[PATCH 2/2] cpufreq: powernv: Ramp-down global pstate slower than local-pstate

Balbir Singh bsingharora at gmail.com
Thu Apr 14 15:40:53 AEST 2016



On 13/04/16 04:06, Akshay Adiga wrote:
> This patch brings down global pstate at a slower rate than the local
> pstate. As the frequency transition latency from pmin to pmax is
> observed to be in few millisecond granurality. It takes a performance
> penalty during sudden frequency rampup. Hence by holding global pstates
> higher than local pstate makes the subsequent rampups faster.

What domains does local and global refer to?

> 
> A global per policy structure is maintained to keep track of the global
> and local pstate changes. The global pstate is brought down using a
> parabolic equation. The ramp down time to pmin is set to 6 seconds. To
> make sure that the global pstates are dropped at regular interval , a
> timer is queued for every 2 seconds, which eventually brings the pstate
> down to local pstate.
> 
> Iozone results show fairly consistent performance boost.
> YCSB on redis shows improved Max latencies in most cases.
> 
> Iozone write/rewite test were made with filesizes 200704Kb and 401408Kb with
> different record sizes . The following table shows IOoperations/sec with and
> without patch.
> 
> Iozone Results ( in op/sec) ( mean over 3 iterations )
> ------------------------------------
> file size-	   		with     	without
> recordsize-IOtype      		patch    	patch 		 % change
> ----------------------------------------------------------------------
> 200704-1-SeqWrite		1616532 	1615425 	0.06
> 200704-1-Rewrite		2423195  	2303130 	5.21
> 200704-2-SeqWrite		1628577 	1602620 	1.61
> 200704-2-Rewrite		2428264  	2312154 	5.02
> 200704-4-SeqWrite		1617605 	1617182 	0.02
> 200704-4-Rewrite		2430524  	2351238 	3.37
> 200704-8-SeqWrite		1629478 	1600436 	1.81
> 200704-8-Rewrite		2415308  	2298136 	5.09
> 200704-16-SeqWrite		1619632 	1618250 	0.08
> 200704-16-Rewrite		2396650 	2352591 	1.87
> 200704-32-SeqWrite		1632544 	1598083 	2.15
> 200704-32-Rewrite		2425119 	2329743 	4.09
> 200704-64-SeqWrite		1617812 	1617235 	0.03
> 200704-64-Rewrite		2402021 	2321080 	3.48
> 200704-128-SeqWrite		1631998 	1600256 	1.98
> 200704-128-Rewrite		2422389		2304954 	5.09
> 200704-256 SeqWrite		1617065		1616962 	0.00
> 200704-256-Rewrite		2432539 	2301980 	5.67
> 200704-512-SeqWrite		1632599 	1598656 	2.12
> 200704-512-Rewrite		2429270		2323676 	4.54
> 200704-1024-SeqWrite		1618758		1616156 	0.16
> 200704-1024-Rewrite		2431631		2315889 	4.99
> 401408-1-SeqWrite		1631479  	1608132 	1.45
> 401408-1-Rewrite		2501550  	2459409 	1.71
> 401408-2-SeqWrite		1617095 	1626069 	-0.55
> 401408-2-Rewrite		2507557  	2443621 	2.61
> 401408-4-SeqWrite		1629601 	1611869		1.10
> 401408-4-Rewrite		2505909  	2462098 	1.77
> 401408-8-SeqWrite  		1617110 	1626968 	-0.60
> 401408-8-Rewrite		2512244  	2456827 	2.25
> 401408-16-SeqWrite		1632609 	1609603 	1.42
> 401408-16-Rewrite		2500792 	2451405 	2.01
> 401408-32-SeqWrite		1619294 	1628167 	-0.54
> 401408-32-Rewrite		2510115		2451292 	2.39
> 401408-64-SeqWrite		1632709		1603746 	1.80
> 401408-64-Rewrite		2506692 	2433186 	3.02
> 401408-128-SeqWrite		1619284		1627461 	-0.50
> 401408-128-Rewrite		2518698 	2453361 	2.66
> 401408-256-SeqWrite		1634022 	1610681 	1.44
> 401408-256-Rewrite		2509987 	2446328 	2.60
> 401408-512-SeqWrite 		1617524 	1628016 	-0.64
> 401408-512-Rewrite		2504409 	2442899 	2.51
> 401408-1024-SeqWrite		1629812 	1611566 	1.13
> 401408-1024-Rewrite 		2507620		 2442968 	2.64
> 
> Tested with YCSB workloada over redis for 1 million records and 1 million
> operation. Each test was carried out with target operations per second and
> persistence disabled. 
> 
> Max-latency (in us)( mean over 5 iterations )
> -----------------------------------------------------------
> op/s	Operation	with patch	without patch	%change
> ------------------------------------------------------------
> 15000	Read		61480.6		50261.4		22.32
> 15000	cleanup		215.2		293.6		-26.70
> 15000	update		25666.2		25163.8		2.00
> 
> 25000	Read		32626.2		89525.4		-63.56
> 25000	cleanup		292.2		263.0		11.10
> 25000	update		32293.4		90255.0		-64.22
> 
> 35000	Read		34783.0		33119.0		5.02
> 35000	cleanup		321.2		395.8		-18.8
> 35000	update		36047.0		38747.8		-6.97
> 
> 40000	Read		38562.2		42357.4		-8.96
> 40000	cleanup		371.8		384.6		-3.33
> 40000	update		27861.4		41547.8		-32.94
> 
> 45000	Read		42271.0		88120.6		-52.03
> 45000	cleanup		263.6		383.0		-31.17
> 45000	update		29755.8		81359.0		-63.43
> 
> (test without target op/s)
> 47659	Read		83061.4		136440.6	-39.12
> 47659	cleanup		195.8		193.8		1.03
> 47659	update		73429.4		124971.8	-41.24
> 
> Signed-off-by: Akshay Adiga <akshay.adiga at linux.vnet.ibm.com>
> Reviewed-by: Gautham R. Shenoy <ego at linux.vnet.ibm.com>
> ---
>  drivers/cpufreq/powernv-cpufreq.c | 239 +++++++++++++++++++++++++++++++++++++-
>  1 file changed, 237 insertions(+), 2 deletions(-)
> 
> diff --git a/drivers/cpufreq/powernv-cpufreq.c b/drivers/cpufreq/powernv-cpufreq.c
> index e2e2219..288fa10 100644
> --- a/drivers/cpufreq/powernv-cpufreq.c
> +++ b/drivers/cpufreq/powernv-cpufreq.c
> @@ -36,12 +36,58 @@
>  #include <asm/reg.h>
>  #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
>  #include <asm/opal.h>
> +#include <linux/timer.h>
>  
>  #define POWERNV_MAX_PSTATES	256
>  #define PMSR_PSAFE_ENABLE	(1UL << 30)
>  #define PMSR_SPR_EM_DISABLE	(1UL << 31)
>  #define PMSR_MAX(x)		((x >> 32) & 0xFF)
>  
> +/*
> + * Quadratic equation which gives the percentage rampdown for time elapsed in
> + * milliseconds. time can be between 0 and MAX_RAMP_DOWN_TIME ( milliseconds )
> + * This equation approximates to y = -4e-6 x^2

Thanks for documenting this, but I think it will also be good to explain why we 
use y = -4 e-6*x^2 as opposed to any other magic numbers.

> + *
> + * At 0 seconds x=0000 ramp_down_percent=0
> + * At MAX_RAMP_DOWN_TIME x=5120 ramp_down_percent=100
> + */
> +#define MAX_RAMP_DOWN_TIME				5120
> +#define ramp_down_percent(time)		((time * time)>>18)
> +
> +/*Interval after which the timer is queued to bring down global pstate*/
> +#define GPSTATE_TIMER_INTERVAL				2000
> +/*
> + * global_pstate_info :
> + *	per policy data structure to maintain history of global pstates
> + *
> + * @highest_lpstate : the local pstate from which we are ramping down
> + * @elapsed_time : time in ms spent in ramping down from highest_lpstate
> + * @last_sampled_time : time from boot in ms when global pstates were last set
> + * @last_lpstate , last_gpstate : last set values for local and global pstates
> + * @timer : is used for ramping down if cpu goes idle for a long time with
> + *	global pstate held high
> + * @gpstate_lock : a spinlock to maintain synchronization between routines
> + *	called by the timer handler and governer's target_index calls
> + */
> +struct global_pstate_info {
> +	int highest_lpstate;
> +	unsigned int elapsed_time;
> +	unsigned int last_sampled_time;
> +	int last_lpstate;
> +	int last_gpstate;
> +	spinlock_t gpstate_lock;
> +	struct timer_list timer;
> +};
> +
> +/*
> + * While resetting we don't want "timer" fields to be set to zero as we
> + * may lose track of timer and will not be able to cleanly remove it
> + */
> +#define reset_gpstates(policy)   memset(policy->driver_data, 0,\
> +					sizeof(struct global_pstate_info)-\
> +					sizeof(struct timer_list)-\
> +					sizeof(spinlock_t))
> +
>  static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
>  static bool rebooting, throttled, occ_reset;
>  
> @@ -285,6 +331,7 @@ static inline void set_pmspr(unsigned long sprn, unsigned long val)
>  struct powernv_smp_call_data {
>  	unsigned int freq;
>  	int pstate_id;
> +	int gpstate_id;
>  };
>  
>  /*
> @@ -348,14 +395,17 @@ static void set_pstate(void *freq_data)
>  	unsigned long val;
>  	unsigned long pstate_ul =
>  		((struct powernv_smp_call_data *) freq_data)->pstate_id;
> +	unsigned long gpstate_ul =
> +		((struct powernv_smp_call_data *) freq_data)->gpstate_id;
>  
>  	val = get_pmspr(SPRN_PMCR);
>  	val = val & 0x0000FFFFFFFFFFFFULL;
>  
>  	pstate_ul = pstate_ul & 0xFF;
> +	gpstate_ul = gpstate_ul & 0xFF;
>  
>  	/* Set both global(bits 56..63) and local(bits 48..55) PStates */
> -	val = val | (pstate_ul << 56) | (pstate_ul << 48);
> +	val = val | (gpstate_ul << 56) | (pstate_ul << 48);
>  
>  	pr_debug("Setting cpu %d pmcr to %016lX\n",
>  			raw_smp_processor_id(), val);
> @@ -425,6 +475,109 @@ next:
>  }
>  
>  /*
> + * calcuate_global_pstate:
> + *
> + * @elapsed_time : elapsed time in milliseconds
> + * @local_pstate : new local pstate
> + * @highest_lpstate : pstate from which its ramping down
> + *
> + * Finds the appropriate global pstate based on the pstate from which its
> + * ramping down and the time elapsed in ramping down. It follows a quadratic
> + * equation which ensures that it reaches ramping down to pmin in 5sec.
> + */
> +inline int calculate_global_pstate(unsigned int elapsed_time,
> +		int highest_lpstate, int local_pstate)
> +{
> +	int pstate_diff;
> +
> +	/*
> +	 * Using ramp_down_percent we get the percentage of rampdown
> +	 * that we are expecting to be dropping. Difference between
> +	 * highest_lpstate and powernv_pstate_info.min will give a absolute
> +	 * number of how many pstates we will drop eventually by the end of
> +	 * 5 seconds, then just scale it get the number pstates to be dropped.
> +	 */
> +	pstate_diff =  ((int)ramp_down_percent(elapsed_time) *
> +			(highest_lpstate - powernv_pstate_info.min))/100;
> +
> +	/* Ensure that global pstate is >= to local pstate */
> +	if (highest_lpstate - pstate_diff < local_pstate)
> +		return local_pstate;
> +	else
> +		return (highest_lpstate - pstate_diff);
> +}
> +
> +inline int queue_gpstate_timer(struct global_pstate_info *gpstates)
> +{
> +	unsigned int timer_interval;
> +
> +	/* Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
> +	 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
> +	 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
> +	 * seconds of ramp down time.
> +	 */
> +	if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
> +							 > MAX_RAMP_DOWN_TIME)
> +		timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
> +	else
> +		timer_interval = GPSTATE_TIMER_INTERVAL;
> +
> +	return  mod_timer_pinned(&(gpstates->timer), jiffies +
> +				msecs_to_jiffies(timer_interval));
> +}
> +/*
> + * gpstate_timer_handler
> + *
> + * @data: pointer to cpufreq_policy on which timer was queued
> + *
> + * This handler brings down the global pstate closer to the local pstate
> + * according quadratic equation. Queues a new timer if it is still not equal
> + * to local pstate
> + */
> +void gpstate_timer_handler(unsigned long data)
> +{
> +	struct cpufreq_policy *policy = (struct cpufreq_policy *) data;
> +	struct global_pstate_info *gpstates = (struct global_pstate_info *)
> +							policy->driver_data;
> +	unsigned int time_diff = jiffies_to_msecs(jiffies)
> +					- gpstates->last_sampled_time;
> +	struct powernv_smp_call_data freq_data;
> +	int ret;
> +
> +	ret = spin_trylock(&gpstates->gpstate_lock);
> +	if (!ret)
> +		return;
> +
> +	gpstates->last_sampled_time += time_diff;
> +	gpstates->elapsed_time += time_diff;
> +	freq_data.pstate_id = gpstates->last_lpstate;
> +	if ((gpstates->last_gpstate == freq_data.pstate_id) ||
> +			(gpstates->elapsed_time > MAX_RAMP_DOWN_TIME)) {
> +		freq_data.gpstate_id = freq_data.pstate_id;
> +		reset_gpstates(policy);
> +		gpstates->highest_lpstate = freq_data.pstate_id;
> +	} else {
> +		freq_data.gpstate_id = calculate_global_pstate(
> +			gpstates->elapsed_time, gpstates->highest_lpstate,
> +			freq_data.pstate_id);
> +	}
> +
> +	/* If local pstate is equal to global pstate, rampdown is over
> +	 * So timer is not required to be queued.
> +	 */
> +	if (freq_data.gpstate_id != freq_data.pstate_id)
> +		ret = queue_gpstate_timer(gpstates);
> +
> +	gpstates->last_gpstate = freq_data.gpstate_id;
> +	gpstates->last_lpstate = freq_data.pstate_id;
> +
> +	/* Timer may get migrated to a different cpu on cpu hot unplug */
> +	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
> +	spin_unlock(&gpstates->gpstate_lock);
> +}
> +
> +
> +/*
>   * powernv_cpufreq_target_index: Sets the frequency corresponding to
>   * the cpufreq table entry indexed by new_index on the cpus in the
>   * mask policy->cpus
> @@ -432,23 +585,88 @@ next:
>  static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
>  					unsigned int new_index)
>  {
> +	int ret;
>  	struct powernv_smp_call_data freq_data;
> -
> +	unsigned int cur_msec;
> +	unsigned long flags;
> +	struct global_pstate_info *gpstates = (struct global_pstate_info *)
> +						policy->driver_data;
>  	if (unlikely(rebooting) && new_index != get_nominal_index())
>  		return 0;
>  
>  	if (!throttled)
>  		powernv_cpufreq_throttle_check(NULL);
>  
> +	cur_msec = jiffies_to_msecs(get_jiffies_64());
> +
> +	/*spinlock taken*/
> +	spin_lock_irqsave(&gpstates->gpstate_lock, flags);
>  	freq_data.pstate_id = powernv_freqs[new_index].driver_data;
>  
> +	/*First time call */
> +	if (!gpstates->last_sampled_time) {
> +		freq_data.gpstate_id = freq_data.pstate_id;
> +		gpstates->highest_lpstate = freq_data.pstate_id;
> +		goto gpstates_done;
> +	}
> +
> +	/*Ramp down*/
> +	if (gpstates->last_gpstate > freq_data.pstate_id) {
> +		gpstates->elapsed_time += cur_msec -
> +					gpstates->last_sampled_time;
> +		/* If its has been ramping down for more than 5seconds
> +		 * we should be reseting all global pstate related data.
> +		 * Set it equal to local pstate to start fresh.
> +		 */
> +		if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
> +			freq_data.gpstate_id = freq_data.pstate_id;
> +			reset_gpstates(policy);
> +			gpstates->highest_lpstate = freq_data.pstate_id;
> +			freq_data.gpstate_id = freq_data.pstate_id;
> +		} else {
> +		/* elaspsed_time is less than 5 seconds, continue to rampdown*/
> +			freq_data.gpstate_id = calculate_global_pstate(
> +			gpstates->elapsed_time,
> +			gpstates->highest_lpstate, freq_data.pstate_id);
> +
> +		}
> +
> +	} else {
> +		/*Ramp up*/
> +		reset_gpstates(policy);
> +		gpstates->highest_lpstate = freq_data.pstate_id;
> +		freq_data.gpstate_id = freq_data.pstate_id;
> +	}
> +
> +	/* If local pstate is equal to global pstate, rampdown is over
> +	 * So timer is not required to be queued.
> +	 */
> +	if (freq_data.gpstate_id != freq_data.pstate_id)
> +		ret = queue_gpstate_timer(gpstates);
> +gpstates_done:
> +	gpstates->last_sampled_time = cur_msec;
> +	gpstates->last_gpstate = freq_data.gpstate_id;
> +	gpstates->last_lpstate = freq_data.pstate_id;
> +
>  	/*
>  	 * Use smp_call_function to send IPI and execute the
>  	 * mtspr on target CPU.  We could do that without IPI
>  	 * if current CPU is within policy->cpus (core)
>  	 */
>  	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
> +	spin_unlock_irqrestore(&gpstates->gpstate_lock, flags);
> +	return 0;
> +}
>  
> +static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
> +{
> +	int base;
> +	struct global_pstate_info *gpstates = (struct global_pstate_info *)
> +						policy->driver_data;
> +	base = cpu_first_thread_sibling(policy->cpu);
> +	del_timer_sync(&gpstates->timer);
> +	kfree(policy->driver_data);
> +	pr_info("freed driver_data cpu %d\n", base);
>  	return 0;
>  }
>  
> @@ -456,6 +674,7 @@ static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
>  {
>  	int base, i;
>  	struct kernfs_node *kn;
> +	struct global_pstate_info *gpstates;
>  
>  	base = cpu_first_thread_sibling(policy->cpu);
>  
> @@ -475,6 +694,21 @@ static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
>  	} else {
>  		kernfs_put(kn);
>  	}
> +	gpstates =  kzalloc(sizeof(struct global_pstate_info), GFP_KERNEL);
> +	if (!gpstates) {
> +		pr_err("Could not allocate global_pstate_info\n");
> +		return -ENOMEM;
> +	}
> +	policy->driver_data = gpstates;
> +
> +	/* initialize timer */
> +	init_timer_deferrable(&gpstates->timer);
> +	gpstates->timer.data = (unsigned long) policy;
> +	gpstates->timer.function = gpstate_timer_handler;
> +	gpstates->timer.expires = jiffies +
> +				msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
> +
> +	pr_info("Added global_pstate_info & timer for %d cpu\n", base);
>  	return cpufreq_table_validate_and_show(policy, powernv_freqs);
>  }
>  
> @@ -612,6 +846,7 @@ static struct cpufreq_driver powernv_cpufreq_driver = {
>  	.name		= "powernv-cpufreq",
>  	.flags		= CPUFREQ_CONST_LOOPS,
>  	.init		= powernv_cpufreq_cpu_init,
> +	.exit		= powernv_cpufreq_cpu_exit,
>  	.verify		= cpufreq_generic_frequency_table_verify,
>  	.target_index	= powernv_cpufreq_target_index,
>  	.get		= powernv_cpufreq_get,
> 


Balbir Singh


More information about the Linuxppc-dev mailing list