[RFC PATCH 2/3] topology: support node_numa_mem() for determining the fallback node

Nishanth Aravamudan nacc at linux.vnet.ibm.com
Tue Feb 11 06:13:21 EST 2014


Hi Christoph,

On 07.02.2014 [12:51:07 -0600], Christoph Lameter wrote:
> Here is a draft of a patch to make this work with memoryless nodes.
> 
> The first thing is that we modify node_match to also match if we hit an
> empty node. In that case we simply take the current slab if its there.
> 
> If there is no current slab then a regular allocation occurs with the
> memoryless node. The page allocator will fallback to a possible node and
> that will become the current slab. Next alloc from a memoryless node
> will then use that slab.
> 
> For that we also add some tracking of allocations on nodes that were not
> satisfied using the empty_node[] array. A successful alloc on a node
> clears that flag.
> 
> I would rather avoid the empty_node[] array since its global and there may
> be thread specific allocation restrictions but it would be expensive to do
> an allocation attempt via the page allocator to make sure that there is
> really no page available from the page allocator.

With this patch on our test system (I pulled out the numa_mem_id()
change, since you Acked Joonsoo's already), on top of 3.13.0 + my
kthread locality change + CONFIG_HAVE_MEMORYLESS_NODES + Joonsoo's RFC
patch 1):

MemTotal:        8264704 kB
MemFree:         5924608 kB
...
Slab:            1402496 kB
SReclaimable:     102848 kB
SUnreclaim:      1299648 kB

And Anton's slabusage reports:

slab                                   mem     objs    slabs
                                      used   active   active
------------------------------------------------------------
kmalloc-16384                       207 MB   98.60%  100.00%
task_struct                         134 MB   97.82%  100.00%
kmalloc-8192                        117 MB  100.00%  100.00%
pgtable-2^12                        111 MB  100.00%  100.00%
pgtable-2^10                        104 MB  100.00%  100.00%

For comparison, Anton's patch applied at the same point in the series:

meminfo:

MemTotal:        8264704 kB
MemFree:         4150464 kB
...
Slab:            1590336 kB
SReclaimable:     208768 kB
SUnreclaim:      1381568 kB

slabusage:

slab                                   mem     objs    slabs
                                      used   active   active
------------------------------------------------------------
kmalloc-16384                       227 MB   98.63%  100.00%
kmalloc-8192                        130 MB  100.00%  100.00%
task_struct                         129 MB   97.73%  100.00%
pgtable-2^12                        112 MB  100.00%  100.00%
pgtable-2^10                        106 MB  100.00%  100.00%


Consider this patch:

Acked-by: Nishanth Aravamudan <nacc at linux.vnet.ibm.com>
Tested-by: Nishanth Aravamudan <nacc at linux.vnet.ibm.com>

I was thinking about your concerns about empty_node[]. Would it make
sense to use a helper function, rather than direct access to
direct_node, such as:

	bool is_node_empty(int nid)

	void set_node_empty(int nid, bool empty)

which we stub out if !HAVE_MEMORYLESS_NODES to return false and noop
respectively?

That way only architectures that have memoryless nodes pay the penalty
of the array allocation?

Thanks,
Nish

> Index: linux/mm/slub.c
> ===================================================================
> --- linux.orig/mm/slub.c	2014-02-03 13:19:22.896853227 -0600
> +++ linux/mm/slub.c	2014-02-07 12:44:49.311494806 -0600
> @@ -132,6 +132,8 @@ static inline bool kmem_cache_has_cpu_pa
>  #endif
>  }
> 
> +static int empty_node[MAX_NUMNODES];
> +
>  /*
>   * Issues still to be resolved:
>   *
> @@ -1405,16 +1407,22 @@ static struct page *new_slab(struct kmem
>  	void *last;
>  	void *p;
>  	int order;
> +	int alloc_node;
> 
>  	BUG_ON(flags & GFP_SLAB_BUG_MASK);
> 
>  	page = allocate_slab(s,
>  		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
> -	if (!page)
> +	if (!page) {
> +		if (node != NUMA_NO_NODE)
> +			empty_node[node] = 1;
>  		goto out;
> +	}
> 
>  	order = compound_order(page);
> -	inc_slabs_node(s, page_to_nid(page), page->objects);
> +	alloc_node = page_to_nid(page);
> +	empty_node[alloc_node] = 0;
> +	inc_slabs_node(s, alloc_node, page->objects);
>  	memcg_bind_pages(s, order);
>  	page->slab_cache = s;
>  	__SetPageSlab(page);
> @@ -1712,7 +1720,7 @@ static void *get_partial(struct kmem_cac
>  		struct kmem_cache_cpu *c)
>  {
>  	void *object;
> -	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
> +	int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node;
> 
>  	object = get_partial_node(s, get_node(s, searchnode), c, flags);
>  	if (object || node != NUMA_NO_NODE)
> @@ -2107,8 +2115,25 @@ static void flush_all(struct kmem_cache
>  static inline int node_match(struct page *page, int node)
>  {
>  #ifdef CONFIG_NUMA
> -	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
> +	int page_node;
> +
> +	/* No data means no match */
> +	if (!page)
>  		return 0;
> +
> +	/* Node does not matter. Therefore anything is a match */
> +	if (node == NUMA_NO_NODE)
> +		return 1;
> +
> +	/* Did we hit the requested node ? */
> +	page_node = page_to_nid(page);
> +	if (page_node == node)
> +		return 1;
> +
> +	/* If the node has available data then we can use it. Mismatch */
> +	return !empty_node[page_node];
> +
> +	/* Target node empty so just take anything */
>  #endif
>  	return 1;
>  }
> 



More information about the Linuxppc-dev mailing list