$(CONFIG_KEXEC)		+= machine_kexec.o
-obj-$(CONFIG_EEH)		+= eeh.o
 obj-$(CONFIG_PROC_FS)		+= proc_ppc64.o
 obj-$(CONFIG_RTAS_FLASH)	+= rtas_flash.o
 obj-$(CONFIG_SMP)		+= smp.o
Index: linux-2.6.14-git3/arch/powerpc/platforms/pseries/Makefile
===================================================================
--- linux-2.6.14-git3.orig/arch/powerpc/platforms/pseries/Makefile	2005-10-31 11:19:47.000000000 -0600
+++ linux-2.6.14-git3/arch/powerpc/platforms/pseries/Makefile	2005-11-02 14:31:36.150092654 -0600
@@ -3,3 +3,4 @@
 obj-$(CONFIG_SMP)	+= smp.o
 obj-$(CONFIG_IBMVIO)	+= vio.o
 obj-$(CONFIG_XICS)	+= xics.o
+obj-$(CONFIG_EEH)    += eeh.o
Index: linux-2.6.14-git3/arch/powerpc/platforms/pseries/eeh.c
===================================================================
--- /dev/null	1970-01-01 00:00:00.000000000 +0000
+++ linux-2.6.14-git3/arch/powerpc/platforms/pseries/eeh.c	2005-11-02 14:30:49.790591516 -0600
@@ -0,0 +1,1093 @@
+/*
+ * eeh.c
+ * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
+ */
+
+#include <linux/init.h>
+#include <linux/list.h>
+#include <linux/notifier.h>
+#include <linux/pci.h>
+#include <linux/proc_fs.h>
+#include <linux/rbtree.h>
+#include <linux/seq_file.h>
+#include <linux/spinlock.h>
+#include <asm/atomic.h>
+#include <asm/eeh.h>
+#include <asm/io.h>
+#include <asm/machdep.h>
+#include <asm/rtas.h>
+#include <asm/atomic.h>
+#include <asm/systemcfg.h>
+#include <asm/ppc-pci.h>
+
+#undef DEBUG
+
+/** Overview:
+ *  EEH, or "Extended Error Handling" is a PCI bridge technology for
+ *  dealing with PCI bus errors that can't be dealt with within the
+ *  usual PCI framework, except by check-stopping the CPU.  Systems
+ *  that are designed for high-availability/reliability cannot afford
+ *  to crash due to a "mere" PCI error, thus the need for EEH.
+ *  An EEH-capable bridge operates by converting a detected error
+ *  into a "slot freeze", taking the PCI adapter off-line, making
+ *  the slot behave, from the OS'es point of view, as if the slot
+ *  were "empty": all reads return 0xff's and all writes are silently
+ *  ignored.  EEH slot isolation events can be triggered by parity
+ *  errors on the address or data busses (e.g. during posted writes),
+ *  which in turn might be caused by low voltage on the bus, dust,
+ *  vibration, humidity, radioactivity or plain-old failed hardware.
+ *
+ *  Note, however, that one of the leading causes of EEH slot
+ *  freeze events are buggy device drivers, buggy device microcode,
+ *  or buggy device hardware.  This is because any attempt by the
+ *  device to bus-master data to a memory address that is not
+ *  assigned to the device will trigger a slot freeze.   (The idea
+ *  is to prevent devices-gone-wild from corrupting system memory).
+ *  Buggy hardware/drivers will have a miserable time co-existing
+ *  with EEH.
+ *
+ *  Ideally, a PCI device driver, when suspecting that an isolation
+ *  event has occured (e.g. by reading 0xff's), will then ask EEH
+ *  whether this is the case, and then take appropriate steps to
+ *  reset the PCI slot, the PCI device, and then resume operations.
+ *  However, until that day,  the checking is done here, with the
+ *  eeh_check_failure() routine embedded in the MMIO macros.  If
+ *  the slot is found to be isolated, an "EEH Event" is synthesized
+ *  and sent out for processing.
+ */
+
+/* EEH event workqueue setup. */
+static DEFINE_SPINLOCK(eeh_eventlist_lock);
+LIST_HEAD(eeh_eventlist);
+static void eeh_event_handler(void *);
+DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL);
+
+static struct notifier_block *eeh_notifier_chain;
+
+/* If a device driver keeps reading an MMIO register in an interrupt
+ * handler after a slot isolation event has occurred, we assume it
+ * is broken and panic.  This sets the threshold for how many read
+ * attempts we allow before panicking.
+ */
+#define EEH_MAX_FAILS	100000
+
+/* RTAS tokens */
+static int ibm_set_eeh_option;
+static int ibm_set_slot_reset;
+static int ibm_read_slot_reset_state;
+static int ibm_read_slot_reset_state2;
+static int ibm_slot_error_detail;
+
+static int eeh_subsystem_enabled;
+
+/* Lock to avoid races due to multiple reports of an error */
+static DEFINE_SPINLOCK(confirm_error_lock);
+
+/* Buffer for reporting slot-error-detail rtas calls */
+static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
+static DEFINE_SPINLOCK(slot_errbuf_lock);
+static int eeh_error_buf_size;
+
+/* System monitoring statistics */
+static DEFINE_PER_CPU(unsigned long, no_device);
+static DEFINE_PER_CPU(unsigned long, no_dn);
+static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
+static DEFINE_PER_CPU(unsigned long, ignored_check);
+static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
+static DEFINE_PER_CPU(unsigned long, false_positives);
+static DEFINE_PER_CPU(unsigned long, ignored_failures);
+static DEFINE_PER_CPU(unsigned long, slot_resets);
+
+/**
+ * The pci address cache subsystem.  This subsystem places
+ * PCI device address resources into a red-black tree, sorted
+ * according to the address range, so that given only an i/o
+ * address, the corresponding PCI device can be **quickly**
+ * found. It is safe to perform an address lookup in an interrupt
+ * context; this ability is an important feature.
+ *
+ * Currently, the only customer of this code is the EEH subsystem;
+ * thus, this code has been somewhat tailored to suit EEH better.
+ * In particular, the cache does *not* hold the addresses of devices
+ * for which EEH is not enabled.
+ *
+ * (Implementation Note: The RB tree seems to be better/faster
+ * than any hash algo I could think of for this problem, even
+ * with the penalty of slow pointer chases for d-cache misses).
+ */
+struct pci_io_addr_range
+{
+	struct rb_node rb_node;
+	unsigned long addr_lo;
+	unsigned long addr_hi;
+	struct pci_dev *pcidev;
+	unsigned int flags;
+};
+
+static struct pci_io_addr_cache
+{
+	struct rb_root rb_root;
+	spinlock_t piar_lock;
+} pci_io_addr_cache_root;
+
+static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
+{
+	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
+
+	while (n) {
+		struct pci_io_addr_range *piar;
+		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
+
+		if (addr < piar->addr_lo) {
+			n = n->rb_left;
+		} else {
+			if (addr > piar->addr_hi) {
+				n = n->rb_right;
+			} else {
+				pci_dev_get(piar->pcidev);
+				return piar->pcidev;
+			}
+		}
+	}
+
+	return NULL;
+}
+
+/**
+ * pci_get_device_by_addr - Get device, given only address
+ * @addr: mmio (PIO) phys address or i/o port number
+ *
+ * Given an mmio phys address, or a port number, find a pci device
+ * that implements this address.  Be sure to pci_dev_put the device
+ * when finished.  I/O port numbers are assumed to be offset
+ * from zero (that is, they do *not* have pci_io_addr added in).
+ * It is safe to call this function within an interrupt.
+ */
+static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
+{
+	struct pci_dev *dev;
+	unsigned long flags;
+
+	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
+	dev = __pci_get_device_by_addr(addr);
+	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
+	return dev;
+}
+
+#ifdef DEBUG
+/*
+ * Handy-dandy debug print routine, does nothing more
+ * than print out the contents of our addr cache.
+ */
+static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
+{
+	struct rb_node *n;
+	int cnt = 0;
+
+	n = rb_first(&cache->rb_root);
+	while (n) {
+		struct pci_io_addr_range *piar;
+		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
+		printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
+		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
+		       piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
+		cnt++;
+		n = rb_next(n);
+	}
+}
+#endif
+
+/* Insert address range into the rb tree. */
+static struct pci_io_addr_range *
+pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
+		      unsigned long ahi, unsigned int flags)
+{
+	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
+	struct rb_node *parent = NULL;
+	struct pci_io_addr_range *piar;
+
+	/* Walk tree, find a place to insert into tree */
+	while (*p) {
+		parent = *p;
+		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
+		if (ahi < piar->addr_lo) {
+			p = &parent->rb_left;
+		} else if (alo > piar->addr_hi) {
+			p = &parent->rb_right;
+		} else {
+			if (dev != piar->pcidev ||
+			    alo != piar->addr_lo || ahi != piar->addr_hi) {
+				printk(KERN_WARNING "PIAR: overlapping address range\n");
+			}
+			return piar;
+		}
+	}
+	piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
+	if (!piar)
+		return NULL;
+
+	piar->addr_lo = alo;
+	piar->addr_hi = ahi;
+	piar->pcidev = dev;
+	piar->flags = flags;
+
+#ifdef DEBUG
+	printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
+	                  alo, ahi, pci_name (dev));
+#endif
+
+	rb_link_node(&piar->rb_node, parent, p);
+	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
+
+	return piar;
+}
+
+static void __pci_addr_cache_insert_device(struct pci_dev *dev)
+{
+	struct device_node *dn;
+	struct pci_dn *pdn;
+	int i;
+	int inserted = 0;
+
+	dn = pci_device_to_OF_node(dev);
+	if (!dn) {
+		printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
+		return;
+	}
+
+	/* Skip any devices for which EEH is not enabled. */
+	pdn = PCI_DN(dn);
+	if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
+	    pdn->eeh_mode & EEH_MODE_NOCHECK) {
+#ifdef DEBUG
+		printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
+		       pci_name(dev), pdn->node->full_name);
+#endif
+		return;
+	}
+
+	/* The cache holds a reference to the device... */
+	pci_dev_get(dev);
+
+	/* Walk resources on this device, poke them into the tree */
+	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
+		unsigned long start = pci_resource_start(dev,i);
+		unsigned long end = pci_resource_end(dev,i);
+		unsigned int flags = pci_resource_flags(dev,i);
+
+		/* We are interested only bus addresses, not dma or other stuff */
+		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
+			continue;
+		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
+			 continue;
+		pci_addr_cache_insert(dev, start, end, flags);
+		inserted = 1;
+	}
+
+	/* If there was nothing to add, the cache has no reference... */
+	if (!inserted)
+		pci_dev_put(dev);
+}
+
+/**
+ * pci_addr_cache_insert_device - Add a device to the address cache
+ * @dev: PCI device whose I/O addresses we are interested in.
+ *
+ * In order to support the fast lookup of devices based on addresses,
+ * we maintain a cache of devices that can be quickly searched.
+ * This routine adds a device to that cache.
+ */
+static void pci_addr_cache_insert_device(struct pci_dev *dev)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
+	__pci_addr_cache_insert_device(dev);
+	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
+}
+
+static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
+{
+	struct rb_node *n;
+	int removed = 0;
+
+restart:
+	n = rb_first(&pci_io_addr_cache_root.rb_root);
+	while (n) {
+		struct pci_io_addr_range *piar;
+		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
+
+		if (piar->pcidev == dev) {
+			rb_erase(n, &pci_io_addr_cache_root.rb_root);
+			removed = 1;
+			kfree(piar);
+			goto restart;
+		}
+		n = rb_next(n);
+	}
+
+	/* The cache no longer holds its reference to this device... */
+	if (removed)
+		pci_dev_put(dev);
+}
+
+/**
+ * pci_addr_cache_remove_device - remove pci device from addr cache
+ * @dev: device to remove
+ *
+ * Remove a device from the addr-cache tree.
+ * This is potentially expensive, since it will walk
+ * the tree multiple times (once per resource).
+ * But so what; device removal doesn't need to be that fast.
+ */
+static void pci_addr_cache_remove_device(struct pci_dev *dev)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
+	__pci_addr_cache_remove_device(dev);
+	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
+}
+
+/**
+ * pci_addr_cache_build - Build a cache of I/O addresses
+ *
+ * Build a cache of pci i/o addresses.  This cache will be used to
+ * find the pci device that corresponds to a given address.
+ * This routine scans all pci busses to build the cache.
+ * Must be run late in boot process, after the pci controllers
+ * have been scaned for devices (after all device resources are known).
+ */
+void __init pci_addr_cache_build(void)
+{
+	struct pci_dev *dev = NULL;
+
+	if (!eeh_subsystem_enabled)
+		return;
+
+	spin_lock_init(&pci_io_addr_cache_root.piar_lock);
+
+	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
+		/* Ignore PCI bridges ( XXX why ??) */
+		if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
+			continue;
+		}
+		pci_addr_cache_insert_device(dev);
+	}
+
+#ifdef DEBUG
+	/* Verify tree built up above, echo back the list of addrs. */
+	pci_addr_cache_print(&pci_io_addr_cache_root);
+#endif
+}
+
+/* --------------------------------------------------------------- */
+/* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
+
+void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
+{
+	unsigned long flags;
+	int rc;
+
+	/* Log the error with the rtas logger */
+	spin_lock_irqsave(&slot_errbuf_lock, flags);
+	memset(slot_errbuf, 0, eeh_error_buf_size);
+
+	rc = rtas_call(ibm_slot_error_detail,
+	               8, 1, NULL, pdn->eeh_config_addr,
+	               BUID_HI(pdn->phb->buid),
+	               BUID_LO(pdn->phb->buid), NULL, 0,
+	               virt_to_phys(slot_errbuf),
+	               eeh_error_buf_size,
+	               severity);
+
+	if (rc == 0)
+		log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
+	spin_unlock_irqrestore(&slot_errbuf_lock, flags);
+}
+
+/**
+ * eeh_register_notifier - Register to find out about EEH events.
+ * @nb: notifier block to callback on events
+ */
+int eeh_register_notifier(struct notifier_block *nb)
+{
+	return notifier_chain_register(&eeh_notifier_chain, nb);
+}
+
+/**
+ * eeh_unregister_notifier - Unregister to an EEH event notifier.
+ * @nb: notifier block to callback on events
+ */
+int eeh_unregister_notifier(struct notifier_block *nb)
+{
+	return notifier_chain_unregister(&eeh_notifier_chain, nb);
+}
+
+/**
+ * read_slot_reset_state - Read the reset state of a device node's slot
+ * @dn: device node to read
+ * @rets: array to return results in
+ */
+static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
+{
+	int token, outputs;
+
+	if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
+		token = ibm_read_slot_reset_state2;
+		outputs = 4;
+	} else {
+		token = ibm_read_slot_reset_state;
+		rets[2] = 0; /* fake PE Unavailable info */
+		outputs = 3;
+	}
+
+	return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
+			 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
+}
+
+/**
+ * eeh_panic - call panic() for an eeh event that cannot be handled.
+ * The philosophy of this routine is that it is better to panic and
+ * halt the OS than it is to risk possible data corruption by
+ * oblivious device drivers that don't know better.
+ *
+ * @dev pci device that had an eeh event
+ * @reset_state current reset state of the device slot
+ */
+static void eeh_panic(struct pci_dev *dev, int reset_state)
+{
+	/*
+	 * XXX We should create a separate sysctl for this.
+	 *
+	 * Since the panic_on_oops sysctl is used to halt the system
+	 * in light of potential corruption, we can use it here.
+	 */
+	if (panic_on_oops) {
+		struct device_node *dn = pci_device_to_OF_node(dev);
+		eeh_slot_error_detail (PCI_DN(dn), 2 /* Permanent Error */);
+		panic("EEH: MMIO failure (%d) on device:%s\n", reset_state,
+		      pci_name(dev));
+	}
+	else {
+		__get_cpu_var(ignored_failures)++;
+		printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s\n",
+		       reset_state, pci_name(dev));
+	}
+}
+
+/**
+ * eeh_event_handler - dispatch EEH events.  The detection of a frozen
+ * slot can occur inside an interrupt, where it can be hard to do
+ * anything about it.  The goal of this routine is to pull these
+ * detection events out of the context of the interrupt handler, and
+ * re-dispatch them for processing at a later time in a normal context.
+ *
+ * @dummy - unused
+ */
+static void eeh_event_handler(void *dummy)
+{
+	unsigned long flags;
+	struct eeh_event	*event;
+
+	while (1) {
+		spin_lock_irqsave(&eeh_eventlist_lock, flags);
+		event = NULL;
+		if (!list_empty(&eeh_eventlist)) {
+			event = list_entry(eeh_eventlist.next, struct eeh_event, list);
+			list_del(&event->list);
+		}
+		spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
+		if (event == NULL)
+			break;
+
+		printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device "
+		       "%s\n", event->reset_state,
+		       pci_name(event->dev));
+
+		notifier_call_chain (&eeh_notifier_chain,
+				     EEH_NOTIFY_FREEZE, event);
+
+		pci_dev_put(event->dev);
+		kfree(event);
+	}
+}
+
+/**
+ * eeh_token_to_phys - convert EEH address token to phys address
+ * @token i/o token, should be address in the form 0xA....
+ */
+static inline unsigned long eeh_token_to_phys(unsigned long token)
+{
+	pte_t *ptep;
+	unsigned long pa;
+
+	ptep = find_linux_pte(init_mm.pgd, token);
+	if (!ptep)
+		return token;
+	pa = pte_pfn(*ptep) << PAGE_SHIFT;
+
+	return pa | (token & (PAGE_SIZE-1));
+}
+
+/** 
+ * Return the "partitionable endpoint" (pe) under which this device lies
+ */
+static struct device_node * find_device_pe(struct device_node *dn)
+{
+	while ((dn->parent) && PCI_DN(dn->parent) &&
+	      (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
+		dn = dn->parent;
+	}
+	return dn;
+}
+
+/** Mark all devices that are peers of this device as failed.
+ *  Mark the device driver too, so that it can see the failure
+ *  immediately; this is critical, since some drivers poll
+ *  status registers in interrupts ... If a driver is polling,
+ *  and the slot is frozen, then the driver can deadlock in
+ *  an interrupt context, which is bad.
+ */
+
+static inline void __eeh_mark_slot (struct device_node *dn)
+{
+	while (dn) {
+		PCI_DN(dn)->eeh_mode |= EEH_MODE_ISOLATED;
+
+		if (dn->child)
+			__eeh_mark_slot (dn->child);
+		dn = dn->sibling;
+	}
+}
+
+static inline void __eeh_clear_slot (struct device_node *dn)
+{
+	while (dn) {
+		PCI_DN(dn)->eeh_mode &= ~EEH_MODE_ISOLATED;
+		if (dn->child)
+			__eeh_clear_slot (dn->child);
+		dn = dn->sibling;
+	}
+}
+
+static inline void eeh_clear_slot (struct device_node *dn)
+{
+	unsigned long flags;
+	spin_lock_irqsave(&confirm_error_lock, flags);
+	__eeh_clear_slot (dn);
+	spin_unlock_irqrestore(&confirm_error_lock, flags);
+}
+
+/**
+ * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
+ * @dn device node
+ * @dev pci device, if known
+ *
+ * Check for an EEH failure for the given device node.  Call this
+ * routine if the result of a read was all 0xff's and you want to
+ * find out if this is due to an EEH slot freeze.  This routine
+ * will query firmware for the EEH status.
+ *
+ * Returns 0 if there has not been an EEH error; otherwise returns
+ * a non-zero value and queues up a slot isolation event notification.
+ *
+ * It is safe to call this routine in an interrupt context.
+ */
+int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
+{
+	int ret;
+	int rets[3];
+	unsigned long flags;
+	int reset_state;
+	struct eeh_event  *event;
+	struct pci_dn *pdn;
+	struct device_node *pe_dn;
+	int rc = 0;
+
+	__get_cpu_var(total_mmio_ffs)++;
+
+	if (!eeh_subsystem_enabled)
+		return 0;
+
+	if (!dn) {
+		__get_cpu_var(no_dn)++;
+		return 0;
+	}
+	pdn = PCI_DN(dn);
+
+	/* Access to IO BARs might get this far and still not want checking. */
+	if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
+	    pdn->eeh_mode & EEH_MODE_NOCHECK) {
+		__get_cpu_var(ignored_check)++;
+#ifdef DEBUG
+		printk ("EEH:ignored check (%x) for %s %s\n", 
+		        pdn->eeh_mode, pci_name (dev), dn->full_name);
+#endif
+		return 0;
+	}
+
+	if (!pdn->eeh_config_addr) {
+		__get_cpu_var(no_cfg_addr)++;
+		return 0;
+	}
+
+	/* If we already have a pending isolation event for this
+	 * slot, we know it's bad already, we don't need to check.
+	 * Do this checking under a lock; as multiple PCI devices
+	 * in one slot might report errors simultaneously, and we
+	 * only want one error recovery routine running.
+	 */
+	spin_lock_irqsave(&confirm_error_lock, flags);
+	rc = 1;
+	if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
+		pdn->eeh_check_count ++;
+		if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
+			printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
+			        pdn->eeh_check_count);
+			dump_stack();
+			
+			/* re-read the slot reset state */
+			if (read_slot_reset_state(pdn, rets) != 0)
+				rets[0] = -1;	/* reset state unknown */
+
+			/* If we are here, then we hit an infinite loop. Stop. */
+			panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
+		}
+		goto dn_unlock;
+	}
+
+	/*
+	 * Now test for an EEH failure.  This is VERY expensive.
+	 * Note that the eeh_config_addr may be a parent device
+	 * in the case of a device behind a bridge, or it may be
+	 * function zero of a multi-function device.
+	 * In any case they must share a common PHB.
+	 */
+	ret = read_slot_reset_state(pdn, rets);
+
+	/* If the call to firmware failed, punt */
+	if (ret != 0) {
+		printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
+		       ret, dn->full_name);
+		__get_cpu_var(false_positives)++;
+		rc = 0;
+		goto dn_unlock;
+	}
+
+	/* If EEH is not supported on this device, punt. */
+	if (rets[1] != 1) {
+		printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
+		       ret, dn->full_name);
+		__get_cpu_var(false_positives)++;
+		rc = 0;
+		goto dn_unlock;
+	}
+
+	/* If not the kind of error we know about, punt. */
+	if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
+		__get_cpu_var(false_positives)++;
+		rc = 0;
+		goto dn_unlock;
+	}
+
+	/* Note that config-io to empty slots may fail;
+	 * we recognize empty because they don't have children. */
+	if ((rets[0] == 5) && (dn->child == NULL)) {
+		__get_cpu_var(false_positives)++;
+		rc = 0;
+		goto dn_unlock;
+	}
+
+	__get_cpu_var(slot_resets)++;
+ 
+	/* Avoid repeated reports of this failure, including problems
+	 * with other functions on this device, and functions under
+	 * bridges. */
+	pe_dn = find_device_pe (dn);
+	__eeh_mark_slot (pe_dn);
+	spin_unlock_irqrestore(&confirm_error_lock, flags);
+
+	reset_state = rets[0];
+
+	eeh_slot_error_detail (pdn, 1 /* Temporary Error */);
+
+	printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n",
+	       rets[0], dn->name, dn->full_name);
+	event = kmalloc(sizeof(*event), GFP_ATOMIC);
+	if (event == NULL) {
+		eeh_panic(dev, reset_state);
+		return 1;
+ 	}
+
+	event->dev = dev;
+	event->dn = dn;
+	event->reset_state = reset_state;
+
+	/* We may or may not be called in an interrupt context */
+	spin_lock_irqsave(&eeh_eventlist_lock, flags);
+	list_add(&event->list, &eeh_eventlist);
+	spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
+
+	/* Most EEH events are due to device driver bugs.  Having
+	 * a stack trace will help the device-driver authors figure
+	 * out what happened.  So print that out. */
+	if (rets[0] != 5) dump_stack();
+	schedule_work(&eeh_event_wq);
+
+	return 1;
+
+dn_unlock:
+	spin_unlock_irqrestore(&confirm_error_lock, flags);
+	return rc;
+}
+
+EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
+
+/**
+ * eeh_check_failure - check if all 1's data is due to EEH slot freeze
+ * @token i/o token, should be address in the form 0xA....
+ * @val value, should be all 1's (XXX why do we need this arg??)
+ *
+ * Check for an EEH failure at the given token address.  Call this
+ * routine if the result of a read was all 0xff's and you want to
+ * find out if this is due to an EEH slot freeze event.  This routine
+ * will query firmware for the EEH status.
+ *
+ * Note this routine is safe to call in an interrupt context.
+ */
+unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
+{
+	unsigned long addr;
+	struct pci_dev *dev;
+	struct device_node *dn;
+
+	/* Finding the phys addr + pci device; this is pretty quick. */
+	addr = eeh_token_to_phys((unsigned long __force) token);
+	dev = pci_get_device_by_addr(addr);
+	if (!dev) {
+		__get_cpu_var(no_device)++;
+		return val;
+	}
+
+	dn = pci_device_to_OF_node(dev);
+	eeh_dn_check_failure (dn, dev);
+
+	pci_dev_put(dev);
+	return val;
+}
+
+EXPORT_SYMBOL(eeh_check_failure);
+
+struct eeh_early_enable_info {
+	unsigned int buid_hi;
+	unsigned int buid_lo;
+};
+
+/* Enable eeh for the given device node. */
+static void *early_enable_eeh(struct device_node *dn, void *data)
+{
+	struct eeh_early_enable_info *info = data;
+	int ret;
+	char *status = get_property(dn, "status", NULL);
+	u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
+	u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
+	u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
+	u32 *regs;
+	int enable;
+	struct pci_dn *pdn = PCI_DN(dn);
+
+	pdn->eeh_mode = 0;
+	pdn->eeh_check_count = 0;
+	pdn->eeh_freeze_count = 0;
+
+	if (status && strcmp(status, "ok") != 0)
+		return NULL;	/* ignore devices with bad status */
+
+	/* Ignore bad nodes. */
+	if (!class_code || !vendor_id || !device_id)
+		return NULL;
+
+	/* There is nothing to check on PCI to ISA bridges */
+	if (dn->type && !strcmp(dn->type, "isa")) {
+		pdn->eeh_mode |= EEH_MODE_NOCHECK;
+		return NULL;
+	}
+
+	/*
+	 * Now decide if we are going to "Disable" EEH checking
+	 * for this device.  We still run with the EEH hardware active,
+	 * but we won't be checking for ff's.  This means a driver
+	 * could return bad data (very bad!), an interrupt handler could
+	 * hang waiting on status bits that won't change, etc.
+	 * But there are a few cases like display devices that make sense.
+	 */
+	enable = 1;	/* i.e. we will do checking */
+	if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
+		enable = 0;
+
+	if (!enable)
+		pdn->eeh_mode |= EEH_MODE_NOCHECK;
+
+	/* Ok... see if this device supports EEH.  Some do, some don't,
+	 * and the only way to find out is to check each and every one. */
+	regs = (u32 *)get_property(dn, "reg", NULL);
+	if (regs) {
+		/* First register entry is addr (00BBSS00)  */
+		/* Try to enable eeh */
+		ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
+				regs[0], info->buid_hi, info->buid_lo,
+				EEH_ENABLE);
+		if (ret == 0) {
+			eeh_subsystem_enabled = 1;
+			pdn->eeh_mode |= EEH_MODE_SUPPORTED;
+			pdn->eeh_config_addr = regs[0];
+#ifdef DEBUG
+			printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
+#endif
+		} else {
+
+			/* This device doesn't support EEH, but it may have an
+			 * EEH parent, in which case we mark it as supported. */
+			if (dn->parent && PCI_DN(dn->parent)
+			    && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
+				/* Parent supports EEH. */
+				pdn->eeh_mode |= EEH_MODE_SUPPORTED;
+				pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
+				return NULL;
+			}
+		}
+	} else {
+		printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
+		       dn->full_name);
+	}
+
+	return NULL;
+}
+
+/*
+ * Initialize EEH by trying to enable it for all of the adapters in the system.
+ * As a side effect we can determine here if eeh is supported at all.
+ * Note that we leave EEH on so failed config cycles won't cause a machine
+ * check.  If a user turns off EEH for a particular adapter they are really
+ * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
+ * grant access to a slot if EEH isn't enabled, and so we always enable
+ * EEH for all slots/all devices.
+ *
+ * The eeh-force-off option disables EEH checking globally, for all slots.
+ * Even if force-off is set, the EEH hardware is still enabled, so that
+ * newer systems can boot.
+ */
+void __init eeh_init(void)
+{
+	struct device_node *phb, *np;
+	struct eeh_early_enable_info info;
+
+	spin_lock_init(&confirm_error_lock);
+	spin_lock_init(&slot_errbuf_lock);
+
+	np = of_find_node_by_path("/rtas");
+	if (np == NULL)
+		return;
+
+	ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
+	ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
+	ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
+	ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
+	ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
+
+	if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
+		return;
+
+	eeh_error_buf_size = rtas_token("rtas-error-log-max");
+	if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
+		eeh_error_buf_size = 1024;
+	}
+	if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
+		printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
+		      "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
+		eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
+	}
+
+	/* Enable EEH for all adapters.  Note that eeh requires buid's */
+	for (phb = of_find_node_by_name(NULL, "pci"); phb;
+	     phb = of_find_node_by_name(phb, "pci")) {
+		unsigned long buid;
+
+		buid = get_phb_buid(phb);
+		if (buid == 0 || PCI_DN(phb) == NULL)
+			continue;
+
+		info.buid_lo = BUID_LO(buid);
+		info.buid_hi = BUID_HI(buid);
+		traverse_pci_devices(phb, early_enable_eeh, &info);
+	}
+
+	if (eeh_subsystem_enabled)
+		printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
+	else
+		printk(KERN_WARNING "EEH: No capable adapters found\n");
+}
+
+/**
+ * eeh_add_device_early - enable EEH for the indicated device_node
+ * @dn: device node for which to set up EEH
+ *
+ * This routine must be used to perform EEH initialization for PCI
+ * devices that were added after system boot (e.g. hotplug, dlpar).
+ * This routine must be called before any i/o is performed to the
+ * adapter (inluding any config-space i/o).
+ * Whether this actually enables EEH or not for this device depends
+ * on the CEC architecture, type of the device, on earlier boot
+ * command-line arguments & etc.
+ */
+void eeh_add_device_early(struct device_node *dn)
+{
+	struct pci_controller *phb;
+	struct eeh_early_enable_info info;
+
+	if (!dn || !PCI_DN(dn))
+		return;
+	phb = PCI_DN(dn)->phb;
+	if (NULL == phb || 0 == phb->buid) {
+		printk(KERN_WARNING "EEH: Expected buid but found none for %s\n",
+		       dn->full_name);
+		dump_stack();
+		return;
+	}
+
+	info.buid_hi = BUID_HI(phb->buid);
+	info.buid_lo = BUID_LO(phb->buid);
+	early_enable_eeh(dn, &info);
+}
+EXPORT_SYMBOL_GPL(eeh_add_device_early);
+
+/**
+ * eeh_add_device_late - perform EEH initialization for the indicated pci device
+ * @dev: pci device for which to set up EEH
+ *
+ * This routine must be used to complete EEH initialization for PCI
+ * devices that were added after system boot (e.g. hotplug, dlpar).
+ */
+void eeh_add_device_late(struct pci_dev *dev)
+{
+	struct device_node *dn;
+
+	if (!dev || !eeh_subsystem_enabled)
+		return;
+
+#ifdef DEBUG
+	printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
+#endif
+
+	pci_dev_get (dev);
+	dn = pci_device_to_OF_node(dev);
+	PCI_DN(dn)->pcidev = dev;
+
+	pci_addr_cache_insert_device (dev);
+}
+EXPORT_SYMBOL_GPL(eeh_add_device_late);
+
+/**
+ * eeh_remove_device - undo EEH setup for the indicated pci device
+ * @dev: pci device to be removed
+ *
+ * This routine should be when a device is removed from a running
+ * system (e.g. by hotplug or dlpar).
+ */
+void eeh_remove_device(struct pci_dev *dev)
+{
+	struct device_node *dn;
+	if (!dev || !eeh_subsystem_enabled)
+		return;
+
+	/* Unregister the device with the EEH/PCI address search system */
+#ifdef DEBUG
+	printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
+#endif
+	pci_addr_cache_remove_device(dev);
+
+	dn = pci_device_to_OF_node(dev);
+	PCI_DN(dn)->pcidev = NULL;
+	pci_dev_put (dev);
+}
+EXPORT_SYMBOL_GPL(eeh_remove_device);
+
+static int proc_eeh_show(struct seq_file *m, void *v)
+{
+	unsigned int cpu;
+	unsigned long ffs = 0, positives = 0, failures = 0;
+	unsigned long resets = 0;
+	unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
+
+	for_each_cpu(cpu) {
+		ffs += per_cpu(total_mmio_ffs, cpu);
+		positives += per_cpu(false_positives, cpu);
+		failures += per_cpu(ignored_failures, cpu);
+		resets += per_cpu(slot_resets, cpu);
+		no_dev += per_cpu(no_device, cpu);
+		no_dn += per_cpu(no_dn, cpu);
+		no_cfg += per_cpu(no_cfg_addr, cpu);
+		no_check += per_cpu(ignored_check, cpu);
+	}
+
+	if (0 == eeh_subsystem_enabled) {
+		seq_printf(m, "EEH Subsystem is globally disabled\n");
+		seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
+	} else {
+		seq_printf(m, "EEH Subsystem is enabled\n");
+		seq_printf(m,
+				"no device=%ld\n"
+				"no device node=%ld\n"
+				"no config address=%ld\n"
+				"check not wanted=%ld\n"
+				"eeh_total_mmio_ffs=%ld\n"
+				"eeh_false_positives=%ld\n"
+				"eeh_ignored_failures=%ld\n"
+				"eeh_slot_resets=%ld\n",
+				no_dev, no_dn, no_cfg, no_check,
+				ffs, positives, failures, resets);
+	}
+
+	return 0;
+}
+
+static int proc_eeh_open(struct inode *inode, struct file *file)
+{
+	return single_open(file, proc_eeh_show, NULL);
+}
+
+static struct file_operations proc_eeh_operations = {
+	.open      = proc_eeh_open,
+	.read      = seq_read,
+	.llseek    = seq_lseek,
+	.release   = single_release,
+};
+
+static int __init eeh_init_proc(void)
+{
+	struct proc_dir_entry *e;
+
+	if (systemcfg->platform & PLATFORM_PSERIES) {
+		e = create_proc_entry("ppc64/eeh", 0, NULL);
+		if (e)
+			e->proc_fops = &proc_eeh_operations;
+	}
+
+	return 0;
+}
+__initcall(eeh_init_proc);



More information about the Linuxppc64-dev mailing list