[PATCH] macintosh: therm_pm72: delete deprecated driver

Benjamin Herrenschmidt benh at kernel.crashing.org
Thu Nov 6 13:19:36 AEDT 2014


On Thu, 2014-11-06 at 02:45 +0100, Wolfram Sang wrote:
> The new driver is around for more than 2 years now, so the old one can
> go. Getting rid of it helps the removal of the legacy .attach_adapter
> callback of the I2C subsystem.
> 
> Signed-off-by: Wolfram Sang <wsa at the-dreams.de>

Acked-by: Benjamin Herrenschmidt <benh at kernel.crashing.org>

> ---
>  drivers/macintosh/Kconfig      |   10 -
>  drivers/macintosh/Makefile     |    1 -
>  drivers/macintosh/therm_pm72.c | 2279 ----------------------------------------
>  drivers/macintosh/therm_pm72.h |  326 ------
>  4 files changed, 2616 deletions(-)
>  delete mode 100644 drivers/macintosh/therm_pm72.c
>  delete mode 100644 drivers/macintosh/therm_pm72.h
> 
> diff --git a/drivers/macintosh/Kconfig b/drivers/macintosh/Kconfig
> index 3067d56b11a6..5844b80bd90e 100644
> --- a/drivers/macintosh/Kconfig
> +++ b/drivers/macintosh/Kconfig
> @@ -204,16 +204,6 @@ config THERM_ADT746X
>            iBook G4, and the ATI based aluminium PowerBooks, allowing slightly
>  	  better fan behaviour by default, and some manual control.
>  
> -config THERM_PM72
> -	tristate "Support for thermal management on PowerMac G5 (AGP)"
> -	depends on I2C && I2C_POWERMAC && PPC_PMAC64
> -	default n
> -	help
> -	  This driver provides thermostat and fan control for the desktop
> -	  G5 machines.
> -
> -	  This is deprecated, use windfarm instead.
> -
>  config WINDFARM
>  	tristate "New PowerMac thermal control infrastructure"
>  	depends on PPC
> diff --git a/drivers/macintosh/Makefile b/drivers/macintosh/Makefile
> index d2f0120bc878..383ba920085b 100644
> --- a/drivers/macintosh/Makefile
> +++ b/drivers/macintosh/Makefile
> @@ -25,7 +25,6 @@ obj-$(CONFIG_ADB_IOP)		+= adb-iop.o
>  obj-$(CONFIG_ADB_PMU68K)	+= via-pmu68k.o
>  obj-$(CONFIG_ADB_MACIO)		+= macio-adb.o
>  
> -obj-$(CONFIG_THERM_PM72)	+= therm_pm72.o
>  obj-$(CONFIG_THERM_WINDTUNNEL)	+= therm_windtunnel.o
>  obj-$(CONFIG_THERM_ADT746X)	+= therm_adt746x.o
>  obj-$(CONFIG_WINDFARM)	        += windfarm_core.o
> diff --git a/drivers/macintosh/therm_pm72.c b/drivers/macintosh/therm_pm72.c
> deleted file mode 100644
> index 97cfc5ac9fd0..000000000000
> --- a/drivers/macintosh/therm_pm72.c
> +++ /dev/null
> @@ -1,2279 +0,0 @@
> -/*
> - * Device driver for the thermostats & fan controller of  the
> - * Apple G5 "PowerMac7,2" desktop machines.
> - *
> - * (c) Copyright IBM Corp. 2003-2004
> - *
> - * Maintained by: Benjamin Herrenschmidt
> - *                <benh at kernel.crashing.org>
> - * 
> - *
> - * The algorithm used is the PID control algorithm, used the same
> - * way the published Darwin code does, using the same values that
> - * are present in the Darwin 7.0 snapshot property lists.
> - *
> - * As far as the CPUs control loops are concerned, I use the
> - * calibration & PID constants provided by the EEPROM,
> - * I do _not_ embed any value from the property lists, as the ones
> - * provided by Darwin 7.0 seem to always have an older version that
> - * what I've seen on the actual computers.
> - * It would be interesting to verify that though. Darwin has a
> - * version code of 1.0.0d11 for all control loops it seems, while
> - * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
> - *
> - * Darwin doesn't provide source to all parts, some missing
> - * bits like the AppleFCU driver or the actual scale of some
> - * of the values returned by sensors had to be "guessed" some
> - * way... or based on what Open Firmware does.
> - *
> - * I didn't yet figure out how to get the slots power consumption
> - * out of the FCU, so that part has not been implemented yet and
> - * the slots fan is set to a fixed 50% PWM, hoping this value is
> - * safe enough ...
> - *
> - * Note: I have observed strange oscillations of the CPU control
> - * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
> - * oscillates slowly (over several minutes) between the minimum
> - * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
> - * this, it could be some incorrect constant or an error in the
> - * way I ported the algorithm, or it could be just normal. I
> - * don't have full understanding on the way Apple tweaked the PID
> - * algorithm for the CPU control, it is definitely not a standard
> - * implementation...
> - *
> - * TODO:  - Check MPU structure version/signature
> - *        - Add things like /sbin/overtemp for non-critical
> - *          overtemp conditions so userland can take some policy
> - *          decisions, like slowing down CPUs
> - *	  - Deal with fan and i2c failures in a better way
> - *	  - Maybe do a generic PID based on params used for
> - *	    U3 and Drives ? Definitely need to factor code a bit
> - *          better... also make sensor detection more robust using
> - *          the device-tree to probe for them
> - *        - Figure out how to get the slots consumption and set the
> - *          slots fan accordingly
> - *
> - * History:
> - *
> - *  Nov. 13, 2003 : 0.5
> - *	- First release
> - *
> - *  Nov. 14, 2003 : 0.6
> - *	- Read fan speed from FCU, low level fan routines now deal
> - *	  with errors & check fan status, though higher level don't
> - *	  do much.
> - *	- Move a bunch of definitions to .h file
> - *
> - *  Nov. 18, 2003 : 0.7
> - *	- Fix build on ppc64 kernel
> - *	- Move back statics definitions to .c file
> - *	- Avoid calling schedule_timeout with a negative number
> - *
> - *  Dec. 18, 2003 : 0.8
> - *	- Fix typo when reading back fan speed on 2 CPU machines
> - *
> - *  Mar. 11, 2004 : 0.9
> - *	- Rework code accessing the ADC chips, make it more robust and
> - *	  closer to the chip spec. Also make sure it is configured properly,
> - *        I've seen yet unexplained cases where on startup, I would have stale
> - *        values in the configuration register
> - *	- Switch back to use of target fan speed for PID, thus lowering
> - *        pressure on i2c
> - *
> - *  Oct. 20, 2004 : 1.1
> - *	- Add device-tree lookup for fan IDs, should detect liquid cooling
> - *        pumps when present
> - *	- Enable driver for PowerMac7,3 machines
> - *	- Split the U3/Backside cooling on U3 & U3H versions as Darwin does
> - *	- Add new CPU cooling algorithm for machines with liquid cooling
> - *	- Workaround for some PowerMac7,3 with empty "fan" node in the devtree
> - *	- Fix a signed/unsigned compare issue in some PID loops
> - *
> - *  Mar. 10, 2005 : 1.2
> - *	- Add basic support for Xserve G5
> - *	- Retrieve pumps min/max from EEPROM image in device-tree (broken)
> - *	- Use min/max macros here or there
> - *	- Latest darwin updated U3H min fan speed to 20% PWM
> - *
> - *  July. 06, 2006 : 1.3
> - *	- Fix setting of RPM fans on Xserve G5 (they were going too fast)
> - *      - Add missing slots fan control loop for Xserve G5
> - *	- Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
> - *        still can't properly implement the control loop for these, so let's
> - *        reduce the noise a little bit, it appears that 40% still gives us
> - *        a pretty good air flow
> - *	- Add code to "tickle" the FCU regulary so it doesn't think that
> - *        we are gone while in fact, the machine just didn't need any fan
> - *        speed change lately
> - *
> - */
> -
> -#include <linux/types.h>
> -#include <linux/module.h>
> -#include <linux/errno.h>
> -#include <linux/kernel.h>
> -#include <linux/delay.h>
> -#include <linux/sched.h>
> -#include <linux/init.h>
> -#include <linux/spinlock.h>
> -#include <linux/wait.h>
> -#include <linux/reboot.h>
> -#include <linux/kmod.h>
> -#include <linux/i2c.h>
> -#include <linux/kthread.h>
> -#include <linux/mutex.h>
> -#include <linux/of_device.h>
> -#include <linux/of_platform.h>
> -#include <asm/prom.h>
> -#include <asm/machdep.h>
> -#include <asm/io.h>
> -#include <asm/sections.h>
> -#include <asm/macio.h>
> -
> -#include "therm_pm72.h"
> -
> -#define VERSION "1.3"
> -
> -#undef DEBUG
> -
> -#ifdef DEBUG
> -#define DBG(args...)	printk(args)
> -#else
> -#define DBG(args...)	do { } while(0)
> -#endif
> -
> -
> -/*
> - * Driver statics
> - */
> -
> -static struct platform_device *		of_dev;
> -static struct i2c_adapter *		u3_0;
> -static struct i2c_adapter *		u3_1;
> -static struct i2c_adapter *		k2;
> -static struct i2c_client *		fcu;
> -static struct cpu_pid_state		processor_state[2];
> -static struct basckside_pid_params	backside_params;
> -static struct backside_pid_state	backside_state;
> -static struct drives_pid_state		drives_state;
> -static struct dimm_pid_state		dimms_state;
> -static struct slots_pid_state		slots_state;
> -static int				state;
> -static int				cpu_count;
> -static int				cpu_pid_type;
> -static struct task_struct		*ctrl_task;
> -static struct completion		ctrl_complete;
> -static int				critical_state;
> -static int				rackmac;
> -static s32				dimm_output_clamp;
> -static int 				fcu_rpm_shift;
> -static int				fcu_tickle_ticks;
> -static DEFINE_MUTEX(driver_lock);
> -
> -/*
> - * We have 3 types of CPU PID control. One is "split" old style control
> - * for intake & exhaust fans, the other is "combined" control for both
> - * CPUs that also deals with the pumps when present. To be "compatible"
> - * with OS X at this point, we only use "COMBINED" on the machines that
> - * are identified as having the pumps (though that identification is at
> - * least dodgy). Ultimately, we could probably switch completely to this
> - * algorithm provided we hack it to deal with the UP case
> - */
> -#define CPU_PID_TYPE_SPLIT	0
> -#define CPU_PID_TYPE_COMBINED	1
> -#define CPU_PID_TYPE_RACKMAC	2
> -
> -/*
> - * This table describes all fans in the FCU. The "id" and "type" values
> - * are defaults valid for all earlier machines. Newer machines will
> - * eventually override the table content based on the device-tree
> - */
> -struct fcu_fan_table
> -{
> -	char*	loc;	/* location code */
> -	int	type;	/* 0 = rpm, 1 = pwm, 2 = pump */
> -	int	id;	/* id or -1 */
> -};
> -
> -#define FCU_FAN_RPM		0
> -#define FCU_FAN_PWM		1
> -
> -#define FCU_FAN_ABSENT_ID	-1
> -
> -#define FCU_FAN_COUNT		ARRAY_SIZE(fcu_fans)
> -
> -struct fcu_fan_table	fcu_fans[] = {
> -	[BACKSIDE_FAN_PWM_INDEX] = {
> -		.loc	= "BACKSIDE,SYS CTRLR FAN",
> -		.type	= FCU_FAN_PWM,
> -		.id	= BACKSIDE_FAN_PWM_DEFAULT_ID,
> -	},
> -	[DRIVES_FAN_RPM_INDEX] = {
> -		.loc	= "DRIVE BAY",
> -		.type	= FCU_FAN_RPM,
> -		.id	= DRIVES_FAN_RPM_DEFAULT_ID,
> -	},
> -	[SLOTS_FAN_PWM_INDEX] = {
> -		.loc	= "SLOT,PCI FAN",
> -		.type	= FCU_FAN_PWM,
> -		.id	= SLOTS_FAN_PWM_DEFAULT_ID,
> -	},
> -	[CPUA_INTAKE_FAN_RPM_INDEX] = {
> -		.loc	= "CPU A INTAKE",
> -		.type	= FCU_FAN_RPM,
> -		.id	= CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
> -	},
> -	[CPUA_EXHAUST_FAN_RPM_INDEX] = {
> -		.loc	= "CPU A EXHAUST",
> -		.type	= FCU_FAN_RPM,
> -		.id	= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
> -	},
> -	[CPUB_INTAKE_FAN_RPM_INDEX] = {
> -		.loc	= "CPU B INTAKE",
> -		.type	= FCU_FAN_RPM,
> -		.id	= CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
> -	},
> -	[CPUB_EXHAUST_FAN_RPM_INDEX] = {
> -		.loc	= "CPU B EXHAUST",
> -		.type	= FCU_FAN_RPM,
> -		.id	= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
> -	},
> -	/* pumps aren't present by default, have to be looked up in the
> -	 * device-tree
> -	 */
> -	[CPUA_PUMP_RPM_INDEX] = {
> -		.loc	= "CPU A PUMP",
> -		.type	= FCU_FAN_RPM,		
> -		.id	= FCU_FAN_ABSENT_ID,
> -	},
> -	[CPUB_PUMP_RPM_INDEX] = {
> -		.loc	= "CPU B PUMP",
> -		.type	= FCU_FAN_RPM,
> -		.id	= FCU_FAN_ABSENT_ID,
> -	},
> -	/* Xserve fans */
> -	[CPU_A1_FAN_RPM_INDEX] = {
> -		.loc	= "CPU A 1",
> -		.type	= FCU_FAN_RPM,
> -		.id	= FCU_FAN_ABSENT_ID,
> -	},
> -	[CPU_A2_FAN_RPM_INDEX] = {
> -		.loc	= "CPU A 2",
> -		.type	= FCU_FAN_RPM,
> -		.id	= FCU_FAN_ABSENT_ID,
> -	},
> -	[CPU_A3_FAN_RPM_INDEX] = {
> -		.loc	= "CPU A 3",
> -		.type	= FCU_FAN_RPM,
> -		.id	= FCU_FAN_ABSENT_ID,
> -	},
> -	[CPU_B1_FAN_RPM_INDEX] = {
> -		.loc	= "CPU B 1",
> -		.type	= FCU_FAN_RPM,
> -		.id	= FCU_FAN_ABSENT_ID,
> -	},
> -	[CPU_B2_FAN_RPM_INDEX] = {
> -		.loc	= "CPU B 2",
> -		.type	= FCU_FAN_RPM,
> -		.id	= FCU_FAN_ABSENT_ID,
> -	},
> -	[CPU_B3_FAN_RPM_INDEX] = {
> -		.loc	= "CPU B 3",
> -		.type	= FCU_FAN_RPM,
> -		.id	= FCU_FAN_ABSENT_ID,
> -	},
> -};
> -
> -static struct i2c_driver therm_pm72_driver;
> -
> -/*
> - * Utility function to create an i2c_client structure and
> - * attach it to one of u3 adapters
> - */
> -static struct i2c_client *attach_i2c_chip(int id, const char *name)
> -{
> -	struct i2c_client *clt;
> -	struct i2c_adapter *adap;
> -	struct i2c_board_info info;
> -
> -	if (id & 0x200)
> -		adap = k2;
> -	else if (id & 0x100)
> -		adap = u3_1;
> -	else
> -		adap = u3_0;
> -	if (adap == NULL)
> -		return NULL;
> -
> -	memset(&info, 0, sizeof(struct i2c_board_info));
> -	info.addr = (id >> 1) & 0x7f;
> -	strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
> -	clt = i2c_new_device(adap, &info);
> -	if (!clt) {
> -		printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
> -		return NULL;
> -	}
> -
> -	/*
> -	 * Let i2c-core delete that device on driver removal.
> -	 * This is safe because i2c-core holds the core_lock mutex for us.
> -	 */
> -	list_add_tail(&clt->detected, &therm_pm72_driver.clients);
> -	return clt;
> -}
> -
> -/*
> - * Here are the i2c chip access wrappers
> - */
> -
> -static void initialize_adc(struct cpu_pid_state *state)
> -{
> -	int rc;
> -	u8 buf[2];
> -
> -	/* Read ADC the configuration register and cache it. We
> -	 * also make sure Config2 contains proper values, I've seen
> -	 * cases where we got stale grabage in there, thus preventing
> -	 * proper reading of conv. values
> -	 */
> -
> -	/* Clear Config2 */
> -	buf[0] = 5;
> -	buf[1] = 0;
> -	i2c_master_send(state->monitor, buf, 2);
> -
> -	/* Read & cache Config1 */
> -	buf[0] = 1;
> -	rc = i2c_master_send(state->monitor, buf, 1);
> -	if (rc > 0) {
> -		rc = i2c_master_recv(state->monitor, buf, 1);
> -		if (rc > 0) {
> -			state->adc_config = buf[0];
> -			DBG("ADC config reg: %02x\n", state->adc_config);
> -			/* Disable shutdown mode */
> -		       	state->adc_config &= 0xfe;
> -			buf[0] = 1;
> -			buf[1] = state->adc_config;
> -			rc = i2c_master_send(state->monitor, buf, 2);
> -		}
> -	}
> -	if (rc <= 0)
> -		printk(KERN_ERR "therm_pm72: Error reading ADC config"
> -		       " register !\n");
> -}
> -
> -static int read_smon_adc(struct cpu_pid_state *state, int chan)
> -{
> -	int rc, data, tries = 0;
> -	u8 buf[2];
> -
> -	for (;;) {
> -		/* Set channel */
> -		buf[0] = 1;
> -		buf[1] = (state->adc_config & 0x1f) | (chan << 5);
> -		rc = i2c_master_send(state->monitor, buf, 2);
> -		if (rc <= 0)
> -			goto error;
> -		/* Wait for conversion */
> -		msleep(1);
> -		/* Switch to data register */
> -		buf[0] = 4;
> -		rc = i2c_master_send(state->monitor, buf, 1);
> -		if (rc <= 0)
> -			goto error;
> -		/* Read result */
> -		rc = i2c_master_recv(state->monitor, buf, 2);
> -		if (rc < 0)
> -			goto error;
> -		data = ((u16)buf[0]) << 8 | (u16)buf[1];
> -		return data >> 6;
> -	error:
> -		DBG("Error reading ADC, retrying...\n");
> -		if (++tries > 10) {
> -			printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
> -			return -1;
> -		}
> -		msleep(10);
> -	}
> -}
> -
> -static int read_lm87_reg(struct i2c_client * chip, int reg)
> -{
> -	int rc, tries = 0;
> -	u8 buf;
> -
> -	for (;;) {
> -		/* Set address */
> -		buf = (u8)reg;
> -		rc = i2c_master_send(chip, &buf, 1);
> -		if (rc <= 0)
> -			goto error;
> -		rc = i2c_master_recv(chip, &buf, 1);
> -		if (rc <= 0)
> -			goto error;
> -		return (int)buf;
> -	error:
> -		DBG("Error reading LM87, retrying...\n");
> -		if (++tries > 10) {
> -			printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
> -			return -1;
> -		}
> -		msleep(10);
> -	}
> -}
> -
> -static int fan_read_reg(int reg, unsigned char *buf, int nb)
> -{
> -	int tries, nr, nw;
> -
> -	buf[0] = reg;
> -	tries = 0;
> -	for (;;) {
> -		nw = i2c_master_send(fcu, buf, 1);
> -		if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
> -			break;
> -		msleep(10);
> -		++tries;
> -	}
> -	if (nw <= 0) {
> -		printk(KERN_ERR "Failure writing address to FCU: %d", nw);
> -		return -EIO;
> -	}
> -	tries = 0;
> -	for (;;) {
> -		nr = i2c_master_recv(fcu, buf, nb);
> -		if (nr > 0 || (nr < 0 && nr != -ENODEV) || tries >= 100)
> -			break;
> -		msleep(10);
> -		++tries;
> -	}
> -	if (nr <= 0)
> -		printk(KERN_ERR "Failure reading data from FCU: %d", nw);
> -	return nr;
> -}
> -
> -static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
> -{
> -	int tries, nw;
> -	unsigned char buf[16];
> -
> -	buf[0] = reg;
> -	memcpy(buf+1, ptr, nb);
> -	++nb;
> -	tries = 0;
> -	for (;;) {
> -		nw = i2c_master_send(fcu, buf, nb);
> -		if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
> -			break;
> -		msleep(10);
> -		++tries;
> -	}
> -	if (nw < 0)
> -		printk(KERN_ERR "Failure writing to FCU: %d", nw);
> -	return nw;
> -}
> -
> -static int start_fcu(void)
> -{
> -	unsigned char buf = 0xff;
> -	int rc;
> -
> -	rc = fan_write_reg(0xe, &buf, 1);
> -	if (rc < 0)
> -		return -EIO;
> -	rc = fan_write_reg(0x2e, &buf, 1);
> -	if (rc < 0)
> -		return -EIO;
> -	rc = fan_read_reg(0, &buf, 1);
> -	if (rc < 0)
> -		return -EIO;
> -	fcu_rpm_shift = (buf == 1) ? 2 : 3;
> -	printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
> -	       fcu_rpm_shift);
> -
> -	return 0;
> -}
> -
> -static int set_rpm_fan(int fan_index, int rpm)
> -{
> -	unsigned char buf[2];
> -	int rc, id, min, max;
> -
> -	if (fcu_fans[fan_index].type != FCU_FAN_RPM)
> -		return -EINVAL;
> -	id = fcu_fans[fan_index].id; 
> -	if (id == FCU_FAN_ABSENT_ID)
> -		return -EINVAL;
> -
> -	min = 2400 >> fcu_rpm_shift;
> -	max = 56000 >> fcu_rpm_shift;
> -
> -	if (rpm < min)
> -		rpm = min;
> -	else if (rpm > max)
> -		rpm = max;
> -	buf[0] = rpm >> (8 - fcu_rpm_shift);
> -	buf[1] = rpm << fcu_rpm_shift;
> -	rc = fan_write_reg(0x10 + (id * 2), buf, 2);
> -	if (rc < 0)
> -		return -EIO;
> -	return 0;
> -}
> -
> -static int get_rpm_fan(int fan_index, int programmed)
> -{
> -	unsigned char failure;
> -	unsigned char active;
> -	unsigned char buf[2];
> -	int rc, id, reg_base;
> -
> -	if (fcu_fans[fan_index].type != FCU_FAN_RPM)
> -		return -EINVAL;
> -	id = fcu_fans[fan_index].id; 
> -	if (id == FCU_FAN_ABSENT_ID)
> -		return -EINVAL;
> -
> -	rc = fan_read_reg(0xb, &failure, 1);
> -	if (rc != 1)
> -		return -EIO;
> -	if ((failure & (1 << id)) != 0)
> -		return -EFAULT;
> -	rc = fan_read_reg(0xd, &active, 1);
> -	if (rc != 1)
> -		return -EIO;
> -	if ((active & (1 << id)) == 0)
> -		return -ENXIO;
> -
> -	/* Programmed value or real current speed */
> -	reg_base = programmed ? 0x10 : 0x11;
> -	rc = fan_read_reg(reg_base + (id * 2), buf, 2);
> -	if (rc != 2)
> -		return -EIO;
> -
> -	return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
> -}
> -
> -static int set_pwm_fan(int fan_index, int pwm)
> -{
> -	unsigned char buf[2];
> -	int rc, id;
> -
> -	if (fcu_fans[fan_index].type != FCU_FAN_PWM)
> -		return -EINVAL;
> -	id = fcu_fans[fan_index].id; 
> -	if (id == FCU_FAN_ABSENT_ID)
> -		return -EINVAL;
> -
> -	if (pwm < 10)
> -		pwm = 10;
> -	else if (pwm > 100)
> -		pwm = 100;
> -	pwm = (pwm * 2559) / 1000;
> -	buf[0] = pwm;
> -	rc = fan_write_reg(0x30 + (id * 2), buf, 1);
> -	if (rc < 0)
> -		return rc;
> -	return 0;
> -}
> -
> -static int get_pwm_fan(int fan_index)
> -{
> -	unsigned char failure;
> -	unsigned char active;
> -	unsigned char buf[2];
> -	int rc, id;
> -
> -	if (fcu_fans[fan_index].type != FCU_FAN_PWM)
> -		return -EINVAL;
> -	id = fcu_fans[fan_index].id; 
> -	if (id == FCU_FAN_ABSENT_ID)
> -		return -EINVAL;
> -
> -	rc = fan_read_reg(0x2b, &failure, 1);
> -	if (rc != 1)
> -		return -EIO;
> -	if ((failure & (1 << id)) != 0)
> -		return -EFAULT;
> -	rc = fan_read_reg(0x2d, &active, 1);
> -	if (rc != 1)
> -		return -EIO;
> -	if ((active & (1 << id)) == 0)
> -		return -ENXIO;
> -
> -	/* Programmed value or real current speed */
> -	rc = fan_read_reg(0x30 + (id * 2), buf, 1);
> -	if (rc != 1)
> -		return -EIO;
> -
> -	return (buf[0] * 1000) / 2559;
> -}
> -
> -static void tickle_fcu(void)
> -{
> -	int pwm;
> -
> -	pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
> -
> -	DBG("FCU Tickle, slots fan is: %d\n", pwm);
> -	if (pwm < 0)
> -		pwm = 100;
> -
> -	if (!rackmac) {
> -		pwm = SLOTS_FAN_DEFAULT_PWM;
> -	} else if (pwm < SLOTS_PID_OUTPUT_MIN)
> -		pwm = SLOTS_PID_OUTPUT_MIN;
> -
> -	/* That is hopefully enough to make the FCU happy */
> -	set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
> -}
> -
> -
> -/*
> - * Utility routine to read the CPU calibration EEPROM data
> - * from the device-tree
> - */
> -static int read_eeprom(int cpu, struct mpu_data *out)
> -{
> -	struct device_node *np;
> -	char nodename[64];
> -	const u8 *data;
> -	int len;
> -
> -	/* prom.c routine for finding a node by path is a bit brain dead
> -	 * and requires exact @xxx unit numbers. This is a bit ugly but
> -	 * will work for these machines
> -	 */
> -	sprintf(nodename, "/u3 at 0,f8000000/i2c at f8001000/cpuid at a%d", cpu ? 2 : 0);
> -	np = of_find_node_by_path(nodename);
> -	if (np == NULL) {
> -		printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
> -		return -ENODEV;
> -	}
> -	data = of_get_property(np, "cpuid", &len);
> -	if (data == NULL) {
> -		printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
> -		of_node_put(np);
> -		return -ENODEV;
> -	}
> -	memcpy(out, data, sizeof(struct mpu_data));
> -	of_node_put(np);
> -	
> -	return 0;
> -}
> -
> -static void fetch_cpu_pumps_minmax(void)
> -{
> -	struct cpu_pid_state *state0 = &processor_state[0];
> -	struct cpu_pid_state *state1 = &processor_state[1];
> -	u16 pump_min = 0, pump_max = 0xffff;
> -	u16 tmp[4];
> -
> -	/* Try to fetch pumps min/max infos from eeprom */
> -
> -	memcpy(&tmp, &state0->mpu.processor_part_num, 8);
> -	if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
> -		pump_min = max(pump_min, tmp[0]);
> -		pump_max = min(pump_max, tmp[1]);
> -	}
> -	if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
> -		pump_min = max(pump_min, tmp[2]);
> -		pump_max = min(pump_max, tmp[3]);
> -	}
> -
> -	/* Double check the values, this _IS_ needed as the EEPROM on
> -	 * some dual 2.5Ghz G5s seem, at least, to have both min & max
> -	 * same to the same value ... (grrrr)
> -	 */
> -	if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
> -		pump_min = CPU_PUMP_OUTPUT_MIN;
> -		pump_max = CPU_PUMP_OUTPUT_MAX;
> -	}
> -
> -	state0->pump_min = state1->pump_min = pump_min;
> -	state0->pump_max = state1->pump_max = pump_max;
> -}
> -
> -/* 
> - * Now, unfortunately, sysfs doesn't give us a nice void * we could
> - * pass around to the attribute functions, so we don't really have
> - * choice but implement a bunch of them...
> - *
> - * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
> - * the input twice... I accept patches :)
> - */
> -#define BUILD_SHOW_FUNC_FIX(name, data)				\
> -static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\
> -{								\
> -	ssize_t r;						\
> -	mutex_lock(&driver_lock);					\
> -	r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));	\
> -	mutex_unlock(&driver_lock);					\
> -	return r;						\
> -}
> -#define BUILD_SHOW_FUNC_INT(name, data)				\
> -static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\
> -{								\
> -	return sprintf(buf, "%d", data);			\
> -}
> -
> -BUILD_SHOW_FUNC_FIX(cpu0_temperature, processor_state[0].last_temp)
> -BUILD_SHOW_FUNC_FIX(cpu0_voltage, processor_state[0].voltage)
> -BUILD_SHOW_FUNC_FIX(cpu0_current, processor_state[0].current_a)
> -BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, processor_state[0].rpm)
> -BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, processor_state[0].intake_rpm)
> -
> -BUILD_SHOW_FUNC_FIX(cpu1_temperature, processor_state[1].last_temp)
> -BUILD_SHOW_FUNC_FIX(cpu1_voltage, processor_state[1].voltage)
> -BUILD_SHOW_FUNC_FIX(cpu1_current, processor_state[1].current_a)
> -BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, processor_state[1].rpm)
> -BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, processor_state[1].intake_rpm)
> -
> -BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
> -BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
> -
> -BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
> -BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
> -
> -BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
> -BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
> -
> -BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
> -
> -static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
> -static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
> -static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
> -static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
> -static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
> -
> -static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
> -static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
> -static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
> -static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
> -static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
> -
> -static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
> -static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
> -
> -static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
> -static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
> -
> -static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
> -static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
> -
> -static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
> -
> -/*
> - * CPUs fans control loop
> - */
> -
> -static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
> -{
> -	s32 ltemp, volts, amps;
> -	int index, rc = 0;
> -
> -	/* Default (in case of error) */
> -	*temp = state->cur_temp;
> -	*power = state->cur_power;
> -
> -	if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
> -		index = (state->index == 0) ?
> -			CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
> -	else
> -		index = (state->index == 0) ?
> -			CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
> -
> -	/* Read current fan status */
> -	rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
> -	if (rc < 0) {
> -		/* XXX What do we do now ? Nothing for now, keep old value, but
> -		 * return error upstream
> -		 */
> -		DBG("  cpu %d, fan reading error !\n", state->index);
> -	} else {
> -		state->rpm = rc;
> -		DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
> -	}
> -
> -	/* Get some sensor readings and scale it */
> -	ltemp = read_smon_adc(state, 1);
> -	if (ltemp == -1) {
> -		/* XXX What do we do now ? */
> -		state->overtemp++;
> -		if (rc == 0)
> -			rc = -EIO;
> -		DBG("  cpu %d, temp reading error !\n", state->index);
> -	} else {
> -		/* Fixup temperature according to diode calibration
> -		 */
> -		DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
> -		    state->index,
> -		    ltemp, state->mpu.mdiode, state->mpu.bdiode);
> -		*temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
> -		state->last_temp = *temp;
> -		DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
> -	}
> -
> -	/*
> -	 * Read voltage & current and calculate power
> -	 */
> -	volts = read_smon_adc(state, 3);
> -	amps = read_smon_adc(state, 4);
> -
> -	/* Scale voltage and current raw sensor values according to fixed scales
> -	 * obtained in Darwin and calculate power from I and V
> -	 */
> -	volts *= ADC_CPU_VOLTAGE_SCALE;
> -	amps *= ADC_CPU_CURRENT_SCALE;
> -	*power = (((u64)volts) * ((u64)amps)) >> 16;
> -	state->voltage = volts;
> -	state->current_a = amps;
> -	state->last_power = *power;
> -
> -	DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
> -	    state->index, FIX32TOPRINT(state->current_a),
> -	    FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
> -
> -	return 0;
> -}
> -
> -static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
> -{
> -	s32 power_target, integral, derivative, proportional, adj_in_target, sval;
> -	s64 integ_p, deriv_p, prop_p, sum; 
> -	int i;
> -
> -	/* Calculate power target value (could be done once for all)
> -	 * and convert to a 16.16 fp number
> -	 */
> -	power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
> -	DBG("  power target: %d.%03d, error: %d.%03d\n",
> -	    FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
> -
> -	/* Store temperature and power in history array */
> -	state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
> -	state->temp_history[state->cur_temp] = temp;
> -	state->cur_power = (state->cur_power + 1) % state->count_power;
> -	state->power_history[state->cur_power] = power;
> -	state->error_history[state->cur_power] = power_target - power;
> -	
> -	/* If first loop, fill the history table */
> -	if (state->first) {
> -		for (i = 0; i < (state->count_power - 1); i++) {
> -			state->cur_power = (state->cur_power + 1) % state->count_power;
> -			state->power_history[state->cur_power] = power;
> -			state->error_history[state->cur_power] = power_target - power;
> -		}
> -		for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
> -			state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
> -			state->temp_history[state->cur_temp] = temp;			
> -		}
> -		state->first = 0;
> -	}
> -
> -	/* Calculate the integral term normally based on the "power" values */
> -	sum = 0;
> -	integral = 0;
> -	for (i = 0; i < state->count_power; i++)
> -		integral += state->error_history[i];
> -	integral *= CPU_PID_INTERVAL;
> -	DBG("  integral: %08x\n", integral);
> -
> -	/* Calculate the adjusted input (sense value).
> -	 *   G_r is 12.20
> -	 *   integ is 16.16
> -	 *   so the result is 28.36
> -	 *
> -	 * input target is mpu.ttarget, input max is mpu.tmax
> -	 */
> -	integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
> -	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
> -	sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
> -	adj_in_target = (state->mpu.ttarget << 16);
> -	if (adj_in_target > sval)
> -		adj_in_target = sval;
> -	DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
> -	    state->mpu.ttarget);
> -
> -	/* Calculate the derivative term */
> -	derivative = state->temp_history[state->cur_temp] -
> -		state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
> -				    % CPU_TEMP_HISTORY_SIZE];
> -	derivative /= CPU_PID_INTERVAL;
> -	deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
> -	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
> -	sum += deriv_p;
> -
> -	/* Calculate the proportional term */
> -	proportional = temp - adj_in_target;
> -	prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
> -	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
> -	sum += prop_p;
> -
> -	/* Scale sum */
> -	sum >>= 36;
> -
> -	DBG("   sum: %d\n", (int)sum);
> -	state->rpm += (s32)sum;
> -}
> -
> -static void do_monitor_cpu_combined(void)
> -{
> -	struct cpu_pid_state *state0 = &processor_state[0];
> -	struct cpu_pid_state *state1 = &processor_state[1];
> -	s32 temp0, power0, temp1, power1;
> -	s32 temp_combi, power_combi;
> -	int rc, intake, pump;
> -
> -	rc = do_read_one_cpu_values(state0, &temp0, &power0);
> -	if (rc < 0) {
> -		/* XXX What do we do now ? */
> -	}
> -	state1->overtemp = 0;
> -	rc = do_read_one_cpu_values(state1, &temp1, &power1);
> -	if (rc < 0) {
> -		/* XXX What do we do now ? */
> -	}
> -	if (state1->overtemp)
> -		state0->overtemp++;
> -
> -	temp_combi = max(temp0, temp1);
> -	power_combi = max(power0, power1);
> -
> -	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
> -	 * full blown immediately and try to trigger a shutdown
> -	 */
> -	if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
> -		printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
> -		       temp_combi >> 16);
> -		state0->overtemp += CPU_MAX_OVERTEMP / 4;
> -	} else if (temp_combi > (state0->mpu.tmax << 16)) {
> -		state0->overtemp++;
> -		printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
> -		       temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
> -	} else {
> -		if (state0->overtemp)
> -			printk(KERN_WARNING "Temperature back down to %d\n",
> -			       temp_combi >> 16);
> -		state0->overtemp = 0;
> -	}
> -	if (state0->overtemp >= CPU_MAX_OVERTEMP)
> -		critical_state = 1;
> -	if (state0->overtemp > 0) {
> -		state0->rpm = state0->mpu.rmaxn_exhaust_fan;
> -		state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
> -		pump = state0->pump_max;
> -		goto do_set_fans;
> -	}
> -
> -	/* Do the PID */
> -	do_cpu_pid(state0, temp_combi, power_combi);
> -
> -	/* Range check */
> -	state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
> -	state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
> -
> -	/* Calculate intake fan speed */
> -	intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
> -	intake = max(intake, (int)state0->mpu.rminn_intake_fan);
> -	intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
> -	state0->intake_rpm = intake;
> -
> -	/* Calculate pump speed */
> -	pump = (state0->rpm * state0->pump_max) /
> -		state0->mpu.rmaxn_exhaust_fan;
> -	pump = min(pump, state0->pump_max);
> -	pump = max(pump, state0->pump_min);
> -	
> - do_set_fans:
> -	/* We copy values from state 0 to state 1 for /sysfs */
> -	state1->rpm = state0->rpm;
> -	state1->intake_rpm = state0->intake_rpm;
> -
> -	DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
> -	    state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
> -
> -	/* We should check for errors, shouldn't we ? But then, what
> -	 * do we do once the error occurs ? For FCU notified fan
> -	 * failures (-EFAULT) we probably want to notify userland
> -	 * some way...
> -	 */
> -	set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
> -	set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
> -	set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
> -	set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
> -
> -	if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
> -		set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
> -	if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
> -		set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
> -}
> -
> -static void do_monitor_cpu_split(struct cpu_pid_state *state)
> -{
> -	s32 temp, power;
> -	int rc, intake;
> -
> -	/* Read current fan status */
> -	rc = do_read_one_cpu_values(state, &temp, &power);
> -	if (rc < 0) {
> -		/* XXX What do we do now ? */
> -	}
> -
> -	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
> -	 * full blown immediately and try to trigger a shutdown
> -	 */
> -	if (temp >= ((state->mpu.tmax + 8) << 16)) {
> -		printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
> -		       " (%d) !\n",
> -		       state->index, temp >> 16);
> -		state->overtemp += CPU_MAX_OVERTEMP / 4;
> -	} else if (temp > (state->mpu.tmax << 16)) {
> -		state->overtemp++;
> -		printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
> -		       state->index, temp >> 16, state->mpu.tmax, state->overtemp);
> -	} else {
> -		if (state->overtemp)
> -			printk(KERN_WARNING "CPU %d temperature back down to %d\n",
> -			       state->index, temp >> 16);
> -		state->overtemp = 0;
> -	}
> -	if (state->overtemp >= CPU_MAX_OVERTEMP)
> -		critical_state = 1;
> -	if (state->overtemp > 0) {
> -		state->rpm = state->mpu.rmaxn_exhaust_fan;
> -		state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
> -		goto do_set_fans;
> -	}
> -
> -	/* Do the PID */
> -	do_cpu_pid(state, temp, power);
> -
> -	/* Range check */
> -	state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
> -	state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
> -
> -	/* Calculate intake fan */
> -	intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
> -	intake = max(intake, (int)state->mpu.rminn_intake_fan);
> -	intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
> -	state->intake_rpm = intake;
> -
> - do_set_fans:
> -	DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
> -	    state->index, (int)state->rpm, intake, state->overtemp);
> -
> -	/* We should check for errors, shouldn't we ? But then, what
> -	 * do we do once the error occurs ? For FCU notified fan
> -	 * failures (-EFAULT) we probably want to notify userland
> -	 * some way...
> -	 */
> -	if (state->index == 0) {
> -		set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
> -		set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
> -	} else {
> -		set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
> -		set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
> -	}
> -}
> -
> -static void do_monitor_cpu_rack(struct cpu_pid_state *state)
> -{
> -	s32 temp, power, fan_min;
> -	int rc;
> -
> -	/* Read current fan status */
> -	rc = do_read_one_cpu_values(state, &temp, &power);
> -	if (rc < 0) {
> -		/* XXX What do we do now ? */
> -	}
> -
> -	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
> -	 * full blown immediately and try to trigger a shutdown
> -	 */
> -	if (temp >= ((state->mpu.tmax + 8) << 16)) {
> -		printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
> -		       " (%d) !\n",
> -		       state->index, temp >> 16);
> -		state->overtemp = CPU_MAX_OVERTEMP / 4;
> -	} else if (temp > (state->mpu.tmax << 16)) {
> -		state->overtemp++;
> -		printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
> -		       state->index, temp >> 16, state->mpu.tmax, state->overtemp);
> -	} else {
> -		if (state->overtemp)
> -			printk(KERN_WARNING "CPU %d temperature back down to %d\n",
> -			       state->index, temp >> 16);
> -		state->overtemp = 0;
> -	}
> -	if (state->overtemp >= CPU_MAX_OVERTEMP)
> -		critical_state = 1;
> -	if (state->overtemp > 0) {
> -		state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
> -		goto do_set_fans;
> -	}
> -
> -	/* Do the PID */
> -	do_cpu_pid(state, temp, power);
> -
> -	/* Check clamp from dimms */
> -	fan_min = dimm_output_clamp;
> -	fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
> -
> -	DBG(" CPU min mpu = %d, min dimm = %d\n",
> -	    state->mpu.rminn_intake_fan, dimm_output_clamp);
> -
> -	state->rpm = max(state->rpm, (int)fan_min);
> -	state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
> -	state->intake_rpm = state->rpm;
> -
> - do_set_fans:
> -	DBG("** CPU %d RPM: %d overtemp: %d\n",
> -	    state->index, (int)state->rpm, state->overtemp);
> -
> -	/* We should check for errors, shouldn't we ? But then, what
> -	 * do we do once the error occurs ? For FCU notified fan
> -	 * failures (-EFAULT) we probably want to notify userland
> -	 * some way...
> -	 */
> -	if (state->index == 0) {
> -		set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
> -		set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
> -		set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
> -	} else {
> -		set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
> -		set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
> -		set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
> -	}
> -}
> -
> -/*
> - * Initialize the state structure for one CPU control loop
> - */
> -static int init_processor_state(struct cpu_pid_state *state, int index)
> -{
> -	int err;
> -
> -	state->index = index;
> -	state->first = 1;
> -	state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
> -	state->overtemp = 0;
> -	state->adc_config = 0x00;
> -
> -
> -	if (index == 0)
> -		state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
> -	else if (index == 1)
> -		state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
> -	if (state->monitor == NULL)
> -		goto fail;
> -
> -	if (read_eeprom(index, &state->mpu))
> -		goto fail;
> -
> -	state->count_power = state->mpu.tguardband;
> -	if (state->count_power > CPU_POWER_HISTORY_SIZE) {
> -		printk(KERN_WARNING "Warning ! too many power history slots\n");
> -		state->count_power = CPU_POWER_HISTORY_SIZE;
> -	}
> -	DBG("CPU %d Using %d power history entries\n", index, state->count_power);
> -
> -	if (index == 0) {
> -		err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
> -		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
> -		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
> -		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
> -		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
> -	} else {
> -		err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
> -		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
> -		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
> -		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
> -		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
> -	}
> -	if (err)
> -		printk(KERN_WARNING "Failed to create some of the attribute"
> -			"files for CPU %d\n", index);
> -
> -	return 0;
> - fail:
> -	state->monitor = NULL;
> -	
> -	return -ENODEV;
> -}
> -
> -/*
> - * Dispose of the state data for one CPU control loop
> - */
> -static void dispose_processor_state(struct cpu_pid_state *state)
> -{
> -	if (state->monitor == NULL)
> -		return;
> -
> -	if (state->index == 0) {
> -		device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
> -		device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
> -		device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
> -		device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
> -		device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
> -	} else {
> -		device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
> -		device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
> -		device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
> -		device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
> -		device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
> -	}
> -
> -	state->monitor = NULL;
> -}
> -
> -/*
> - * Motherboard backside & U3 heatsink fan control loop
> - */
> -static void do_monitor_backside(struct backside_pid_state *state)
> -{
> -	s32 temp, integral, derivative, fan_min;
> -	s64 integ_p, deriv_p, prop_p, sum; 
> -	int i, rc;
> -
> -	if (--state->ticks != 0)
> -		return;
> -	state->ticks = backside_params.interval;
> -
> -	DBG("backside:\n");
> -
> -	/* Check fan status */
> -	rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
> -	if (rc < 0) {
> -		printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
> -		/* XXX What do we do now ? */
> -	} else
> -		state->pwm = rc;
> -	DBG("  current pwm: %d\n", state->pwm);
> -
> -	/* Get some sensor readings */
> -	temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
> -	state->last_temp = temp;
> -	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
> -	    FIX32TOPRINT(backside_params.input_target));
> -
> -	/* Store temperature and error in history array */
> -	state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
> -	state->sample_history[state->cur_sample] = temp;
> -	state->error_history[state->cur_sample] = temp - backside_params.input_target;
> -	
> -	/* If first loop, fill the history table */
> -	if (state->first) {
> -		for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
> -			state->cur_sample = (state->cur_sample + 1) %
> -				BACKSIDE_PID_HISTORY_SIZE;
> -			state->sample_history[state->cur_sample] = temp;
> -			state->error_history[state->cur_sample] =
> -				temp - backside_params.input_target;
> -		}
> -		state->first = 0;
> -	}
> -
> -	/* Calculate the integral term */
> -	sum = 0;
> -	integral = 0;
> -	for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
> -		integral += state->error_history[i];
> -	integral *= backside_params.interval;
> -	DBG("  integral: %08x\n", integral);
> -	integ_p = ((s64)backside_params.G_r) * (s64)integral;
> -	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
> -	sum += integ_p;
> -
> -	/* Calculate the derivative term */
> -	derivative = state->error_history[state->cur_sample] -
> -		state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
> -				    % BACKSIDE_PID_HISTORY_SIZE];
> -	derivative /= backside_params.interval;
> -	deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
> -	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
> -	sum += deriv_p;
> -
> -	/* Calculate the proportional term */
> -	prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
> -	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
> -	sum += prop_p;
> -
> -	/* Scale sum */
> -	sum >>= 36;
> -
> -	DBG("   sum: %d\n", (int)sum);
> -	if (backside_params.additive)
> -		state->pwm += (s32)sum;
> -	else
> -		state->pwm = sum;
> -
> -	/* Check for clamp */
> -	fan_min = (dimm_output_clamp * 100) / 14000;
> -	fan_min = max(fan_min, backside_params.output_min);
> -
> -	state->pwm = max(state->pwm, fan_min);
> -	state->pwm = min(state->pwm, backside_params.output_max);
> -
> -	DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
> -	set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
> -}
> -
> -/*
> - * Initialize the state structure for the backside fan control loop
> - */
> -static int init_backside_state(struct backside_pid_state *state)
> -{
> -	struct device_node *u3;
> -	int u3h = 1; /* conservative by default */
> -	int err;
> -
> -	/*
> -	 * There are different PID params for machines with U3 and machines
> -	 * with U3H, pick the right ones now
> -	 */
> -	u3 = of_find_node_by_path("/u3 at 0,f8000000");
> -	if (u3 != NULL) {
> -		const u32 *vers = of_get_property(u3, "device-rev", NULL);
> -		if (vers)
> -			if (((*vers) & 0x3f) < 0x34)
> -				u3h = 0;
> -		of_node_put(u3);
> -	}
> -
> -	if (rackmac) {
> -		backside_params.G_d = BACKSIDE_PID_RACK_G_d;
> -		backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
> -		backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
> -		backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
> -		backside_params.G_p = BACKSIDE_PID_RACK_G_p;
> -		backside_params.G_r = BACKSIDE_PID_G_r;
> -		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
> -		backside_params.additive = 0;
> -	} else if (u3h) {
> -		backside_params.G_d = BACKSIDE_PID_U3H_G_d;
> -		backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
> -		backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
> -		backside_params.interval = BACKSIDE_PID_INTERVAL;
> -		backside_params.G_p = BACKSIDE_PID_G_p;
> -		backside_params.G_r = BACKSIDE_PID_G_r;
> -		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
> -		backside_params.additive = 1;
> -	} else {
> -		backside_params.G_d = BACKSIDE_PID_U3_G_d;
> -		backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
> -		backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
> -		backside_params.interval = BACKSIDE_PID_INTERVAL;
> -		backside_params.G_p = BACKSIDE_PID_G_p;
> -		backside_params.G_r = BACKSIDE_PID_G_r;
> -		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
> -		backside_params.additive = 1;
> -	}
> -
> -	state->ticks = 1;
> -	state->first = 1;
> -	state->pwm = 50;
> -
> -	state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
> -	if (state->monitor == NULL)
> -		return -ENODEV;
> -
> -	err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
> -	err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
> -	if (err)
> -		printk(KERN_WARNING "Failed to create attribute file(s)"
> -			" for backside fan\n");
> -
> -	return 0;
> -}
> -
> -/*
> - * Dispose of the state data for the backside control loop
> - */
> -static void dispose_backside_state(struct backside_pid_state *state)
> -{
> -	if (state->monitor == NULL)
> -		return;
> -
> -	device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
> -	device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
> -
> -	state->monitor = NULL;
> -}
> - 
> -/*
> - * Drives bay fan control loop
> - */
> -static void do_monitor_drives(struct drives_pid_state *state)
> -{
> -	s32 temp, integral, derivative;
> -	s64 integ_p, deriv_p, prop_p, sum; 
> -	int i, rc;
> -
> -	if (--state->ticks != 0)
> -		return;
> -	state->ticks = DRIVES_PID_INTERVAL;
> -
> -	DBG("drives:\n");
> -
> -	/* Check fan status */
> -	rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
> -	if (rc < 0) {
> -		printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
> -		/* XXX What do we do now ? */
> -	} else
> -		state->rpm = rc;
> -	DBG("  current rpm: %d\n", state->rpm);
> -
> -	/* Get some sensor readings */
> -	temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
> -						    DS1775_TEMP)) << 8;
> -	state->last_temp = temp;
> -	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
> -	    FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
> -
> -	/* Store temperature and error in history array */
> -	state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
> -	state->sample_history[state->cur_sample] = temp;
> -	state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
> -	
> -	/* If first loop, fill the history table */
> -	if (state->first) {
> -		for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
> -			state->cur_sample = (state->cur_sample + 1) %
> -				DRIVES_PID_HISTORY_SIZE;
> -			state->sample_history[state->cur_sample] = temp;
> -			state->error_history[state->cur_sample] =
> -				temp - DRIVES_PID_INPUT_TARGET;
> -		}
> -		state->first = 0;
> -	}
> -
> -	/* Calculate the integral term */
> -	sum = 0;
> -	integral = 0;
> -	for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
> -		integral += state->error_history[i];
> -	integral *= DRIVES_PID_INTERVAL;
> -	DBG("  integral: %08x\n", integral);
> -	integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
> -	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
> -	sum += integ_p;
> -
> -	/* Calculate the derivative term */
> -	derivative = state->error_history[state->cur_sample] -
> -		state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
> -				    % DRIVES_PID_HISTORY_SIZE];
> -	derivative /= DRIVES_PID_INTERVAL;
> -	deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
> -	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
> -	sum += deriv_p;
> -
> -	/* Calculate the proportional term */
> -	prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
> -	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
> -	sum += prop_p;
> -
> -	/* Scale sum */
> -	sum >>= 36;
> -
> -	DBG("   sum: %d\n", (int)sum);
> -	state->rpm += (s32)sum;
> -
> -	state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
> -	state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
> -
> -	DBG("** DRIVES RPM: %d\n", (int)state->rpm);
> -	set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
> -}
> -
> -/*
> - * Initialize the state structure for the drives bay fan control loop
> - */
> -static int init_drives_state(struct drives_pid_state *state)
> -{
> -	int err;
> -
> -	state->ticks = 1;
> -	state->first = 1;
> -	state->rpm = 1000;
> -
> -	state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
> -	if (state->monitor == NULL)
> -		return -ENODEV;
> -
> -	err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
> -	err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
> -	if (err)
> -		printk(KERN_WARNING "Failed to create attribute file(s)"
> -			" for drives bay fan\n");
> -
> -	return 0;
> -}
> -
> -/*
> - * Dispose of the state data for the drives control loop
> - */
> -static void dispose_drives_state(struct drives_pid_state *state)
> -{
> -	if (state->monitor == NULL)
> -		return;
> -
> -	device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
> -	device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
> -
> -	state->monitor = NULL;
> -}
> -
> -/*
> - * DIMMs temp control loop
> - */
> -static void do_monitor_dimms(struct dimm_pid_state *state)
> -{
> -	s32 temp, integral, derivative, fan_min;
> -	s64 integ_p, deriv_p, prop_p, sum;
> -	int i;
> -
> -	if (--state->ticks != 0)
> -		return;
> -	state->ticks = DIMM_PID_INTERVAL;
> -
> -	DBG("DIMM:\n");
> -
> -	DBG("  current value: %d\n", state->output);
> -
> -	temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
> -	if (temp < 0)
> -		return;
> -	temp <<= 16;
> -	state->last_temp = temp;
> -	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
> -	    FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
> -
> -	/* Store temperature and error in history array */
> -	state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
> -	state->sample_history[state->cur_sample] = temp;
> -	state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
> -
> -	/* If first loop, fill the history table */
> -	if (state->first) {
> -		for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
> -			state->cur_sample = (state->cur_sample + 1) %
> -				DIMM_PID_HISTORY_SIZE;
> -			state->sample_history[state->cur_sample] = temp;
> -			state->error_history[state->cur_sample] =
> -				temp - DIMM_PID_INPUT_TARGET;
> -		}
> -		state->first = 0;
> -	}
> -
> -	/* Calculate the integral term */
> -	sum = 0;
> -	integral = 0;
> -	for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
> -		integral += state->error_history[i];
> -	integral *= DIMM_PID_INTERVAL;
> -	DBG("  integral: %08x\n", integral);
> -	integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
> -	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
> -	sum += integ_p;
> -
> -	/* Calculate the derivative term */
> -	derivative = state->error_history[state->cur_sample] -
> -		state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
> -				    % DIMM_PID_HISTORY_SIZE];
> -	derivative /= DIMM_PID_INTERVAL;
> -	deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
> -	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
> -	sum += deriv_p;
> -
> -	/* Calculate the proportional term */
> -	prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
> -	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
> -	sum += prop_p;
> -
> -	/* Scale sum */
> -	sum >>= 36;
> -
> -	DBG("   sum: %d\n", (int)sum);
> -	state->output = (s32)sum;
> -	state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
> -	state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
> -	dimm_output_clamp = state->output;
> -
> -	DBG("** DIMM clamp value: %d\n", (int)state->output);
> -
> -	/* Backside PID is only every 5 seconds, force backside fan clamping now */
> -	fan_min = (dimm_output_clamp * 100) / 14000;
> -	fan_min = max(fan_min, backside_params.output_min);
> -	if (backside_state.pwm < fan_min) {
> -		backside_state.pwm = fan_min;
> -		DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
> -		set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
> -	}
> -}
> -
> -/*
> - * Initialize the state structure for the DIMM temp control loop
> - */
> -static int init_dimms_state(struct dimm_pid_state *state)
> -{
> -	state->ticks = 1;
> -	state->first = 1;
> -	state->output = 4000;
> -
> -	state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
> -	if (state->monitor == NULL)
> -		return -ENODEV;
> -
> -	if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
> -		printk(KERN_WARNING "Failed to create attribute file"
> -			" for DIMM temperature\n");
> -
> -	return 0;
> -}
> -
> -/*
> - * Dispose of the state data for the DIMM control loop
> - */
> -static void dispose_dimms_state(struct dimm_pid_state *state)
> -{
> -	if (state->monitor == NULL)
> -		return;
> -
> -	device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
> -
> -	state->monitor = NULL;
> -}
> -
> -/*
> - * Slots fan control loop
> - */
> -static void do_monitor_slots(struct slots_pid_state *state)
> -{
> -	s32 temp, integral, derivative;
> -	s64 integ_p, deriv_p, prop_p, sum;
> -	int i, rc;
> -
> -	if (--state->ticks != 0)
> -		return;
> -	state->ticks = SLOTS_PID_INTERVAL;
> -
> -	DBG("slots:\n");
> -
> -	/* Check fan status */
> -	rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
> -	if (rc < 0) {
> -		printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
> -		/* XXX What do we do now ? */
> -	} else
> -		state->pwm = rc;
> -	DBG("  current pwm: %d\n", state->pwm);
> -
> -	/* Get some sensor readings */
> -	temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
> -						    DS1775_TEMP)) << 8;
> -	state->last_temp = temp;
> -	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
> -	    FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
> -
> -	/* Store temperature and error in history array */
> -	state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
> -	state->sample_history[state->cur_sample] = temp;
> -	state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
> -
> -	/* If first loop, fill the history table */
> -	if (state->first) {
> -		for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
> -			state->cur_sample = (state->cur_sample + 1) %
> -				SLOTS_PID_HISTORY_SIZE;
> -			state->sample_history[state->cur_sample] = temp;
> -			state->error_history[state->cur_sample] =
> -				temp - SLOTS_PID_INPUT_TARGET;
> -		}
> -		state->first = 0;
> -	}
> -
> -	/* Calculate the integral term */
> -	sum = 0;
> -	integral = 0;
> -	for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
> -		integral += state->error_history[i];
> -	integral *= SLOTS_PID_INTERVAL;
> -	DBG("  integral: %08x\n", integral);
> -	integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
> -	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
> -	sum += integ_p;
> -
> -	/* Calculate the derivative term */
> -	derivative = state->error_history[state->cur_sample] -
> -		state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
> -				    % SLOTS_PID_HISTORY_SIZE];
> -	derivative /= SLOTS_PID_INTERVAL;
> -	deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
> -	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
> -	sum += deriv_p;
> -
> -	/* Calculate the proportional term */
> -	prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
> -	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
> -	sum += prop_p;
> -
> -	/* Scale sum */
> -	sum >>= 36;
> -
> -	DBG("   sum: %d\n", (int)sum);
> -	state->pwm = (s32)sum;
> -
> -	state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
> -	state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
> -
> -	DBG("** DRIVES PWM: %d\n", (int)state->pwm);
> -	set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
> -}
> -
> -/*
> - * Initialize the state structure for the slots bay fan control loop
> - */
> -static int init_slots_state(struct slots_pid_state *state)
> -{
> -	int err;
> -
> -	state->ticks = 1;
> -	state->first = 1;
> -	state->pwm = 50;
> -
> -	state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
> -	if (state->monitor == NULL)
> -		return -ENODEV;
> -
> -	err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
> -	err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
> -	if (err)
> -		printk(KERN_WARNING "Failed to create attribute file(s)"
> -			" for slots bay fan\n");
> -
> -	return 0;
> -}
> -
> -/*
> - * Dispose of the state data for the slots control loop
> - */
> -static void dispose_slots_state(struct slots_pid_state *state)
> -{
> -	if (state->monitor == NULL)
> -		return;
> -
> -	device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
> -	device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
> -
> -	state->monitor = NULL;
> -}
> -
> -
> -static int call_critical_overtemp(void)
> -{
> -	char *argv[] = { critical_overtemp_path, NULL };
> -	static char *envp[] = { "HOME=/",
> -				"TERM=linux",
> -				"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
> -				NULL };
> -
> -	return call_usermodehelper(critical_overtemp_path,
> -				   argv, envp, UMH_WAIT_EXEC);
> -}
> -
> -
> -/*
> - * Here's the kernel thread that calls the various control loops
> - */
> -static int main_control_loop(void *x)
> -{
> -	DBG("main_control_loop started\n");
> -
> -	mutex_lock(&driver_lock);
> -
> -	if (start_fcu() < 0) {
> -		printk(KERN_ERR "kfand: failed to start FCU\n");
> -		mutex_unlock(&driver_lock);
> -		goto out;
> -	}
> -
> -	/* Set the PCI fan once for now on non-RackMac */
> -	if (!rackmac)
> -		set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
> -
> -	/* Initialize ADCs */
> -	initialize_adc(&processor_state[0]);
> -	if (processor_state[1].monitor != NULL)
> -		initialize_adc(&processor_state[1]);
> -
> -	fcu_tickle_ticks = FCU_TICKLE_TICKS;
> -
> -	mutex_unlock(&driver_lock);
> -
> -	while (state == state_attached) {
> -		unsigned long elapsed, start;
> -
> -		start = jiffies;
> -
> -		mutex_lock(&driver_lock);
> -
> -		/* Tickle the FCU just in case */
> -		if (--fcu_tickle_ticks < 0) {
> -			fcu_tickle_ticks = FCU_TICKLE_TICKS;
> -			tickle_fcu();
> -		}
> -
> -		/* First, we always calculate the new DIMMs state on an Xserve */
> -		if (rackmac)
> -			do_monitor_dimms(&dimms_state);
> -
> -		/* Then, the CPUs */
> -		if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
> -			do_monitor_cpu_combined();
> -		else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
> -			do_monitor_cpu_rack(&processor_state[0]);
> -			if (processor_state[1].monitor != NULL)
> -				do_monitor_cpu_rack(&processor_state[1]);
> -			// better deal with UP
> -		} else {
> -			do_monitor_cpu_split(&processor_state[0]);
> -			if (processor_state[1].monitor != NULL)
> -				do_monitor_cpu_split(&processor_state[1]);
> -			// better deal with UP
> -		}
> -		/* Then, the rest */
> -		do_monitor_backside(&backside_state);
> -		if (rackmac)
> -			do_monitor_slots(&slots_state);
> -		else
> -			do_monitor_drives(&drives_state);
> -		mutex_unlock(&driver_lock);
> -
> -		if (critical_state == 1) {
> -			printk(KERN_WARNING "Temperature control detected a critical condition\n");
> -			printk(KERN_WARNING "Attempting to shut down...\n");
> -			if (call_critical_overtemp()) {
> -				printk(KERN_WARNING "Can't call %s, power off now!\n",
> -				       critical_overtemp_path);
> -				machine_power_off();
> -			}
> -		}
> -		if (critical_state > 0)
> -			critical_state++;
> -		if (critical_state > MAX_CRITICAL_STATE) {
> -			printk(KERN_WARNING "Shutdown timed out, power off now !\n");
> -			machine_power_off();
> -		}
> -
> -		// FIXME: Deal with signals
> -		elapsed = jiffies - start;
> -		if (elapsed < HZ)
> -			schedule_timeout_interruptible(HZ - elapsed);
> -	}
> -
> - out:
> -	DBG("main_control_loop ended\n");
> -
> -	ctrl_task = 0;
> -	complete_and_exit(&ctrl_complete, 0);
> -}
> -
> -/*
> - * Dispose the control loops when tearing down
> - */
> -static void dispose_control_loops(void)
> -{
> -	dispose_processor_state(&processor_state[0]);
> -	dispose_processor_state(&processor_state[1]);
> -	dispose_backside_state(&backside_state);
> -	dispose_drives_state(&drives_state);
> -	dispose_slots_state(&slots_state);
> -	dispose_dimms_state(&dimms_state);
> -}
> -
> -/*
> - * Create the control loops. U3-0 i2c bus is up, so we can now
> - * get to the various sensors
> - */
> -static int create_control_loops(void)
> -{
> -	struct device_node *np;
> -
> -	/* Count CPUs from the device-tree, we don't care how many are
> -	 * actually used by Linux
> -	 */
> -	cpu_count = 0;
> -	for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
> -		cpu_count++;
> -
> -	DBG("counted %d CPUs in the device-tree\n", cpu_count);
> -
> -	/* Decide the type of PID algorithm to use based on the presence of
> -	 * the pumps, though that may not be the best way, that is good enough
> -	 * for now
> -	 */
> -	if (rackmac)
> -		cpu_pid_type = CPU_PID_TYPE_RACKMAC;
> -	else if (of_machine_is_compatible("PowerMac7,3")
> -	    && (cpu_count > 1)
> -	    && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
> -	    && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
> -		printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
> -		cpu_pid_type = CPU_PID_TYPE_COMBINED;
> -	} else
> -		cpu_pid_type = CPU_PID_TYPE_SPLIT;
> -
> -	/* Create control loops for everything. If any fail, everything
> -	 * fails
> -	 */
> -	if (init_processor_state(&processor_state[0], 0))
> -		goto fail;
> -	if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
> -		fetch_cpu_pumps_minmax();
> -
> -	if (cpu_count > 1 && init_processor_state(&processor_state[1], 1))
> -		goto fail;
> -	if (init_backside_state(&backside_state))
> -		goto fail;
> -	if (rackmac && init_dimms_state(&dimms_state))
> -		goto fail;
> -	if (rackmac && init_slots_state(&slots_state))
> -		goto fail;
> -	if (!rackmac && init_drives_state(&drives_state))
> -		goto fail;
> -
> -	DBG("all control loops up !\n");
> -
> -	return 0;
> -	
> - fail:
> -	DBG("failure creating control loops, disposing\n");
> -
> -	dispose_control_loops();
> -
> -	return -ENODEV;
> -}
> -
> -/*
> - * Start the control loops after everything is up, that is create
> - * the thread that will make them run
> - */
> -static void start_control_loops(void)
> -{
> -	init_completion(&ctrl_complete);
> -
> -	ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
> -}
> -
> -/*
> - * Stop the control loops when tearing down
> - */
> -static void stop_control_loops(void)
> -{
> -	if (ctrl_task)
> -		wait_for_completion(&ctrl_complete);
> -}
> -
> -/*
> - * Attach to the i2c FCU after detecting U3-1 bus
> - */
> -static int attach_fcu(void)
> -{
> -	fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
> -	if (fcu == NULL)
> -		return -ENODEV;
> -
> -	DBG("FCU attached\n");
> -
> -	return 0;
> -}
> -
> -/*
> - * Detach from the i2c FCU when tearing down
> - */
> -static void detach_fcu(void)
> -{
> -	fcu = NULL;
> -}
> -
> -/*
> - * Attach to the i2c controller. We probe the various chips based
> - * on the device-tree nodes and build everything for the driver to
> - * run, we then kick the driver monitoring thread
> - */
> -static int therm_pm72_attach(struct i2c_adapter *adapter)
> -{
> -	mutex_lock(&driver_lock);
> -
> -	/* Check state */
> -	if (state == state_detached)
> -		state = state_attaching;
> -	if (state != state_attaching) {
> -		mutex_unlock(&driver_lock);
> -		return 0;
> -	}
> -
> -	/* Check if we are looking for one of these */
> -	if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
> -		u3_0 = adapter;
> -		DBG("found U3-0\n");
> -		if (k2 || !rackmac)
> -			if (create_control_loops())
> -				u3_0 = NULL;
> -	} else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
> -		u3_1 = adapter;
> -		DBG("found U3-1, attaching FCU\n");
> -		if (attach_fcu())
> -			u3_1 = NULL;
> -	} else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
> -		k2 = adapter;
> -		DBG("Found K2\n");
> -		if (u3_0 && rackmac)
> -			if (create_control_loops())
> -				k2 = NULL;
> -	}
> -	/* We got all we need, start control loops */
> -	if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
> -		DBG("everything up, starting control loops\n");
> -		state = state_attached;
> -		start_control_loops();
> -	}
> -	mutex_unlock(&driver_lock);
> -
> -	return 0;
> -}
> -
> -static int therm_pm72_probe(struct i2c_client *client,
> -			    const struct i2c_device_id *id)
> -{
> -	/* Always succeed, the real work was done in therm_pm72_attach() */
> -	return 0;
> -}
> -
> -/*
> - * Called when any of the devices which participates into thermal management
> - * is going away.
> - */
> -static int therm_pm72_remove(struct i2c_client *client)
> -{
> -	struct i2c_adapter *adapter = client->adapter;
> -
> -	mutex_lock(&driver_lock);
> -
> -	if (state != state_detached)
> -		state = state_detaching;
> -
> -	/* Stop control loops if any */
> -	DBG("stopping control loops\n");
> -	mutex_unlock(&driver_lock);
> -	stop_control_loops();
> -	mutex_lock(&driver_lock);
> -
> -	if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
> -		DBG("lost U3-0, disposing control loops\n");
> -		dispose_control_loops();
> -		u3_0 = NULL;
> -	}
> -	
> -	if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
> -		DBG("lost U3-1, detaching FCU\n");
> -		detach_fcu();
> -		u3_1 = NULL;
> -	}
> -	if (u3_0 == NULL && u3_1 == NULL)
> -		state = state_detached;
> -
> -	mutex_unlock(&driver_lock);
> -
> -	return 0;
> -}
> -
> -/*
> - * i2c_driver structure to attach to the host i2c controller
> - */
> -
> -static const struct i2c_device_id therm_pm72_id[] = {
> -	/*
> -	 * Fake device name, thermal management is done by several
> -	 * chips but we don't need to differentiate between them at
> -	 * this point.
> -	 */
> -	{ "therm_pm72", 0 },
> -	{ }
> -};
> -
> -static struct i2c_driver therm_pm72_driver = {
> -	.driver = {
> -		.name	= "therm_pm72",
> -	},
> -	.attach_adapter	= therm_pm72_attach,
> -	.probe		= therm_pm72_probe,
> -	.remove		= therm_pm72_remove,
> -	.id_table	= therm_pm72_id,
> -};
> -
> -static int fan_check_loc_match(const char *loc, int fan)
> -{
> -	char	tmp[64];
> -	char	*c, *e;
> -
> -	strlcpy(tmp, fcu_fans[fan].loc, 64);
> -
> -	c = tmp;
> -	for (;;) {
> -		e = strchr(c, ',');
> -		if (e)
> -			*e = 0;
> -		if (strcmp(loc, c) == 0)
> -			return 1;
> -		if (e == NULL)
> -			break;
> -		c = e + 1;
> -	}
> -	return 0;
> -}
> -
> -static void fcu_lookup_fans(struct device_node *fcu_node)
> -{
> -	struct device_node *np = NULL;
> -	int i;
> -
> -	/* The table is filled by default with values that are suitable
> -	 * for the old machines without device-tree informations. We scan
> -	 * the device-tree and override those values with whatever is
> -	 * there
> -	 */
> -
> -	DBG("Looking up FCU controls in device-tree...\n");
> -
> -	while ((np = of_get_next_child(fcu_node, np)) != NULL) {
> -		int type = -1;
> -		const char *loc;
> -		const u32 *reg;
> -
> -		DBG(" control: %s, type: %s\n", np->name, np->type);
> -
> -		/* Detect control type */
> -		if (!strcmp(np->type, "fan-rpm-control") ||
> -		    !strcmp(np->type, "fan-rpm"))
> -			type = FCU_FAN_RPM;
> -		if (!strcmp(np->type, "fan-pwm-control") ||
> -		    !strcmp(np->type, "fan-pwm"))
> -			type = FCU_FAN_PWM;
> -		/* Only care about fans for now */
> -		if (type == -1)
> -			continue;
> -
> -		/* Lookup for a matching location */
> -		loc = of_get_property(np, "location", NULL);
> -		reg = of_get_property(np, "reg", NULL);
> -		if (loc == NULL || reg == NULL)
> -			continue;
> -		DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
> -
> -		for (i = 0; i < FCU_FAN_COUNT; i++) {
> -			int fan_id;
> -
> -			if (!fan_check_loc_match(loc, i))
> -				continue;
> -			DBG(" location match, index: %d\n", i);
> -			fcu_fans[i].id = FCU_FAN_ABSENT_ID;
> -			if (type != fcu_fans[i].type) {
> -				printk(KERN_WARNING "therm_pm72: Fan type mismatch "
> -				       "in device-tree for %s\n", np->full_name);
> -				break;
> -			}
> -			if (type == FCU_FAN_RPM)
> -				fan_id = ((*reg) - 0x10) / 2;
> -			else
> -				fan_id = ((*reg) - 0x30) / 2;
> -			if (fan_id > 7) {
> -				printk(KERN_WARNING "therm_pm72: Can't parse "
> -				       "fan ID in device-tree for %s\n", np->full_name);
> -				break;
> -			}
> -			DBG(" fan id -> %d, type -> %d\n", fan_id, type);
> -			fcu_fans[i].id = fan_id;
> -		}
> -	}
> -
> -	/* Now dump the array */
> -	printk(KERN_INFO "Detected fan controls:\n");
> -	for (i = 0; i < FCU_FAN_COUNT; i++) {
> -		if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
> -			continue;
> -		printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
> -		       fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
> -		       fcu_fans[i].id, fcu_fans[i].loc);
> -	}
> -}
> -
> -static int fcu_of_probe(struct platform_device* dev)
> -{
> -	state = state_detached;
> -	of_dev = dev;
> -
> -	dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION);
> -
> -	/* Lookup the fans in the device tree */
> -	fcu_lookup_fans(dev->dev.of_node);
> -
> -	/* Add the driver */
> -	return i2c_add_driver(&therm_pm72_driver);
> -}
> -
> -static int fcu_of_remove(struct platform_device* dev)
> -{
> -	i2c_del_driver(&therm_pm72_driver);
> -
> -	return 0;
> -}
> -
> -static const struct of_device_id fcu_match[] = 
> -{
> -	{
> -	.type		= "fcu",
> -	},
> -	{},
> -};
> -MODULE_DEVICE_TABLE(of, fcu_match);
> -
> -static struct platform_driver fcu_of_platform_driver = 
> -{
> -	.driver = {
> -		.name = "temperature",
> -		.owner = THIS_MODULE,
> -		.of_match_table = fcu_match,
> -	},
> -	.probe		= fcu_of_probe,
> -	.remove		= fcu_of_remove
> -};
> -
> -/*
> - * Check machine type, attach to i2c controller
> - */
> -static int __init therm_pm72_init(void)
> -{
> -	rackmac = of_machine_is_compatible("RackMac3,1");
> -
> -	if (!of_machine_is_compatible("PowerMac7,2") &&
> -	    !of_machine_is_compatible("PowerMac7,3") &&
> -	    !rackmac)
> -	    	return -ENODEV;
> -
> -	return platform_driver_register(&fcu_of_platform_driver);
> -}
> -
> -static void __exit therm_pm72_exit(void)
> -{
> -	platform_driver_unregister(&fcu_of_platform_driver);
> -}
> -
> -module_init(therm_pm72_init);
> -module_exit(therm_pm72_exit);
> -
> -MODULE_AUTHOR("Benjamin Herrenschmidt <benh at kernel.crashing.org>");
> -MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
> -MODULE_LICENSE("GPL");
> -
> diff --git a/drivers/macintosh/therm_pm72.h b/drivers/macintosh/therm_pm72.h
> deleted file mode 100644
> index df3680e2a22f..000000000000
> --- a/drivers/macintosh/therm_pm72.h
> +++ /dev/null
> @@ -1,326 +0,0 @@
> -#ifndef __THERM_PMAC_7_2_H__
> -#define __THERM_PMAC_7_2_H__
> -
> -typedef unsigned short fu16;
> -typedef int fs32;
> -typedef short fs16;
> -
> -struct mpu_data
> -{
> -	u8	signature;		/* 0x00 - EEPROM sig. */
> -	u8	bytes_used;		/* 0x01 - Bytes used in eeprom (160 ?) */
> -	u8	size;			/* 0x02 - EEPROM size (256 ?) */
> -	u8	version;		/* 0x03 - EEPROM version */
> -	u32	data_revision;		/* 0x04 - Dataset revision */
> -	u8	processor_bin_code[3];	/* 0x08 - Processor BIN code */
> -	u8	bin_code_expansion;	/* 0x0b - ??? (padding ?) */
> -	u8	processor_num;		/* 0x0c - Number of CPUs on this MPU */
> -	u8	input_mul_bus_div;	/* 0x0d - Clock input multiplier/bus divider */
> -	u8	reserved1[2];		/* 0x0e - */
> -	u32	input_clk_freq_high;	/* 0x10 - Input clock frequency high */
> -	u8	cpu_nb_target_cycles;	/* 0x14 - ??? */
> -	u8	cpu_statlat;		/* 0x15 - ??? */
> -	u8	cpu_snooplat;		/* 0x16 - ??? */
> -	u8	cpu_snoopacc;		/* 0x17 - ??? */
> -	u8	nb_paamwin;		/* 0x18 - ??? */
> -	u8	nb_statlat;		/* 0x19 - ??? */
> -	u8	nb_snooplat;		/* 0x1a - ??? */
> -	u8	nb_snoopwin;		/* 0x1b - ??? */
> -	u8	api_bus_mode;		/* 0x1c - ??? */
> -	u8	reserved2[3];		/* 0x1d - */
> -	u32	input_clk_freq_low;	/* 0x20 - Input clock frequency low */
> -	u8	processor_card_slot;	/* 0x24 - Processor card slot number */
> -	u8	reserved3[2];		/* 0x25 - */
> -	u8	padjmax;       		/* 0x27 - Max power adjustment (Not in OF!) */
> -	u8	ttarget;		/* 0x28 - Target temperature */
> -	u8	tmax;			/* 0x29 - Max temperature */
> -	u8	pmaxh;			/* 0x2a - Max power */
> -	u8	tguardband;		/* 0x2b - Guardband temp ??? Hist. len in OSX */
> -	fs32	pid_gp;			/* 0x2c - PID proportional gain */
> -	fs32	pid_gr;			/* 0x30 - PID reset gain */
> -	fs32	pid_gd;			/* 0x34 - PID derivative gain */
> -	fu16	voph;			/* 0x38 - Vop High */
> -	fu16	vopl;			/* 0x3a - Vop Low */
> -	fs16	nactual_die;		/* 0x3c - nActual Die */
> -	fs16	nactual_heatsink;	/* 0x3e - nActual Heatsink */
> -	fs16	nactual_system;		/* 0x40 - nActual System */
> -	u16	calibration_flags;	/* 0x42 - Calibration flags */
> -	fu16	mdiode;			/* 0x44 - Diode M value (scaling factor) */
> -	fs16	bdiode;			/* 0x46 - Diode B value (offset) */
> -	fs32	theta_heat_sink;	/* 0x48 - Theta heat sink */
> -	u16	rminn_intake_fan;	/* 0x4c - Intake fan min RPM */
> -	u16	rmaxn_intake_fan;	/* 0x4e - Intake fan max RPM */
> -	u16	rminn_exhaust_fan;	/* 0x50 - Exhaust fan min RPM */
> -	u16	rmaxn_exhaust_fan;	/* 0x52 - Exhaust fan max RPM */
> -	u8	processor_part_num[8];	/* 0x54 - Processor part number XX pumps min/max */
> -	u32	processor_lot_num;	/* 0x5c - Processor lot number */
> -	u8	orig_card_sernum[0x10];	/* 0x60 - Card original serial number */
> -	u8	curr_card_sernum[0x10];	/* 0x70 - Card current serial number */
> -	u8	mlb_sernum[0x18];	/* 0x80 - MLB serial number */
> -	u32	checksum1;		/* 0x98 - */
> -	u32	checksum2;		/* 0x9c - */	
> -}; /* Total size = 0xa0 */
> -
> -/* Display a 16.16 fixed point value */
> -#define FIX32TOPRINT(f)	((f) >> 16),((((f) & 0xffff) * 1000) >> 16)
> -
> -/*
> - * Maximum number of seconds to be in critical state (after a
> - * normal shutdown attempt). If the machine isn't down after
> - * this counter elapses, we force an immediate machine power
> - * off.
> - */
> -#define MAX_CRITICAL_STATE			30
> -static char * critical_overtemp_path = "/sbin/critical_overtemp";
> -
> -/*
> - * This option is "weird" :) Basically, if you define this to 1
> - * the control loop for the RPMs fans (not PWMs) will apply the
> - * correction factor obtained from the PID to the _actual_ RPM
> - * speed read from the FCU.
> - * If you define the below constant to 0, then it will be
> - * applied to the setpoint RPM speed, that is basically the
> - * speed we proviously "asked" for.
> - *
> - * I'm not sure which of these Apple's algorithm is supposed
> - * to use
> - */
> -#define RPM_PID_USE_ACTUAL_SPEED		0
> -
> -/*
> - * i2c IDs. Currently, we hard code those and assume that
> - * the FCU is on U3 bus 1 while all sensors are on U3 bus
> - * 0. This appear to be safe enough for this first version
> - * of the driver, though I would accept any clean patch
> - * doing a better use of the device-tree without turning the
> - * while i2c registration mechanism into a racy mess
> - *
> - * Note: Xserve changed this. We have some bits on the K2 bus,
> - * which I arbitrarily set to 0x200. Ultimately, we really want
> - * too lookup these in the device-tree though
> - */
> -#define FAN_CTRLER_ID		0x15e
> -#define SUPPLY_MONITOR_ID      	0x58
> -#define SUPPLY_MONITORB_ID     	0x5a
> -#define DRIVES_DALLAS_ID	0x94
> -#define BACKSIDE_MAX_ID		0x98
> -#define XSERVE_DIMMS_LM87	0x25a
> -#define XSERVE_SLOTS_LM75	0x290
> -
> -/*
> - * Some MAX6690, DS1775, LM87 register definitions
> - */
> -#define MAX6690_INT_TEMP	0
> -#define MAX6690_EXT_TEMP	1
> -#define DS1775_TEMP		0
> -#define LM87_INT_TEMP		0x27
> -
> -/*
> - * Scaling factors for the AD7417 ADC converters (except
> - * for the CPU diode which is obtained from the EEPROM).
> - * Those values are obtained from the property list of
> - * the darwin driver
> - */
> -#define ADC_12V_CURRENT_SCALE	0x0320	/* _AD2 */
> -#define ADC_CPU_VOLTAGE_SCALE	0x00a0	/* _AD3 */
> -#define ADC_CPU_CURRENT_SCALE	0x1f40	/* _AD4 */
> -
> -/*
> - * PID factors for the U3/Backside fan control loop. We have 2 sets
> - * of values here, one set for U3 and one set for U3H
> - */
> -#define BACKSIDE_FAN_PWM_DEFAULT_ID	1
> -#define BACKSIDE_FAN_PWM_INDEX		0
> -#define BACKSIDE_PID_U3_G_d		0x02800000
> -#define BACKSIDE_PID_U3H_G_d		0x01400000
> -#define BACKSIDE_PID_RACK_G_d		0x00500000
> -#define BACKSIDE_PID_G_p		0x00500000
> -#define BACKSIDE_PID_RACK_G_p		0x0004cccc
> -#define BACKSIDE_PID_G_r		0x00000000
> -#define BACKSIDE_PID_U3_INPUT_TARGET	0x00410000
> -#define BACKSIDE_PID_U3H_INPUT_TARGET	0x004b0000
> -#define BACKSIDE_PID_RACK_INPUT_TARGET	0x00460000
> -#define BACKSIDE_PID_INTERVAL		5
> -#define BACKSIDE_PID_RACK_INTERVAL	1
> -#define BACKSIDE_PID_OUTPUT_MAX		100
> -#define BACKSIDE_PID_U3_OUTPUT_MIN	20
> -#define BACKSIDE_PID_U3H_OUTPUT_MIN	20
> -#define BACKSIDE_PID_HISTORY_SIZE	2
> -
> -struct basckside_pid_params
> -{
> -	s32			G_d;
> -	s32			G_p;
> -	s32			G_r;
> -	s32			input_target;
> -	s32			output_min;
> -	s32			output_max;
> -	s32			interval;
> -	int			additive;
> -};
> -
> -struct backside_pid_state
> -{
> -	int			ticks;
> -	struct i2c_client *	monitor;
> -	s32		       	sample_history[BACKSIDE_PID_HISTORY_SIZE];
> -	s32			error_history[BACKSIDE_PID_HISTORY_SIZE];
> -	int			cur_sample;
> -	s32			last_temp;
> -	int			pwm;
> -	int			first;
> -};
> -
> -/*
> - * PID factors for the Drive Bay fan control loop
> - */
> -#define DRIVES_FAN_RPM_DEFAULT_ID	2
> -#define DRIVES_FAN_RPM_INDEX		1
> -#define DRIVES_PID_G_d			0x01e00000
> -#define DRIVES_PID_G_p			0x00500000
> -#define DRIVES_PID_G_r			0x00000000
> -#define DRIVES_PID_INPUT_TARGET		0x00280000
> -#define DRIVES_PID_INTERVAL    		5
> -#define DRIVES_PID_OUTPUT_MAX		4000
> -#define DRIVES_PID_OUTPUT_MIN		300
> -#define DRIVES_PID_HISTORY_SIZE		2
> -
> -struct drives_pid_state
> -{
> -	int			ticks;
> -	struct i2c_client *	monitor;
> -	s32	       		sample_history[BACKSIDE_PID_HISTORY_SIZE];
> -	s32			error_history[BACKSIDE_PID_HISTORY_SIZE];
> -	int			cur_sample;
> -	s32			last_temp;
> -	int			rpm;
> -	int			first;
> -};
> -
> -#define SLOTS_FAN_PWM_DEFAULT_ID	2
> -#define SLOTS_FAN_PWM_INDEX		2
> -#define	SLOTS_FAN_DEFAULT_PWM		40 /* Do better here ! */
> -
> -
> -/*
> - * PID factors for the Xserve DIMM control loop
> - */
> -#define DIMM_PID_G_d			0
> -#define DIMM_PID_G_p			0
> -#define DIMM_PID_G_r			0x06553600
> -#define DIMM_PID_INPUT_TARGET		3276800
> -#define DIMM_PID_INTERVAL    		1
> -#define DIMM_PID_OUTPUT_MAX		14000
> -#define DIMM_PID_OUTPUT_MIN		4000
> -#define DIMM_PID_HISTORY_SIZE		20
> -
> -struct dimm_pid_state
> -{
> -	int			ticks;
> -	struct i2c_client *	monitor;
> -	s32	       		sample_history[DIMM_PID_HISTORY_SIZE];
> -	s32			error_history[DIMM_PID_HISTORY_SIZE];
> -	int			cur_sample;
> -	s32			last_temp;
> -	int			first;
> -	int			output;
> -};
> -
> -
> -/*
> - * PID factors for the Xserve Slots control loop
> - */
> -#define SLOTS_PID_G_d			0
> -#define SLOTS_PID_G_p			0
> -#define SLOTS_PID_G_r			0x00100000
> -#define SLOTS_PID_INPUT_TARGET		3200000
> -#define SLOTS_PID_INTERVAL    		1
> -#define SLOTS_PID_OUTPUT_MAX		100
> -#define SLOTS_PID_OUTPUT_MIN		20
> -#define SLOTS_PID_HISTORY_SIZE		20
> -
> -struct slots_pid_state
> -{
> -	int			ticks;
> -	struct i2c_client *	monitor;
> -	s32	       		sample_history[SLOTS_PID_HISTORY_SIZE];
> -	s32			error_history[SLOTS_PID_HISTORY_SIZE];
> -	int			cur_sample;
> -	s32			last_temp;
> -	int			first;
> -	int			pwm;
> -};
> -
> -
> -
> -/* Desktops */
> -
> -#define CPUA_INTAKE_FAN_RPM_DEFAULT_ID	3
> -#define CPUA_EXHAUST_FAN_RPM_DEFAULT_ID	4
> -#define CPUB_INTAKE_FAN_RPM_DEFAULT_ID	5
> -#define CPUB_EXHAUST_FAN_RPM_DEFAULT_ID	6
> -
> -#define CPUA_INTAKE_FAN_RPM_INDEX	3
> -#define CPUA_EXHAUST_FAN_RPM_INDEX	4
> -#define CPUB_INTAKE_FAN_RPM_INDEX	5
> -#define CPUB_EXHAUST_FAN_RPM_INDEX	6
> -
> -#define CPU_INTAKE_SCALE		0x0000f852
> -#define CPU_TEMP_HISTORY_SIZE		2
> -#define CPU_POWER_HISTORY_SIZE		10
> -#define CPU_PID_INTERVAL		1
> -#define CPU_MAX_OVERTEMP		90
> -
> -#define CPUA_PUMP_RPM_INDEX		7
> -#define CPUB_PUMP_RPM_INDEX		8
> -#define CPU_PUMP_OUTPUT_MAX		3200
> -#define CPU_PUMP_OUTPUT_MIN		1250
> -
> -/* Xserve */
> -#define CPU_A1_FAN_RPM_INDEX		9
> -#define CPU_A2_FAN_RPM_INDEX		10
> -#define CPU_A3_FAN_RPM_INDEX		11
> -#define CPU_B1_FAN_RPM_INDEX		12
> -#define CPU_B2_FAN_RPM_INDEX		13
> -#define CPU_B3_FAN_RPM_INDEX		14
> -
> -
> -struct cpu_pid_state
> -{
> -	int			index;
> -	struct i2c_client *	monitor;
> -	struct mpu_data		mpu;
> -	int			overtemp;
> -	s32	       		temp_history[CPU_TEMP_HISTORY_SIZE];
> -	int			cur_temp;
> -	s32			power_history[CPU_POWER_HISTORY_SIZE];
> -	s32			error_history[CPU_POWER_HISTORY_SIZE];
> -	int			cur_power;
> -	int			count_power;
> -	int			rpm;
> -	int			intake_rpm;
> -	s32			voltage;
> -	s32			current_a;
> -	s32			last_temp;
> -	s32			last_power;
> -	int			first;
> -	u8			adc_config;
> -	s32			pump_min;
> -	s32			pump_max;
> -};
> -
> -/* Tickle FCU every 10 seconds */
> -#define FCU_TICKLE_TICKS	10
> -
> -/*
> - * Driver state
> - */
> -enum {
> -	state_detached,
> -	state_attaching,
> -	state_attached,
> -	state_detaching,
> -};
> -
> -
> -#endif /* __THERM_PMAC_7_2_H__ */




More information about the Linuxppc-dev mailing list