[PATCH v2] selftests: powerpc: Add test for execute-disabled pkeys

Michael Ellerman mpe at ellerman.id.au
Wed Jun 3 13:17:41 AEST 2020


Sandipan Das <sandipan at linux.ibm.com> writes:
> Hi Michael,
>
> Thanks for your suggestions. I had a few questions regarding some
> of them.
>
> On 29/05/20 7:18 am, Michael Ellerman wrote:
>>> [...]
>>> +
>>> +static void pkeyreg_set(unsigned long uamr)
>>> +{
>>> +	asm volatile("isync; mtspr	0xd, %0; isync;" : : "r"(uamr));
>>> +}
>> 
>> You can use mtspr() there, but you'll need to add the isync's yourself.
>> 
>
> Would it make sense to add a new macro that adds the CSI instructions?
> Something like this.

I guess. I'm not sure there's that many places that need it, it's just
the pkey tests I think.

I'd be more inclined to have a set_amr() helper that includes the
isyncs, rather than a generic mtspr() version.

> diff --git a/tools/testing/selftests/powerpc/include/reg.h b/tools/testing/selftests/powerpc/include/reg.h
> index 022c5076b2c5..d60f66380cad 100644
> --- a/tools/testing/selftests/powerpc/include/reg.h
> +++ b/tools/testing/selftests/powerpc/include/reg.h
> @@ -15,6 +15,10 @@
>  #define mtspr(rn, v)   asm volatile("mtspr " _str(rn) ",%0" : \
>                                     : "r" ((unsigned long)(v)) \
>                                     : "memory")
> +#define mtspr_csi(rn, v)       ({ \
> +                       asm volatile("isync; mtspr " _str(rn) ",%0; isync;" : \
> +                                   : "r" ((unsigned long)(v)) \
> +                                   : "memory"); })
>  
>  #define mb()           asm volatile("sync" : : : "memory");
>  #define barrier()      asm volatile("" : : : "memory");
>
>
> I also noticed that two of the ptrace-related pkey tests were also not
> using CSIs. I will fix those too.
>
>>> [...]
>>> +	/* The following two cases will avoid SEGV_PKUERR */
>>> +	ftype = -1;
>>> +	fpkey = -1;
>>> +
>>> +	/*
>>> +	 * Read an instruction word from the address when AMR bits
>>> +	 * are not set.
>> 
>> You should explain for people who aren't familiar with the ISA that "AMR
>> bits not set" means "read/write access allowed".
>> 
>>> +	 *
>>> +	 * This should not generate a fault as having PROT_EXEC
>>> +	 * implicitly allows reads. The pkey currently restricts
>> 
>> Whether PROT_EXEC implies read is not well defined (see the man page).
>> If you want to test this case I think you'd be better off specifying
>> PROT_EXEC | PROT_READ explicitly.
>> 
>
> But I guess specifying PROT_EXEC | PROT_READ defeats the purpose? I can
> tweak the passing condition though based on whether READ_IMPLIES_EXEC is
> set in the personality.
>
>> [...]
>>> +	FAIL_IF(faults != 0 || fcode != SEGV_ACCERR);
>>> +
>>> +	/* The following three cases will generate SEGV_PKUERR */
>>> +	ftype = PKEY_DISABLE_ACCESS;
>>> +	fpkey = pkey;
>>> +
>>> +	/*
>>> +	 * Read an instruction word from the address when AMR bits
>>> +	 * are set.
>>> +	 *
>>> +	 * This should generate a pkey fault based on AMR bits only
>>> +	 * as having PROT_EXEC implicitly allows reads.
>> 
>> Again would be better to specify PROT_READ IMHO.
>> 
>
> I can use a personality check here too.
>
>>> +	 */
>>> +	faults = 1;
>>> +	FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
>>> +	printf("read from %p, pkey is execute-disabled, access-disabled\n",
>>> +	       (void *) faddr);
>>> +	pkey_set_rights(pkey, PKEY_DISABLE_ACCESS);
>>> +	i = *faddr;
>>> +	FAIL_IF(faults != 0 || fcode != SEGV_PKUERR);
>>> +
>>> +	/*
>>> +	 * Write an instruction word to the address when AMR bits
>>> +	 * are set.
>>> +	 *
>>> +	 * This should generate two faults. First, a pkey fault based
>>> +	 * on AMR bits and then an access fault based on PROT_EXEC.
>>> +	 */
>>> +	faults = 2;
>> 
>> Setting faults to the expected value and decrementing it in the fault
>> handler is kind of weird.
>> 
>> I think it would be clearer if faults was just a zero-based counter of
>> how many faults we've taken, and then you test that it's == 2 below.
>> 
>>> +	FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
>>> +	printf("write to %p, pkey is execute-disabled, access-disabled\n",
>>> +	       (void *) faddr);
>>> +	pkey_set_rights(pkey, PKEY_DISABLE_ACCESS);
>>> +	*faddr = 0x60000000;	/* nop */
>>> +	FAIL_IF(faults != 0 || fcode != SEGV_ACCERR);
>> 
>> ie. FAIL_IF(faults != 2 || ... )
>> 
>
> Agreed, it is weird. IIRC, I did this to make sure that if the test
> kept getting repeated faults at the same address and exceeded the
> maximum number of expected faults i.e. it gets another fault when
> 'faults' is already zero, then the signal handler will attempt to
> let the program continue by giving all permissions to the page and
> also the pkey. Would it make sense to just rename 'faults' to
> something like 'remaining_faults'?

It seems like you've tried to make the code cope with a situation that
should not happen, and would indicate a bug if it did happen, in which
case I think it would be fine if the test just timed out.

But if you want to handle it that's up to you, renaming the variable
might help a bit.

cheers


More information about the Linuxppc-dev mailing list