[PATCH 1/2 v1.04] Add support for DWC OTG HCD function.
Fushen Chen
fchen at apm.com
Thu Jul 29 10:28:42 EST 2010
This adds support for the USB host controller on APM SoC using
Synopsys Designware IP.
Signed-off-by: Fushen Chen <fchen at apm.com>
Signed-off-by: Mark Miesfeld <mmiesfeld at apm.com>
---
drivers/Makefile | 1 +
drivers/usb/Kconfig | 2 +
drivers/usb/dwc_otg/Kconfig | 99 +
drivers/usb/dwc_otg/Makefile | 19 +
drivers/usb/dwc_otg/dwc_otg_apmppc.c | 409 ++++
drivers/usb/dwc_otg/dwc_otg_cil.c | 905 +++++++++
drivers/usb/dwc_otg/dwc_otg_cil.h | 1194 +++++++++++
drivers/usb/dwc_otg/dwc_otg_cil_intr.c | 631 ++++++
drivers/usb/dwc_otg/dwc_otg_driver.h | 94 +
drivers/usb/dwc_otg/dwc_otg_hcd.c | 2413 +++++++++++++++++++++++
drivers/usb/dwc_otg/dwc_otg_hcd.h | 426 ++++
drivers/usb/dwc_otg/dwc_otg_hcd_intr.c | 1478 ++++++++++++++
drivers/usb/dwc_otg/dwc_otg_hcd_queue.c | 710 +++++++
drivers/usb/dwc_otg/dwc_otg_param.c | 744 +++++++
drivers/usb/dwc_otg/dwc_otg_regs.h | 3282 +++++++++++++++++++++++++++++++
15 files changed, 12407 insertions(+), 0 deletions(-)
create mode 100644 drivers/usb/dwc_otg/Kconfig
create mode 100644 drivers/usb/dwc_otg/Makefile
create mode 100644 drivers/usb/dwc_otg/dwc_otg_apmppc.c
create mode 100644 drivers/usb/dwc_otg/dwc_otg_cil.c
create mode 100644 drivers/usb/dwc_otg/dwc_otg_cil.h
create mode 100644 drivers/usb/dwc_otg/dwc_otg_cil_intr.c
create mode 100644 drivers/usb/dwc_otg/dwc_otg_driver.h
create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd.c
create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd.h
create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd_intr.c
create mode 100644 drivers/usb/dwc_otg/dwc_otg_hcd_queue.c
create mode 100644 drivers/usb/dwc_otg/dwc_otg_param.c
create mode 100644 drivers/usb/dwc_otg/dwc_otg_regs.h
diff --git a/drivers/Makefile b/drivers/Makefile
index 20dcced..f3fc7c7 100644
--- a/drivers/Makefile
+++ b/drivers/Makefile
@@ -67,6 +67,7 @@ obj-$(CONFIG_UWB) += uwb/
obj-$(CONFIG_USB_OTG_UTILS) += usb/otg/
obj-$(CONFIG_USB) += usb/
obj-$(CONFIG_USB_MUSB_HDRC) += usb/musb/
+obj-$(CONFIG_USB_DWC_OTG) += usb/dwc_otg/
obj-$(CONFIG_PCI) += usb/
obj-$(CONFIG_USB_GADGET) += usb/gadget/
obj-$(CONFIG_SERIO) += input/serio/
diff --git a/drivers/usb/Kconfig b/drivers/usb/Kconfig
index 6a58cb1..f48920b 100644
--- a/drivers/usb/Kconfig
+++ b/drivers/usb/Kconfig
@@ -113,6 +113,8 @@ source "drivers/usb/host/Kconfig"
source "drivers/usb/musb/Kconfig"
+source "drivers/usb/dwc_otg/Kconfig"
+
source "drivers/usb/class/Kconfig"
source "drivers/usb/storage/Kconfig"
diff --git a/drivers/usb/dwc_otg/Kconfig b/drivers/usb/dwc_otg/Kconfig
new file mode 100644
index 0000000..174141d
--- /dev/null
+++ b/drivers/usb/dwc_otg/Kconfig
@@ -0,0 +1,99 @@
+#
+# USB Dual Role (OTG-ready) Controller Drivers
+# for silicon based on Synopsys DesignWare IP
+#
+
+comment "Enable Host or Gadget support for DesignWare OTG controller"
+ depends on !USB && USB_GADGET=n
+
+config USB_DWC_OTG
+ depends on (USB || USB_GADGET)
+ depends on 405EZ || 405EX || 460EX
+ select NOP_USB_XCEIV
+ select USB_OTG_UTILS
+ tristate "Synopsys DWC OTG Controller"
+ default USB_GADGET
+ help
+ This driver provides USB Device Controller support for the
+ Synopsys DesignWare USB OTG Core used on the AppliedMicro PowerPC SoC.
+
+config DWC_DEBUG
+ bool "Enable DWC Debugging"
+ depends on USB_DWC_OTG
+ default n
+ help
+ Enable DWC driver debugging
+
+choice
+ prompt "DWC Mode Selection"
+ depends on USB_DWC_OTG
+ default DWC_HOST_ONLY
+ help
+ Select the DWC Core in OTG, Host only, or Device only mode.
+
+config DWC_HOST_ONLY
+ bool "DWC Host Only Mode" if 405EX || 460EX
+
+config DWC_OTG_MODE
+ bool "DWC OTG Mode" if 405EX || 460EX
+ select USB_GADGET_SELECTED
+
+config DWC_DEVICE_ONLY
+ bool "DWC Device Only Mode"
+ select USB_GADGET_SELECTED
+
+endchoice
+
+# enable peripheral support (including with OTG)
+config USB_GADGET_DWC_HDRC
+ bool
+ depends on USB_DWC_OTG && (DWC_DEVICE_ONLY || USB_DWC_OTG)
+
+choice
+ prompt "DWC DMA/SlaveMode Selection"
+ depends on USB_DWC_OTG
+ default DWC_DMA_MODE
+ help
+ Select the DWC DMA or Slave Mode.
+ DMA mode uses the DWC core internal DMA engines.
+ Slave mode uses the processor PIO to tranfer data.
+ In Slave mode, processor's DMA channels can be used if available.
+
+config DWC_SLAVE
+ bool "DWC Slave Mode" if 405EX || 460EX
+
+config DWC_DMA_MODE
+ bool "DWC DMA Mode" if 405EX || (460EX && \
+ (!USB_EHCI_HCD || !USB_OHCI_HCD))
+
+endchoice
+
+config USB_OTG_WHITELIST
+ bool "Rely on OTG Targeted Peripherals List"
+ depends on !USB_SUSPEND && USB_DWC_OTG
+ default n
+ help
+ This is the same flag as in ../core/Kconfig.
+ It is here for easy deselect.
+
+config DWC_OTG_REG_LE
+ depends on USB_DWC_OTG
+ bool "DWC Little Endian Register" if 405EX || 460EX
+ default y
+ help
+ OTG core register access is Little-Endian.
+
+config DWC_OTG_FIFO_LE
+ depends on USB_DWC_OTG
+ bool "DWC FIFO Little Endian" if 405EZ
+ default n
+ help
+ OTG core FIFO access is Little-Endian.
+
+config DWC_LIMITED_XFER_SIZE
+ depends on USB_GADGET_DWC_HDRC
+ bool "DWC Endpoint Limited Xfer Size" if 405EZ || 405EX || 460EX
+ default n if 460EX || 405EX
+ default y if 405EZ
+ help
+ Bit fields in the Device EP Transfer Size Register is 11 bits.
diff --git a/drivers/usb/dwc_otg/Makefile b/drivers/usb/dwc_otg/Makefile
new file mode 100644
index 0000000..31dd5e8
--- /dev/null
+++ b/drivers/usb/dwc_otg/Makefile
@@ -0,0 +1,19 @@
+#
+# OTG infrastructure and transceiver drivers
+#
+obj-$(CONFIG_USB_DWC_OTG) += dwc_otg.o
+
+dwc_otg-objs := dwc_otg_cil.o dwc_otg_cil_intr.o dwc_otg_param.o
+
+ifeq ($(CONFIG_4xx_SOC),y)
+dwc_otg-objs += dwc_otg_apmppc.o
+endif
+
+ifneq ($(CONFIG_DWC_DEVICE_ONLY),y)
+dwc_otg-objs += dwc_otg_hcd.o dwc_otg_hcd_intr.o \
+ dwc_otg_hcd_queue.o
+endif
+
+ifneq ($(CONFIG_DWC_HOST_ONLY),y)
+dwc_otg-objs += dwc_otg_pcd.o dwc_otg_pcd_intr.o
+endif
diff --git a/drivers/usb/dwc_otg/dwc_otg_apmppc.c b/drivers/usb/dwc_otg/dwc_otg_apmppc.c
new file mode 100644
index 0000000..ef40917
--- /dev/null
+++ b/drivers/usb/dwc_otg/dwc_otg_apmppc.c
@@ -0,0 +1,409 @@
+/*
+ * DesignWare HS OTG controller driver
+ *
+ * Author: Mark Miesfeld <mmiesfeld at apm.com>
+ *
+ * Based on versions provided by APM and Synopsis which are:
+ * Copyright (C) 2009-2010 AppliedMicro(www.apm.com)
+ * Modified by Stefan Roese <sr at denx.de>, DENX Software Engineering
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+/*
+ * The dwc_otg module provides the initialization and cleanup entry
+ * points for the dwcotg driver. This module will be dynamically installed
+ * after Linux is booted using the insmod command. When the module is
+ * installed, the dwc_otg_driver_init function is called. When the module is
+ * removed (using rmmod), the dwc_otg_driver_cleanup function is called.
+ *
+ * This module also defines a data structure for the dwc_otg driver, which is
+ * used in conjunction with the standard device structure. These
+ * structures allow the OTG driver to comply with the standard Linux driver
+ * model in which devices and drivers are registered with a bus driver. This
+ * has the benefit that Linux can expose attributes of the driver and device
+ * in its special sysfs file system. Users can then read or write files in
+ * this file system to perform diagnostics on the driver components or the
+ * device.
+ */
+
+#include <linux/of_platform.h>
+
+#include "dwc_otg_driver.h"
+
+/* Based on Synopsys driver version 2.60a */
+#define DWC_DRIVER_VERSION "1.04"
+#define DWC_DRIVER_DESC "HS OTG USB Controller driver"
+static const char dwc_driver_name[] = "dwc_otg";
+
+/**
+ * This function is the top level interrupt handler for the Common
+ * (Device and host modes) interrupts.
+ */
+static irqreturn_t dwc_otg_common_irq(int _irq, void *dev)
+{
+ struct dwc_otg_device *dwc_dev = dev;
+ int retval = IRQ_NONE;
+
+ retval = dwc_otg_handle_common_intr(dwc_dev->core_if);
+ return IRQ_RETVAL(retval);
+}
+
+/**
+ * This function is the interrupt handler for the OverCurrent condition
+ * from the external charge pump (if enabled)
+ */
+static irqreturn_t dwc_otg_externalchgpump_irq(int _irq, void *dev)
+{
+ struct dwc_otg_device *dwc_dev = dev;
+
+ if (dwc_otg_is_host_mode(dwc_dev->core_if)) {
+ struct dwc_hcd *dwc_hcd;
+ union hprt0_data hprt0 = {.d32 = 0};
+
+ dwc_hcd = dwc_dev->hcd;
+ spin_lock(&dwc_hcd->lock);
+ dwc_hcd->flags.b.port_over_current_change = 1;
+
+ hprt0.b.prtpwr = 0;
+ dwc_write_reg32(dwc_dev->core_if->host_if->hprt0,
+ hprt0.d32);
+ spin_unlock(&dwc_hcd->lock);
+ } else {
+ /* Device mode - This int is n/a for device mode */
+ printk(KERN_ERR "DeviceMode: OTG OverCurrent Detected\n");
+ }
+
+ return IRQ_HANDLED;
+}
+
+/**
+ * This function is called when a device is unregistered with the
+ * dwc_otg_driver. This happens, for example, when the rmmod command is
+ * executed. The device may or may not be electrically present. If it is
+ * present, the driver stops device processing. Any resources used on behalf
+ * of this device are freed.
+ */
+static int __devexit dwc_otg_driver_remove(struct of_device *ofdev)
+{
+ struct device *dev = &ofdev->dev;
+ struct dwc_otg_device *dwc_dev = dev_get_drvdata(dev);
+
+ /* Memory allocation for dwc_otg_device may have failed. */
+ if (!dwc_dev)
+ return 0;
+
+ usb_nop_xceiv_unregister();
+
+ /* Free the IRQ */
+ if (dwc_dev->common_irq_installed)
+ free_irq(dwc_dev->irq, dwc_dev);
+
+ if (!dwc_has_feature(dwc_dev->core_if, DWC_DEVICE_ONLY))
+ if (dwc_dev->hcd)
+ dwc_otg_hcd_remove(dev);
+
+ if (!dwc_has_feature(dwc_dev->core_if, DWC_HOST_ONLY))
+ if (dwc_dev->pcd)
+ dwc_otg_pcd_remove(dev);
+
+ if (dwc_dev->core_if)
+ dwc_otg_cil_remove(dwc_dev->core_if);
+
+ /* Return the memory. */
+ if (dwc_dev->base)
+ iounmap(dwc_dev->base);
+ if (dwc_dev->phys_addr)
+ release_mem_region(dwc_dev->phys_addr, dwc_dev->base_len);
+ kfree(dwc_dev);
+
+ /* Clear the drvdata pointer. */
+ dev_set_drvdata(dev, 0);
+ return 0;
+}
+
+/**
+ * This function is called when an device is bound to a
+ * dwc_otg_driver. It creates the driver components required to
+ * control the device (CIL, HCD, and PCD) and it initializes the
+ * device. The driver components are stored in a dwc_otg_device
+ * structure. A reference to the dwc_otg_device is saved in the
+ * device. This allows the driver to access the dwc_otg_device
+ * structure on subsequent calls to driver methods for this device.
+ */
+static int __devinit dwc_otg_driver_probe(struct of_device *ofdev,
+ const struct of_device_id *match)
+{
+ int retval = 0;
+ struct dwc_otg_device *dwc_dev;
+ struct device *dev = &ofdev->dev;
+ struct resource res;
+ u32 *gusbcfg_addr;
+ union gusbcfg_data usbcfg = {.d32 = 0};
+ u32 cp_irq;
+
+ dev_dbg(dev, "dwc_otg_driver_probe(%p)\n", dev);
+
+ dwc_dev = kzalloc(sizeof(*dwc_dev), GFP_KERNEL);
+ if (!dwc_dev) {
+ dev_err(dev, "kmalloc of dwc_otg_device failed\n");
+ retval = -ENOMEM;
+ goto fail;
+ }
+ dwc_dev->reg_offset = 0xFFFFFFFF;
+
+ /* Retrieve the memory and IRQ resources. */
+ dwc_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
+ if (dwc_dev->irq == NO_IRQ) {
+ dev_err(dev, "no device irq\n");
+ retval = -ENODEV;
+ goto fail;
+ }
+ dev_dbg(dev, "OTG - device irq: %d\n", dwc_dev->irq);
+
+ if (of_address_to_resource(ofdev->dev.of_node, 0, &res)) {
+ printk(KERN_ERR "%s: Can't get USB-OTG register address\n",
+ __func__);
+ retval = -ENOMEM;
+ goto fail;
+ }
+ dev_dbg(dev, "OTG - ioresource_mem start0x%08x: end:0x%08x\n",
+ (unsigned)res.start, (unsigned)res.end);
+
+ dwc_dev->phys_addr = res.start;
+ dwc_dev->base_len = res.end - res.start + 1;
+ if (!request_mem_region(dwc_dev->phys_addr,
+ dwc_dev->base_len,
+ dwc_driver_name)) {
+ dev_err(dev, "request_mem_region failed\n");
+ retval = -EBUSY;
+ goto fail;
+ }
+
+ /* Map the DWC_otg Core memory into virtual address space. */
+ dwc_dev->base = ioremap(dwc_dev->phys_addr,
+ dwc_dev->base_len);
+ if (!dwc_dev->base) {
+ dev_err(dev, "ioremap64() failed\n");
+ retval = -ENOMEM;
+ goto fail;
+ }
+ dev_dbg(dev, "mapped base=0x%08x\n", (unsigned)dwc_dev->base);
+
+ /*
+ * Initialize driver data to point to the global DWC_otg
+ * Device structure.
+ */
+ dev_set_drvdata(dev, dwc_dev);
+
+ dev_dbg(dev, "dwc_dev=0x%p\n", dwc_dev);
+ dwc_dev->core_if =
+ dwc_otg_cil_init(dwc_dev->base, &dwc_otg_module_params);
+ if (!dwc_dev->core_if) {
+ dev_err(dev, "CIL initialization failed!\n");
+ retval = -ENOMEM;
+ goto fail;
+ }
+ usb_nop_xceiv_register();
+ dwc_dev->core_if->xceiv = otg_get_transceiver();
+ if (!dwc_dev->core_if->xceiv) {
+ retval = -ENODEV;
+ goto fail;
+ }
+ dwc_set_feature(dwc_dev->core_if);
+
+ gusbcfg_addr = &dwc_dev->core_if->core_global_regs->gusbcfg;
+
+ /*
+ * Validate parameter values.
+ */
+ if (check_parameters(dwc_dev->core_if)) {
+ retval = -EINVAL;
+ goto fail;
+ }
+
+ /* Added for PLB DMA phys virt mapping */
+ dwc_dev->core_if->phys_addr = dwc_dev->phys_addr;
+
+ /*
+ * Disable the global interrupt until all the interrupt
+ * handlers are installed.
+ */
+ dwc_otg_disable_global_interrupts(dwc_dev->core_if);
+
+ /*
+ * Install the interrupt handler for the common interrupts before
+ * enabling common interrupts in core_init below.
+ */
+ retval = request_irq(dwc_dev->irq, dwc_otg_common_irq,
+ IRQF_SHARED, "dwc_otg", dwc_dev);
+ if (retval) {
+ printk(KERN_ERR "request of irq%d failed retval: %d\n",
+ dwc_dev->irq, retval);
+ retval = -EBUSY;
+ goto fail;
+ } else {
+ dwc_dev->common_irq_installed = 1;
+ }
+
+ /* Initialize the DWC_otg core. */
+ dwc_otg_core_init(dwc_dev->core_if);
+
+ /* configure chargepump interrupt */
+ cp_irq = irq_of_parse_and_map(ofdev->dev.of_node, 3);
+ if (cp_irq) {
+ retval = request_irq(cp_irq, dwc_otg_externalchgpump_irq,
+ IRQF_SHARED, "dwc_otg_ext_chg_pump", dwc_dev);
+ if (retval) {
+ printk(KERN_ERR "request of irq failed retval: %d\n",
+ retval);
+ retval = -EBUSY;
+ goto fail;
+ } else {
+ printk(KERN_INFO "%s: ExtChgPump Detection "
+ "IRQ registered\n", dwc_driver_name);
+ }
+ }
+
+ if (!dwc_has_feature(dwc_dev->core_if, DWC_HOST_ONLY)) {
+ /* Initialize the PCD */
+ retval = dwc_otg_pcd_init(dev);
+ if (retval) {
+ printk(KERN_ERR "dwc_otg_pcd_init failed\n");
+ dwc_dev->pcd = NULL;
+ goto fail;
+ }
+ }
+
+ if (!dwc_has_feature(dwc_dev->core_if, DWC_DEVICE_ONLY)) {
+ /* Initialize the HCD and force_host_mode */
+ usbcfg.d32 = dwc_read_reg32(gusbcfg_addr);
+ usbcfg.b.force_host_mode = 1;
+ dwc_write_reg32(gusbcfg_addr, usbcfg.d32);
+
+ retval = dwc_otg_hcd_init(dev, dwc_dev);
+ if (retval) {
+ printk(KERN_ERR "dwc_otg_hcd_init failed\n");
+ dwc_dev->hcd = NULL;
+ goto fail;
+ }
+ }
+ /*
+ * Enable the global interrupt after all the interrupt
+ * handlers are installed.
+ */
+ dwc_otg_enable_global_interrupts(dwc_dev->core_if);
+
+ usbcfg.d32 = dwc_read_reg32(gusbcfg_addr);
+ usbcfg.b.force_host_mode = 0;
+ dwc_write_reg32(gusbcfg_addr, usbcfg.d32);
+
+ return 0;
+
+fail:
+ dwc_otg_driver_remove(ofdev);
+ return retval;
+}
+
+/*
+ * This structure defines the methods to be called by a bus driver
+ * during the lifecycle of a device on that bus. Both drivers and
+ * devices are registered with a bus driver. The bus driver matches
+ * devices to drivers based on information in the device and driver
+ * structures.
+ *
+ * The probe function is called when the bus driver matches a device
+ * to this driver. The remove function is called when a device is
+ * unregistered with the bus driver.
+ */
+static const struct of_device_id dwc_otg_match[] = {
+ { .compatible = "amcc,dwc-otg", },
+ {}
+};
+MODULE_DEVICE_TABLE(of, dwc_otg_match);
+
+static struct of_platform_driver dwc_otg_driver = {
+ .probe = dwc_otg_driver_probe,
+ .remove = __devexit_p(dwc_otg_driver_remove),
+ .driver = {
+ .name = "dwc_otg",
+ .owner = THIS_MODULE,
+ .of_match_table = dwc_otg_match,
+ },
+};
+
+/**
+ * This function is called when the dwc_otg_driver is installed with the
+ * insmod command. It registers the dwc_otg_driver structure with the
+ * appropriate bus driver. This will cause the dwc_otg_driver_probe function
+ * to be called. In addition, the bus driver will automatically expose
+ * attributes defined for the device and driver in the special sysfs file
+ * system.
+ */
+static int __init dwc_otg_driver_init(void)
+{
+ int retval = 0;
+
+ printk(KERN_INFO "%s: version %s\n", dwc_driver_name,
+ DWC_DRIVER_VERSION);
+ retval = of_register_platform_driver(&dwc_otg_driver);
+ if (retval < 0)
+ printk(KERN_ERR "%s registration failed. retval=%d\n",
+ dwc_driver_name, retval);
+ return retval;
+}
+module_init(dwc_otg_driver_init);
+
+/**
+ * This function is called when the driver is removed from the kernel
+ * with the rmmod command. The driver unregisters itself with its bus
+ * driver.
+ *
+ */
+static void __exit dwc_otg_driver_cleanup(void)
+{
+ of_unregister_platform_driver(&dwc_otg_driver);
+ printk(KERN_INFO "%s module removed\n", dwc_driver_name);
+}
+module_exit(dwc_otg_driver_cleanup);
+
+MODULE_DESCRIPTION(DWC_DRIVER_DESC);
+MODULE_AUTHOR("Mark Miesfeld <mmiesfeld at apm.com");
+MODULE_LICENSE("GPL");
diff --git a/drivers/usb/dwc_otg/dwc_otg_cil.c b/drivers/usb/dwc_otg/dwc_otg_cil.c
new file mode 100644
index 0000000..b9380e5
--- /dev/null
+++ b/drivers/usb/dwc_otg/dwc_otg_cil.c
@@ -0,0 +1,905 @@
+/*
+ * DesignWare HS OTG controller driver
+ *
+ * Author: Mark Miesfeld <mmiesfeld at apm.com>
+ *
+ * Based on versions provided by APM and Synopsis which are:
+ * Copyright (C) 2009-2010 AppliedMicro(www.apm.com)
+ * Modified by Stefan Roese <sr at denx.de>, DENX Software Engineering
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+/*
+ * The Core Interface Layer provides basic services for accessing and
+ * managing the DWC_otg hardware. These services are used by both the
+ * Host Controller Driver and the Peripheral Controller Driver.
+ *
+ * The CIL manages the memory map for the core so that the HCD and PCD
+ * don't have to do this separately. It also handles basic tasks like
+ * reading/writing the registers and data FIFOs in the controller.
+ * Some of the data access functions provide encapsulation of several
+ * operations required to perform a task, such as writing multiple
+ * registers to start a transfer. Finally, the CIL performs basic
+ * services that are not specific to either the host or device modes
+ * of operation. These services include management of the OTG Host
+ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
+ * Diagnostic API is also provided to allow testing of the controller
+ * hardware.
+ *
+ * The Core Interface Layer has the following requirements:
+ * - Provides basic controller operations.
+ * - Minimal use of OS services.
+ * - The OS services used will be abstracted by using inline functions
+ * or macros.
+ */
+#include <linux/delay.h>
+
+#include "dwc_otg_cil.h"
+
+const char *op_state_str(enum usb_otg_state state)
+{
+ switch (state) {
+ case OTG_STATE_A_IDLE: return "a_idle";
+ case OTG_STATE_A_WAIT_VRISE: return "a_wait_vrise";
+ case OTG_STATE_A_WAIT_BCON: return "a_wait_bcon";
+ case OTG_STATE_A_HOST: return "a_host";
+ case OTG_STATE_A_SUSPEND: return "a_suspend";
+ case OTG_STATE_A_PERIPHERAL: return "a_peripheral";
+ case OTG_STATE_A_WAIT_VFALL: return "a_wait_vfall";
+ case OTG_STATE_A_VBUS_ERR: return "a_vbus_err";
+ case OTG_STATE_B_IDLE: return "b_idle";
+ case OTG_STATE_B_SRP_INIT: return "b_srp_init";
+ case OTG_STATE_B_PERIPHERAL: return "b_peripheral";
+ case OTG_STATE_B_WAIT_ACON: return "b_wait_acon";
+ case OTG_STATE_B_HOST: return "b_host";
+ default: return "UNDEFINED";
+ }
+}
+
+/**
+ * This function enables the controller's Global Interrupt in the AHB Config
+ * register.
+ */
+void dwc_otg_enable_global_interrupts(struct core_if *core_if)
+{
+ union gahbcfg_data ahbcfg = {.d32 = 0};
+
+ ahbcfg.b.glblintrmsk = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
+}
+
+/**
+ * This function disables the controller's Global Interrupt in the AHB Config
+ * register.
+ */
+void dwc_otg_disable_global_interrupts(struct core_if *core_if)
+{
+ union gahbcfg_data ahbcfg = {.d32 = 0};
+
+ ahbcfg.b.glblintrmsk = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
+}
+
+/**
+ * Tests if the current hardware is using a full speed phy.
+ */
+static inline int full_speed_phy(struct core_if *core_if)
+{
+ if ((core_if->hwcfg2.b.hs_phy_type == 2 &&
+ core_if->hwcfg2.b.fs_phy_type == 1 &&
+ core_if->core_params->ulpi_fs_ls) ||
+ core_if->core_params->phy_type ==
+ DWC_PHY_TYPE_PARAM_FS)
+ return 1;
+ return 0;
+}
+
+/**
+ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
+ * type.
+ */
+void init_fslspclksel(struct core_if *core_if)
+{
+ u32 val;
+ union hcfg_data hcfg;
+
+ if (full_speed_phy(core_if))
+ val = DWC_HCFG_48_MHZ;
+ else
+ /* High speed PHY running at full speed or high speed */
+ val = DWC_HCFG_30_60_MHZ;
+
+ hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
+ hcfg.b.fslspclksel = val;
+ dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32);
+}
+
+/**
+ * Initializes the DevSpd field of the DCFG register depending on the PHY type
+ * and the enumeration speed of the device.
+ */
+static void init_devspd(struct core_if *core_if)
+{
+ u32 val;
+ union dcfg_data dcfg;
+
+ if (full_speed_phy(core_if))
+ val = 0x3;
+ else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL)
+ /* High speed PHY running at full speed */
+ val = 0x1;
+ else
+ /* High speed PHY running at high speed */
+ val = 0x0;
+
+ dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
+ dcfg.b.devspd = val;
+ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
+}
+
+/**
+ * This function calculates the number of IN EPS using GHWCFG1 and GHWCFG2
+ * registers values
+ */
+static u32 calc_num_in_eps(struct core_if *core_if)
+{
+ u32 num_in_eps = 0;
+ u32 num_eps = core_if->hwcfg2.b.num_dev_ep;
+ u32 hwcfg1 = core_if->hwcfg1.d32 >> 2;
+ u32 num_tx_fifos = core_if->hwcfg4.b.num_in_eps;
+ u32 i;
+
+ for (i = 0; i < num_eps; ++i) {
+ if (!(hwcfg1 & 0x1))
+ num_in_eps++;
+ hwcfg1 >>= 2;
+ }
+
+ if (core_if->hwcfg4.b.ded_fifo_en)
+ num_in_eps = num_in_eps > num_tx_fifos ?
+ num_tx_fifos : num_in_eps;
+
+ return num_in_eps;
+}
+
+/**
+ * This function calculates the number of OUT EPS using GHWCFG1 and GHWCFG2
+ * registers values
+ */
+static u32 calc_num_out_eps(struct core_if *core_if)
+{
+ u32 num_out_eps = 0;
+ u32 num_eps = core_if->hwcfg2.b.num_dev_ep;
+ u32 hwcfg1 = core_if->hwcfg1.d32 >> 2;
+ u32 i;
+
+ for (i = 0; i < num_eps; ++i) {
+ if (!(hwcfg1 & 0x2))
+ num_out_eps++;
+ hwcfg1 >>= 2;
+ }
+ return num_out_eps;
+}
+
+/**
+ * Do core a soft reset of the core. Be careful with this because it
+ * resets all the internal state machines of the core.
+ */
+static void dwc_otg_core_reset(struct core_if *core_if)
+{
+ struct core_global_regs *global_regs = core_if->core_global_regs;
+ union grstctl_data greset = {.d32 = 0};
+ int count = 0;
+
+ /* Wait for AHB master IDLE state. */
+ do {
+ udelay(10);
+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
+ if (++count > 100000) {
+ printk(KERN_WARNING
+ "%s() HANG! AHB Idle GRSTCTL=%0x\n",
+ __func__, greset.d32);
+ return;
+ }
+ } while (!greset.b.ahbidle);
+
+ /* Core Soft Reset */
+ count = 0;
+ greset.b.csftrst = 1;
+ dwc_write_reg32(&global_regs->grstctl, greset.d32);
+
+ do {
+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
+ if (++count > 10000) {
+ printk(KERN_WARNING "%s() HANG! Soft Reset "
+ "GRSTCTL=%0x\n", __func__, greset.d32);
+ break;
+ }
+ udelay(1);
+ } while (greset.b.csftrst);
+
+ /* Wait for 3 PHY Clocks */
+ msleep(100);
+}
+
+/**
+ * This function initializes the commmon interrupts, used in both
+ * device and host modes.
+ */
+void dwc_otg_enable_common_interrupts(struct core_if *core_if)
+{
+ struct core_global_regs *global_regs = core_if->core_global_regs;
+ union gintmsk_data intr_mask = {.d32 = 0};
+
+ /* Clear any pending OTG Interrupts */
+ dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF);
+
+ /* Clear any pending interrupts */
+ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
+
+ /* Enable the interrupts in the GINTMSK. */
+ intr_mask.b.modemismatch = 1;
+ intr_mask.b.otgintr = 1;
+ intr_mask.b.conidstschng = 1;
+ intr_mask.b.wkupintr = 1;
+ intr_mask.b.disconnect = 1;
+ intr_mask.b.usbsuspend = 1;
+ intr_mask.b.sessreqintr = 1;
+ if (!core_if->dma_enable)
+ intr_mask.b.rxstsqlvl = 1;
+ dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32);
+}
+
+/**
+ * This function initializes the DWC_otg controller registers and prepares the
+ * core for device mode or host mode operation.
+ */
+void dwc_otg_core_init(struct core_if *core_if)
+{
+ u32 i;
+ struct core_global_regs *global_regs = core_if->core_global_regs;
+ struct device_if *dev_if = core_if->dev_if;
+ union gahbcfg_data ahbcfg = {.d32 = 0};
+ union gusbcfg_data usbcfg = {.d32 = 0};
+ union gi2cctl_data i2cctl = {.d32 = 0};
+
+ /* Common Initialization */
+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+
+ /* Program the ULPI External VBUS bit if needed */
+ usbcfg.b.ulpi_ext_vbus_drv = 1;
+
+ /* Set external TS Dline pulsing */
+ usbcfg.b.term_sel_dl_pulse = core_if->core_params->ts_dline == 1 ?
+ 1 : 0;
+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+
+ /* Reset the Controller */
+ dwc_otg_core_reset(core_if);
+
+ /* Initialize parameters from Hardware configuration registers. */
+ dev_if->num_in_eps = calc_num_in_eps(core_if);
+ dev_if->num_out_eps = calc_num_out_eps(core_if);
+
+ for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
+ dev_if->perio_tx_fifo_size[i] =
+ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
+ }
+ for (i = 0; i < core_if->hwcfg4.b.num_in_eps; i++) {
+ dev_if->tx_fifo_size[i] =
+ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
+ }
+
+ core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth;
+ core_if->rx_fifo_size = dwc_read_reg32(&global_regs->grxfsiz);
+ core_if->nperio_tx_fifo_size =
+ dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
+ /*
+ * This programming sequence needs to happen in FS mode before any
+ * other programming occurs
+ */
+ if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL &&
+ core_if->core_params->phy_type ==
+ DWC_PHY_TYPE_PARAM_FS) {
+ /*
+ * core_init() is now called on every switch so only call the
+ * following for the first time through.
+ */
+ if (!core_if->phy_init_done) {
+ core_if->phy_init_done = 1;
+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+ usbcfg.b.physel = 1;
+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+
+ /* Reset after a PHY select */
+ dwc_otg_core_reset(core_if);
+ }
+
+ /*
+ * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS.
+ * Also do this on HNP Dev/Host mode switches (done in dev_init
+ * and host_init).
+ */
+ if (dwc_otg_is_host_mode(core_if))
+ init_fslspclksel(core_if);
+ else
+ init_devspd(core_if);
+
+ if (core_if->core_params->i2c_enable) {
+ /* Program GUSBCFG.OtgUtmifsSel to I2C */
+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+ usbcfg.b.otgutmifssel = 1;
+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+
+ /* Program GI2CCTL.I2CEn */
+ i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
+ i2cctl.b.i2cdevaddr = 1;
+ i2cctl.b.i2cen = 0;
+ dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32);
+ i2cctl.b.i2cen = 1;
+ dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32);
+ }
+ } else if (!core_if->phy_init_done) {
+ /*
+ * High speed PHY. These parameters are preserved during soft
+ * reset so only program them the first time. Do a soft reset
+ * immediately after setting phyif.
+ */
+ core_if->phy_init_done = 1;
+ usbcfg.b.ulpi_utmi_sel = core_if->core_params->phy_type;
+ if (usbcfg.b.ulpi_utmi_sel == 1) {
+ /* ULPI interface */
+ usbcfg.b.phyif = 0;
+ usbcfg.b.ddrsel = core_if->core_params->phy_ulpi_ddr;
+ } else {
+ /* UTMI+ interface */
+ if (core_if->core_params->phy_utmi_width == 16)
+ usbcfg.b.phyif = 1;
+ else
+ usbcfg.b.phyif = 0;
+ }
+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+
+ /* Reset after setting the PHY parameters */
+ dwc_otg_core_reset(core_if);
+ }
+
+ if (core_if->hwcfg2.b.hs_phy_type == 2 &&
+ core_if->hwcfg2.b.fs_phy_type == 1 &&
+ core_if->core_params->ulpi_fs_ls) {
+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+ usbcfg.b.ulpi_fsls = 1;
+ usbcfg.b.ulpi_clk_sus_m = 1;
+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+ } else {
+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+ usbcfg.b.ulpi_fsls = 0;
+ usbcfg.b.ulpi_clk_sus_m = 0;
+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+ }
+
+ /* Program the GAHBCFG Register. */
+ switch (core_if->hwcfg2.b.architecture) {
+ case DWC_SLAVE_ONLY_ARCH:
+ ahbcfg.b.nptxfemplvl_txfemplvl =
+ DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
+ ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
+ core_if->dma_enable = 0;
+ break;
+ case DWC_EXT_DMA_ARCH:
+ ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size;
+ core_if->dma_enable = (core_if->core_params->dma_enable != 0);
+ break;
+ case DWC_INT_DMA_ARCH:
+ ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
+ core_if->dma_enable = (core_if->core_params->dma_enable != 0);
+ break;
+ }
+
+ ahbcfg.b.dmaenable = core_if->dma_enable;
+ dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
+ core_if->en_multiple_tx_fifo = core_if->hwcfg4.b.ded_fifo_en;
+
+ /* Program the GUSBCFG register. */
+ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
+ switch (core_if->hwcfg2.b.op_mode) {
+ case DWC_MODE_HNP_SRP_CAPABLE:
+ usbcfg.b.hnpcap = (core_if->core_params->otg_cap ==
+ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
+ break;
+ case DWC_MODE_SRP_ONLY_CAPABLE:
+ usbcfg.b.hnpcap = 0;
+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
+ break;
+ case DWC_MODE_NO_HNP_SRP_CAPABLE:
+ usbcfg.b.hnpcap = 0;
+ usbcfg.b.srpcap = 0;
+ break;
+ case DWC_MODE_SRP_CAPABLE_DEVICE:
+ usbcfg.b.hnpcap = 0;
+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
+ break;
+ case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
+ usbcfg.b.hnpcap = 0;
+ usbcfg.b.srpcap = 0;
+ break;
+ case DWC_MODE_SRP_CAPABLE_HOST:
+ usbcfg.b.hnpcap = 0;
+ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
+ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
+ break;
+ case DWC_MODE_NO_SRP_CAPABLE_HOST:
+ usbcfg.b.hnpcap = 0;
+ usbcfg.b.srpcap = 0;
+ break;
+ }
+ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
+
+ /* Enable common interrupts */
+ dwc_otg_enable_common_interrupts(core_if);
+
+ /*
+ * Do device or host intialization based on mode during PCD
+ * and HCD initialization
+ */
+ if (dwc_otg_is_host_mode(core_if)) {
+ core_if->xceiv->state = OTG_STATE_A_HOST;
+ } else {
+ core_if->xceiv->state = OTG_STATE_B_PERIPHERAL;
+ if (dwc_has_feature(core_if, DWC_DEVICE_ONLY))
+ dwc_otg_core_dev_init(core_if);
+ }
+}
+
+/**
+ * This function enables the Device mode interrupts.
+ *
+ * Note that the bits in the Device IN endpoint mask register are laid out
+ * exactly the same as the Device IN endpoint interrupt register.
+ */
+static void dwc_otg_enable_device_interrupts(struct core_if *core_if)
+{
+ union gintmsk_data intr_mask = {.d32 = 0};
+ union diepint_data msk = {.d32 = 0};
+ struct core_global_regs *global_regs = core_if->core_global_regs;
+
+ /* Disable all interrupts. */
+ dwc_write_reg32(&global_regs->gintmsk, 0);
+
+ /* Clear any pending interrupts */
+ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
+
+ /* Enable the common interrupts */
+ dwc_otg_enable_common_interrupts(core_if);
+
+ /* Enable interrupts */
+ intr_mask.b.usbreset = 1;
+ intr_mask.b.enumdone = 1;
+ intr_mask.b.inepintr = 1;
+ intr_mask.b.outepintr = 1;
+ intr_mask.b.erlysuspend = 1;
+ if (!core_if->en_multiple_tx_fifo)
+ intr_mask.b.epmismatch = 1;
+
+ /* Periodic EP */
+ intr_mask.b.isooutdrop = 1;
+ intr_mask.b.eopframe = 1;
+ intr_mask.b.incomplisoin = 1;
+ intr_mask.b.incomplisoout = 1;
+
+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
+
+ msk.b.txfifoundrn = 1;
+ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepmsk,
+ msk.d32, msk.d32);
+}
+
+/**
+ * Configures the device data fifo sizes when dynamic sizing is enabled.
+ */
+static void config_dev_dynamic_fifos(struct core_if *core_if)
+{
+ u32 i;
+ struct core_global_regs *regs = core_if->core_global_regs;
+ struct core_params *params = core_if->core_params;
+ union fifosize_data txsize;
+ union fifosize_data nptxsize;
+ union fifosize_data ptxsize;
+
+ /* Rx FIFO */
+ dwc_write_reg32(®s->grxfsiz, params->dev_rx_fifo_size);
+
+ /* Set Periodic and Non-periodic Tx FIFO Mask bits to all 0 */
+ core_if->p_tx_msk = 0;
+ core_if->tx_msk = 0;
+
+ if (core_if->en_multiple_tx_fifo == 0) {
+ /* Non-periodic Tx FIFO */
+ nptxsize.b.depth = params->dev_nperio_tx_fifo_size;
+ nptxsize.b.startaddr = params->dev_rx_fifo_size;
+ dwc_write_reg32(®s->gnptxfsiz, nptxsize.d32);
+
+ /*
+ * Periodic Tx FIFOs These FIFOs are numbered from 1 to
+ * 15. Indexes of the FIFO size module parameters in the
+ * dev_perio_tx_fifo_size array and the FIFO size
+ * registers in the dptxfsiz array run from 0 to 14.
+ */
+ ptxsize.b.startaddr = nptxsize.b.startaddr + nptxsize.b.depth;
+ for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
+ ptxsize.b.depth = params->dev_perio_tx_fifo_size[i];
+ dwc_write_reg32(®s->dptxfsiz_dieptxf[i],
+ ptxsize.d32);
+ ptxsize.b.startaddr += ptxsize.b.depth;
+ }
+ } else {
+ /*
+ * Non-periodic Tx FIFOs These FIFOs are numbered from
+ * 1 to 15. Indexes of the FIFO size module parameters
+ * in the dev_tx_fifo_size array and the FIFO size
+ * registers in the dptxfsiz_dieptxf array run from 0 to
+ * 14.
+ */
+ nptxsize.b.depth = params->dev_nperio_tx_fifo_size;
+ nptxsize.b.startaddr = params->dev_rx_fifo_size;
+ dwc_write_reg32(®s->gnptxfsiz, nptxsize.d32);
+
+ txsize.b.startaddr = nptxsize.b.startaddr + nptxsize.b.depth;
+ for (i = 1; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
+ txsize.b.depth = params->dev_tx_fifo_size[i];
+ dwc_write_reg32(®s->dptxfsiz_dieptxf[i - 1],
+ txsize.d32);
+ txsize.b.startaddr += txsize.b.depth;
+ }
+ }
+}
+
+/**
+ * This function initializes the DWC_otg controller registers for
+ * device mode.
+ */
+void dwc_otg_core_dev_init(struct core_if *c_if)
+{
+ u32 i;
+ struct device_if *d_if = c_if->dev_if;
+ struct core_params *params = c_if->core_params;
+ union dcfg_data dcfg = {.d32 = 0};
+ union grstctl_data resetctl = {.d32 = 0};
+ union dthrctl_data dthrctl;
+
+ /* Restart the Phy Clock */
+ dwc_write_reg32(c_if->pcgcctl, 0);
+
+ /* Device configuration register */
+ init_devspd(c_if);
+ dcfg.d32 = dwc_read_reg32(&d_if->dev_global_regs->dcfg);
+ dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
+ dwc_write_reg32(&d_if->dev_global_regs->dcfg, dcfg.d32);
+
+ /* If needed configure data FIFO sizes */
+ if (c_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo)
+ config_dev_dynamic_fifos(c_if);
+
+ /* Flush the FIFOs */
+ dwc_otg_flush_tx_fifo(c_if, DWC_GRSTCTL_TXFNUM_ALL);
+ dwc_otg_flush_rx_fifo(c_if);
+
+ /* Flush the Learning Queue. */
+ resetctl.b.intknqflsh = 1;
+ dwc_write_reg32(&c_if->core_global_regs->grstctl, resetctl.d32);
+
+ /* Clear all pending Device Interrupts */
+ dwc_write_reg32(&d_if->dev_global_regs->diepmsk, 0);
+ dwc_write_reg32(&d_if->dev_global_regs->doepmsk, 0);
+ dwc_write_reg32(&d_if->dev_global_regs->daint, 0xFFFFFFFF);
+ dwc_write_reg32(&d_if->dev_global_regs->daintmsk, 0);
+
+ for (i = 0; i <= d_if->num_in_eps; i++) {
+ union depctl_data depctl;
+
+ depctl.d32 = dwc_read_reg32(&d_if->in_ep_regs[i]->diepctl);
+ if (depctl.b.epena) {
+ depctl.d32 = 0;
+ depctl.b.epdis = 1;
+ depctl.b.snak = 1;
+ } else {
+ depctl.d32 = 0;
+ }
+
+ dwc_write_reg32(&d_if->in_ep_regs[i]->diepctl, depctl.d32);
+ dwc_write_reg32(&d_if->in_ep_regs[i]->dieptsiz, 0);
+ dwc_write_reg32(&d_if->in_ep_regs[i]->diepdma, 0);
+ dwc_write_reg32(&d_if->in_ep_regs[i]->diepint, 0xFF);
+ }
+
+ for (i = 0; i <= d_if->num_out_eps; i++) {
+ union depctl_data depctl;
+ depctl.d32 = dwc_read_reg32(&d_if->out_ep_regs[i]->doepctl);
+ if (depctl.b.epena) {
+ depctl.d32 = 0;
+ depctl.b.epdis = 1;
+ depctl.b.snak = 1;
+ } else {
+ depctl.d32 = 0;
+ }
+ dwc_write_reg32(&d_if->out_ep_regs[i]->doepctl, depctl.d32);
+ dwc_write_reg32(&d_if->out_ep_regs[i]->doeptsiz, 0);
+ dwc_write_reg32(&d_if->out_ep_regs[i]->doepdma, 0);
+ dwc_write_reg32(&d_if->out_ep_regs[i]->doepint, 0xFF);
+ }
+
+ if (c_if->en_multiple_tx_fifo && c_if->dma_enable) {
+ d_if->non_iso_tx_thr_en = c_if->core_params->thr_ctl & 0x1;
+ d_if->iso_tx_thr_en = (c_if->core_params->thr_ctl >> 1) & 0x1;
+ d_if->rx_thr_en = (c_if->core_params->thr_ctl >> 2) & 0x1;
+ d_if->rx_thr_length = c_if->core_params->rx_thr_length;
+ d_if->tx_thr_length = c_if->core_params->tx_thr_length;
+
+ dthrctl.d32 = 0;
+ dthrctl.b.non_iso_thr_en = d_if->non_iso_tx_thr_en;
+ dthrctl.b.iso_thr_en = d_if->iso_tx_thr_en;
+ dthrctl.b.tx_thr_len = d_if->tx_thr_length;
+ dthrctl.b.rx_thr_en = d_if->rx_thr_en;
+ dthrctl.b.rx_thr_len = d_if->rx_thr_length;
+ dwc_write_reg32(&d_if->dev_global_regs->dtknqr3_dthrctl,
+ dthrctl.d32);
+
+ }
+
+ dwc_otg_enable_device_interrupts(c_if);
+}
+
+/**
+ * This function reads a packet from the Rx FIFO into the destination buffer.
+ * To read SETUP data use dwc_otg_read_setup_packet.
+ */
+void dwc_otg_read_packet(struct core_if *core_if, u8 *dest,
+ u16 _bytes)
+{
+ u32 i;
+ int word_count = (_bytes + 3) / 4;
+ u32 *fifo = core_if->data_fifo[0];
+ u32 *data_buff = (u32 *) dest;
+
+ /*
+ * This requires reading data from the FIFO into a u32 temp buffer,
+ * then moving it into the data buffer.
+ */
+ for (i = 0; i < word_count; i++, data_buff++)
+ *data_buff = dwc_read_datafifo32(fifo);
+}
+
+/**
+ * Flush a Tx FIFO.
+ */
+void dwc_otg_flush_tx_fifo(struct core_if *core_if, const int num)
+{
+ struct core_global_regs *global_regs = core_if->core_global_regs;
+ union grstctl_data greset = {.d32 = 0 };
+ int count = 0;
+
+ greset.b.txfflsh = 1;
+ greset.b.txfnum = num;
+ dwc_write_reg32(&global_regs->grstctl, greset.d32);
+
+ do {
+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
+ if (++count > 10000) {
+ printk(KERN_WARNING "%s() HANG! GRSTCTL=%0x "
+ "GNPTXSTS=0x%08x\n", __func__, greset.d32,
+ dwc_read_reg32(&global_regs->gnptxsts));
+ break;
+ }
+ udelay(1);
+ } while (greset.b.txfflsh == 1);
+
+ /* Wait for 3 PHY Clocks */
+ udelay(1);
+}
+
+/**
+ * Flush Rx FIFO.
+ */
+void dwc_otg_flush_rx_fifo(struct core_if *core_if)
+{
+ struct core_global_regs *global_regs = core_if->core_global_regs;
+ union grstctl_data greset = {.d32 = 0 };
+ int count = 0;
+
+ greset.b.rxfflsh = 1;
+ dwc_write_reg32(&global_regs->grstctl, greset.d32);
+
+ do {
+ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
+ if (++count > 10000) {
+ printk(KERN_WARNING "%s() HANG! GRSTCTL=%0x\n",
+ __func__, greset.d32);
+ break;
+ }
+ udelay(1);
+ } while (greset.b.rxfflsh);
+
+ /* Wait for 3 PHY Clocks */
+ udelay(1);
+}
+
+/**
+ * Register HCD callbacks.
+ * The callbacks are used to start and stop the HCD for interrupt processing.
+ */
+void __devinit dwc_otg_cil_register_hcd_callbacks(struct core_if *c_if,
+ struct cil_callbacks *cb, void *p)
+{
+ c_if->hcd_cb = cb;
+ cb->p = p;
+}
+
+/**
+ * Register PCD callbacks.
+ * The callbacks are used to start and stop the PCD for interrupt processing.
+ */
+void __devinit dwc_otg_cil_register_pcd_callbacks(struct core_if *c_if,
+ struct cil_callbacks *cb, void *p)
+{
+ c_if->pcd_cb = cb;
+ cb->p = p;
+}
+
+/**
+ * This function is called to initialize the DWC_otg CSR data structures.
+ *
+ * The register addresses in the device and host structures are initialized from
+ * the base address supplied by the caller. The calling function must make the
+ * OS calls to get the base address of the DWC_otg controller registers.
+ *
+ * The params argument holds the parameters that specify how the core should be
+ * configured.
+ */
+struct core_if __devinit *dwc_otg_cil_init(const u32 *base,
+ struct core_params *params)
+{
+ struct core_if *core_if = NULL;
+ struct device_if *dev_if = NULL;
+ struct dwc_host_if *host_if = NULL;
+ u8 *reg_base = (u8 *) base;
+ u32 offset;
+ u32 i;
+
+ core_if = kzalloc(sizeof(*core_if), GFP_KERNEL);
+ if (!core_if)
+ return NULL;
+
+ core_if->core_params = params;
+ core_if->core_global_regs = (struct core_global_regs *) reg_base;
+
+ /* Allocate the Device Mode structures. */
+ dev_if = kmalloc(sizeof(*dev_if), GFP_KERNEL);
+ if (!dev_if) {
+ kfree(core_if);
+ return NULL;
+ }
+
+ dev_if->dev_global_regs = (struct device_global_regs *) (reg_base +
+ DWC_DEV_GLOBAL_REG_OFFSET);
+
+ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
+ offset = i * DWC_EP_REG_OFFSET;
+
+ dev_if->in_ep_regs[i] = (struct device_in_ep_regs *)
+ (reg_base + DWC_DEV_IN_EP_REG_OFFSET + offset);
+
+ dev_if->out_ep_regs[i] = (struct device_out_ep_regs *)
+ (reg_base + DWC_DEV_OUT_EP_REG_OFFSET + offset);
+ }
+
+ dev_if->speed = 0; /* unknown */
+ core_if->dev_if = dev_if;
+
+ /* Allocate the Host Mode structures. */
+ host_if = kmalloc(sizeof(*host_if), GFP_KERNEL);
+ if (!host_if) {
+ kfree(dev_if);
+ kfree(core_if);
+ return NULL;
+ }
+
+ host_if->host_global_regs = (struct host_global_regs *)
+ (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
+
+ host_if->hprt0 = (u32 *) (reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
+
+ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
+ offset = i * DWC_OTG_CHAN_REGS_OFFSET;
+
+ host_if->hc_regs[i] = (struct dwc_hc_regs *)
+ (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET + offset);
+ }
+
+ host_if->num_host_channels = MAX_EPS_CHANNELS;
+ core_if->host_if = host_if;
+ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
+ core_if->data_fifo[i] =
+ (u32 *) (reg_base + DWC_OTG_DATA_FIFO_OFFSET +
+ (i * DWC_OTG_DATA_FIFO_SIZE));
+ }
+ core_if->pcgcctl = (u32 *) (reg_base + DWC_OTG_PCGCCTL_OFFSET);
+
+ /*
+ * Store the contents of the hardware configuration registers here for
+ * easy access later.
+ */
+ core_if->hwcfg1.d32 =
+ dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
+ core_if->hwcfg2.d32 =
+ dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
+
+ core_if->hwcfg2.b.architecture = DWC_ARCH;
+
+ core_if->hwcfg3.d32 =
+ dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
+ core_if->hwcfg4.d32 =
+ dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
+
+ /* Set the SRP sucess bit for FS-I2c */
+ core_if->srp_success = 0;
+ core_if->srp_timer_started = 0;
+ return core_if;
+}
+
+/**
+ * This function frees the structures allocated by dwc_otg_cil_init().
+ */
+void dwc_otg_cil_remove(struct core_if *core_if)
+{
+ /* Disable all interrupts */
+ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0);
+ dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0);
+
+ if (core_if) {
+ kfree(core_if->dev_if);
+ kfree(core_if->host_if);
+ }
+ kfree(core_if);
+}
diff --git a/drivers/usb/dwc_otg/dwc_otg_cil.h b/drivers/usb/dwc_otg/dwc_otg_cil.h
new file mode 100644
index 0000000..46981a2
--- /dev/null
+++ b/drivers/usb/dwc_otg/dwc_otg_cil.h
@@ -0,0 +1,1194 @@
+/*
+ * DesignWare HS OTG controller driver
+ *
+ * Author: Mark Miesfeld <mmiesfeld at apm.com>
+ *
+ * Based on versions provided by APM and Synopsis which are:
+ * Copyright (C) 2009-2010 AppliedMicro(www.apm.com)
+ * Modified by Stefan Roese <sr at denx.de>, DENX Software Engineering
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#if !defined(__DWC_CIL_H__)
+#define __DWC_CIL_H__
+#include <linux/io.h>
+#include <linux/usb/ch9.h>
+#include <linux/usb/gadget.h>
+#include <linux/interrupt.h>
+#include <linux/dmapool.h>
+#include <linux/spinlock.h>
+#include <linux/usb/otg.h>
+
+#include "dwc_otg_regs.h"
+
+#ifdef CONFIG_DWC_SLAVE
+#define DWC_ARCH DWC_SLAVE_ONLY_ARCH
+#else
+#define DWC_ARCH DWC_INT_DMA_ARCH
+#endif
+
+#ifdef CONFIG_DWC_DEBUG
+#define DEBUG
+#endif
+
+/**
+ * Reads the content of a register.
+ */
+static inline u32 dwc_read_reg32(u32 *reg)
+{
+#ifdef CONFIG_DWC_OTG_REG_LE
+ return in_le32(reg);
+#else
+ return in_be32(reg);
+#endif
+};
+
+/**
+ * Writes a register with a 32 bit value.
+ */
+static inline void dwc_write_reg32(u32 *reg, const u32 value)
+{
+#ifdef CONFIG_DWC_OTG_REG_LE
+ out_le32(reg, value);
+#else
+ out_be32(reg, value);
+#endif
+};
+
+/**
+ * This function modifies bit values in a register. Using the
+ * algorithm: (reg_contents & ~clear_mask) | set_mask.
+ */
+static inline
+void dwc_modify_reg32(u32 *_reg, const u32 _clear_mask,
+ const u32 _set_mask)
+{
+#ifdef CONFIG_DWC_OTG_REG_LE
+ out_le32(_reg, (in_le32(_reg) & ~_clear_mask) | _set_mask);
+#else
+ out_be32(_reg, (in_be32(_reg) & ~_clear_mask) | _set_mask);
+#endif
+};
+
+static inline void dwc_write_datafifo32(u32 *reg, const u32 _value)
+{
+#ifdef CONFIG_DWC_OTG_FIFO_LE
+ out_le32(reg, _value);
+#else
+ out_be32(reg, _value);
+#endif
+};
+
+static inline u32 dwc_read_datafifo32(u32 *_reg)
+{
+#ifdef CONFIG_DWC_OTG_FIFO_LE
+ return in_le32(_reg);
+#else
+ return in_be32(_reg);
+#endif
+};
+
+/*
+ * Debugging support vanishes in non-debug builds.
+ */
+/* Display CIL Debug messages */
+#define dwc_dbg_cil (0x2)
+
+/* Display CIL Verbose debug messages */
+#define dwc_dbg_cilv (0x20)
+
+/* Display PCD (Device) debug messages */
+#define dwc_dbg_pcd (0x4)
+
+/* Display PCD (Device) Verbose debug messages */
+#define dwc_dbg_pcdv (0x40)
+
+/* Display Host debug messages */
+#define dwc_dbg_hcd (0x8)
+
+/* Display Verbose Host debug messages */
+#define dwc_dbg_hcdv (0x80)
+
+/* Display enqueued URBs in host mode. */
+#define dwc_dbg_hcd_urb (0x800)
+
+/* Display "special purpose" debug messages */
+#define dwc_dbg_sp (0x400)
+
+/* Display all debug messages */
+#define dwc_dbg_any (0xFF)
+
+/* All debug messages off */
+#define dwc_dbg_off 0
+
+/* Prefix string for DWC_DEBUG print macros. */
+#define usb_dwc "dwc_otg: "
+
+/*
+ * This file contains the interface to the Core Interface Layer.
+ */
+
+/*
+ * Added-sr: 2007-07-26
+ *
+ * Since the 405EZ (Ultra) only support 2047 bytes as
+ * max transfer size, we have to split up bigger transfers
+ * into multiple transfers of 1024 bytes sized messages.
+ * I happens often, that transfers of 4096 bytes are
+ * required (zero-gadget, file_storage-gadget).
+ *
+ * MAX_XFER_LEN is set to 1024 right now, but could be 2047,
+ * since the xfer-size field in the 405EZ USB device controller
+ * implementation has 11 bits. Using 1024 seems to work for now.
+ */
+#define MAX_XFER_LEN 1024
+
+/*
+ * The dwc_ep structure represents the state of a single endpoint when acting in
+ * device mode. It contains the data items needed for an endpoint to be
+ * activated and transfer packets.
+ */
+struct dwc_ep {
+ /* EP number used for register address lookup */
+ u8 num;
+ /* EP direction 0 = OUT */
+ unsigned is_in:1;
+ /* EP active. */
+ unsigned active:1;
+
+ /*
+ * Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use
+ * non-periodic Tx FIFO If dedicated Tx FIFOs are enabled for all
+ * IN Eps - Tx FIFO # FOR IN EPs
+ */
+ unsigned tx_fifo_num:4;
+ /* EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */
+ unsigned type:2;
+#define DWC_OTG_EP_TYPE_CONTROL 0
+#define DWC_OTG_EP_TYPE_ISOC 1
+#define DWC_OTG_EP_TYPE_BULK 2
+#define DWC_OTG_EP_TYPE_INTR 3
+
+ /* DATA start PID for INTR and BULK EP */
+ unsigned data_pid_start:1;
+ /* Frame (even/odd) for ISOC EP */
+ unsigned even_odd_frame:1;
+ /* Max Packet bytes */
+ unsigned maxpacket:11;
+
+ u32 dma_addr;
+
+ /*
+ * Pointer to the beginning of the transfer buffer -- do not modify
+ * during transfer.
+ */
+ u8 *start_xfer_buff;
+ /* pointer to the transfer buffer */
+ u8 *xfer_buff;
+ /* Number of bytes to transfer */
+ unsigned xfer_len:19;
+ /* Number of bytes transferred. */
+ unsigned xfer_count:19;
+ /* Sent ZLP */
+ unsigned sent_zlp:1;
+ /* Total len for control transfer */
+ unsigned total_len:19;
+
+ /* stall clear flag */
+ unsigned stall_clear_flag:1;
+
+ /*
+ * Added-sr: 2007-07-26
+ *
+ * Since the 405EZ (Ultra) only support 2047 bytes as
+ * max transfer size, we have to split up bigger transfers
+ * into multiple transfers of 1024 bytes sized messages.
+ * I happens often, that transfers of 4096 bytes are
+ * required (zero-gadget, file_storage-gadget).
+ *
+ * "bytes_pending" will hold the amount of bytes that are
+ * still pending to be send in further messages to complete
+ * the bigger transfer.
+ */
+ u32 bytes_pending;
+};
+
+
+/*
+ * States of EP0.
+ */
+enum ep0_state {
+ EP0_DISCONNECT = 0, /* no host */
+ EP0_IDLE = 1,
+ EP0_IN_DATA_PHASE = 2,
+ EP0_OUT_DATA_PHASE = 3,
+ EP0_STATUS = 4,
+ EP0_STALL = 5,
+};
+
+/* Fordward declaration.*/
+struct dwc_pcd;
+
+/*
+ * This structure describes an EP, there is an array of EPs in the PCD
+ * structure.
+ */
+struct pcd_ep {
+ /* USB EP data */
+ struct usb_ep ep;
+ /* USB EP Descriptor */
+ const struct usb_endpoint_descriptor *desc;
+
+ /* queue of dwc_otg_pcd_requests. */
+ struct list_head queue;
+ unsigned stopped:1;
+ unsigned disabling:1;
+ unsigned dma:1;
+ unsigned queue_sof:1;
+
+ /* DWC_otg ep data. */
+ struct dwc_ep dwc_ep;
+
+ /* Pointer to PCD */
+ struct dwc_pcd *pcd;
+};
+
+/*
+ * DWC_otg PCD Structure.
+ * This structure encapsulates the data for the dwc_otg PCD.
+ */
+struct dwc_pcd {
+ /* USB gadget */
+ struct usb_gadget gadget;
+ /* USB gadget driver pointer*/
+ struct usb_gadget_driver *driver;
+ /* The DWC otg device pointer. */
+ struct dwc_otg_device *otg_dev;
+
+ /* State of EP0 */
+ enum ep0_state ep0state;
+ /* EP0 Request is pending */
+ unsigned ep0_pending:1;
+ /* Indicates when SET CONFIGURATION Request is in process */
+ unsigned request_config:1;
+ /* The state of the Remote Wakeup Enable. */
+ unsigned remote_wakeup_enable:1;
+ /* The state of the B-Device HNP Enable. */
+ unsigned b_hnp_enable:1;
+ /* The state of A-Device HNP Support. */
+ unsigned a_hnp_support:1;
+ /* The state of the A-Device Alt HNP support. */
+ unsigned a_alt_hnp_support:1;
+ /* Count of pending Requests */
+ unsigned request_pending;
+
+ /*
+ * SETUP packet for EP0. This structure is allocated as a DMA buffer on
+ * PCD initialization with enough space for up to 3 setup packets.
+ */
+ union {
+ struct usb_ctrlrequest req;
+ u32 d32[2];
+ } *setup_pkt;
+
+ struct dma_pool *dwc_pool;
+ dma_addr_t setup_pkt_dma_handle;
+
+ /* 2-byte dma buffer used to return status from GET_STATUS */
+ u16 *status_buf;
+ dma_addr_t status_buf_dma_handle;
+
+ /* Array of EPs. */
+ struct pcd_ep ep0;
+ /* Array of IN EPs. */
+ struct pcd_ep in_ep[MAX_EPS_CHANNELS - 1];
+ /* Array of OUT EPs. */
+ struct pcd_ep out_ep[MAX_EPS_CHANNELS - 1];
+ spinlock_t lock;
+ /*
+ * Timer for SRP. If it expires before SRP is successful clear the
+ * SRP.
+ */
+ struct timer_list srp_timer;
+
+ /*
+ * Tasklet to defer starting of TEST mode transmissions until Status
+ * Phase has been completed.
+ */
+ struct tasklet_struct test_mode_tasklet;
+
+ /* Tasklet to delay starting of xfer in DMA mode */
+ struct tasklet_struct *start_xfer_tasklet;
+
+ /* The test mode to enter when the tasklet is executed. */
+ unsigned test_mode;
+};
+
+/*
+ * This structure holds the state of the HCD, including the non-periodic and
+ * periodic schedules.
+ */
+struct dwc_hcd {
+ spinlock_t lock;
+
+ /* DWC OTG Core Interface Layer */
+ struct core_if *core_if;
+
+ /* Internal DWC HCD Flags */
+ union dwc_otg_hcd_internal_flags {
+ u32 d32;
+ struct {
+ unsigned port_connect_status_change:1;
+ unsigned port_connect_status:1;
+ unsigned port_reset_change:1;
+ unsigned port_enable_change:1;
+ unsigned port_suspend_change:1;
+ unsigned port_over_current_change:1;
+ unsigned reserved:27;
+ } b;
+ } flags;
+
+ /*
+ * Inactive items in the non-periodic schedule. This is a list of
+ * Queue Heads. Transfers associated with these Queue Heads are not
+ * currently assigned to a host channel.
+ */
+ struct list_head non_periodic_sched_inactive;
+
+ /*
+ * Deferred items in the non-periodic schedule. This is a list of
+ * Queue Heads. Transfers associated with these Queue Heads are not
+ * currently assigned to a host channel.
+ * When we get an NAK, the QH goes here.
+ */
+ struct list_head non_periodic_sched_deferred;
+
+ /*
+ * Active items in the non-periodic schedule. This is a list of
+ * Queue Heads. Transfers associated with these Queue Heads are
+ * currently assigned to a host channel.
+ */
+ struct list_head non_periodic_sched_active;
+
+ /*
+ * Pointer to the next Queue Head to process in the active
+ * non-periodic schedule.
+ */
+ struct list_head *non_periodic_qh_ptr;
+
+ /*
+ * Inactive items in the periodic schedule. This is a list of QHs for
+ * periodic transfers that are _not_ scheduled for the next frame.
+ * Each QH in the list has an interval counter that determines when it
+ * needs to be scheduled for execution. This scheduling mechanism
+ * allows only a simple calculation for periodic bandwidth used (i.e.
+ * must assume that all periodic transfers may need to execute in the
+ * same frame). However, it greatly simplifies scheduling and should
+ * be sufficient for the vast majority of OTG hosts, which need to
+ * connect to a small number of peripherals at one time.
+ *
+ * Items move from this list to periodic_sched_ready when the QH
+ * interval counter is 0 at SOF.
+ */
+ struct list_head periodic_sched_inactive;
+
+ /*
+ * List of periodic QHs that are ready for execution in the next
+ * frame, but have not yet been assigned to host channels.
+ *
+ * Items move from this list to periodic_sched_assigned as host
+ * channels become available during the current frame.
+ */
+ struct list_head periodic_sched_ready;
+
+ /*
+ * List of periodic QHs to be executed in the next frame that are
+ * assigned to host channels.
+ *
+ * Items move from this list to periodic_sched_queued as the
+ * transactions for the QH are queued to the DWC_otg controller.
+ */
+ struct list_head periodic_sched_assigned;
+
+ /*
+ * List of periodic QHs that have been queued for execution.
+ *
+ * Items move from this list to either periodic_sched_inactive or
+ * periodic_sched_ready when the channel associated with the transfer
+ * is released. If the interval for the QH is 1, the item moves to
+ * periodic_sched_ready because it must be rescheduled for the next
+ * frame. Otherwise, the item moves to periodic_sched_inactive.
+ */
+ struct list_head periodic_sched_queued;
+
+ /*
+ * Total bandwidth claimed so far for periodic transfers. This value
+ * is in microseconds per (micro)frame. The assumption is that all
+ * periodic transfers may occur in the same (micro)frame.
+ */
+ u16 periodic_usecs;
+
+ /*
+ * Total bandwidth claimed so far for all periodic transfers
+ * in a frame.
+ * This will include a mixture of HS and FS transfers.
+ * Units are microseconds per (micro)frame.
+ * We have a budget per frame and have to schedule
+ * transactions accordingly.
+ * Watch out for the fact that things are actually scheduled for the
+ * "next frame".
+ */
+ u16 frame_usecs[8];
+
+ /*
+ * Frame number read from the core at SOF. The value ranges from 0 to
+ * DWC_HFNUM_MAX_FRNUM.
+ */
+ u16 frame_number;
+
+ /*
+ * Free host channels in the controller. This is a list of
+ * struct dwc_hc items.
+ */
+ struct list_head free_hc_list;
+
+ /*
+ * Number of available host channels.
+ */
+ u32 available_host_channels;
+
+ /*
+ * Array of pointers to the host channel descriptors. Allows accessing
+ * a host channel descriptor given the host channel number. This is
+ * useful in interrupt handlers.
+ */
+ struct dwc_hc *hc_ptr_array[MAX_EPS_CHANNELS];
+
+ /*
+ * Buffer to use for any data received during the status phase of a
+ * control transfer. Normally no data is transferred during the status
+ * phase. This buffer is used as a bit bucket.
+ */
+ u8 *status_buf;
+
+ /*
+ * DMA address for status_buf.
+ */
+ dma_addr_t status_buf_dma;
+#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
+
+ /*
+ * Structure to allow starting the HCD in a non-interrupt context
+ * during an OTG role change.
+ */
+ struct work_struct start_work;
+ struct usb_hcd *_p;
+
+ /*
+ * Connection timer. An OTG host must display a message if the device
+ * does not connect. Started when the VBus power is turned on via
+ * sysfs attribute "buspower".
+ */
+ struct timer_list conn_timer;
+
+ /* workqueue for port wakeup */
+ struct work_struct usb_port_reset;
+};
+
+/*
+ * Reasons for halting a host channel.
+ */
+enum dwc_halt_status {
+ DWC_OTG_HC_XFER_NO_HALT_STATUS,
+ DWC_OTG_HC_XFER_COMPLETE,
+ DWC_OTG_HC_XFER_URB_COMPLETE,
+ DWC_OTG_HC_XFER_ACK,
+ DWC_OTG_HC_XFER_NAK,
+ DWC_OTG_HC_XFER_NYET,
+ DWC_OTG_HC_XFER_STALL,
+ DWC_OTG_HC_XFER_XACT_ERR,
+ DWC_OTG_HC_XFER_FRAME_OVERRUN,
+ DWC_OTG_HC_XFER_BABBLE_ERR,
+ DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
+ DWC_OTG_HC_XFER_AHB_ERR,
+ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
+ DWC_OTG_HC_XFER_URB_DEQUEUE
+};
+
+/*
+ * Host channel descriptor. This structure represents the state of a single
+ * host channel when acting in host mode. It contains the data items needed to
+ * transfer packets to an endpoint via a host channel.
+ */
+struct dwc_hc {
+ /* Host channel number used for register address lookup */
+ u8 hc_num;
+
+ /* Device to access */
+ unsigned dev_addr:7;
+
+ /* EP to access */
+ unsigned ep_num:4;
+
+ /* EP direction. 0: OUT, 1: IN */
+ unsigned ep_is_in:1;
+
+ /*
+ * EP speed.
+ * One of the following values:
+ * - DWC_OTG_EP_SPEED_LOW
+ * - DWC_OTG_EP_SPEED_FULL
+ * - DWC_OTG_EP_SPEED_HIGH
+ */
+ unsigned speed:2;
+#define DWC_OTG_EP_SPEED_LOW 0
+#define DWC_OTG_EP_SPEED_FULL 1
+#define DWC_OTG_EP_SPEED_HIGH 2
+
+ /*
+ * Endpoint type.
+ * One of the following values:
+ * - DWC_OTG_EP_TYPE_CONTROL: 0
+ * - DWC_OTG_EP_TYPE_ISOC: 1
+ * - DWC_OTG_EP_TYPE_BULK: 2
+ * - DWC_OTG_EP_TYPE_INTR: 3
+ */
+ unsigned ep_type:2;
+
+ /* Max packet size in bytes */
+ unsigned max_packet:11;
+
+ /*
+ * PID for initial transaction.
+ * 0: DATA0,
+ * 1: DATA2,
+ * 2: DATA1,
+ * 3: MDATA (non-Control EP),
+ * SETUP (Control EP)
+ */
+ unsigned data_pid_start:2;
+#define DWC_OTG_HC_PID_DATA0 0
+#define DWC_OTG_HC_PID_DATA2 1
+#define DWC_OTG_HC_PID_DATA1 2
+#define DWC_OTG_HC_PID_MDATA 3
+#define DWC_OTG_HC_PID_SETUP 3
+
+ /* Number of periodic transactions per (micro)frame */
+ unsigned multi_count:2;
+
+ /* Pointer to the current transfer buffer position. */
+ u8 *xfer_buff;
+ /* Total number of bytes to transfer. */
+ u32 xfer_len;
+ /* Number of bytes transferred so far. */
+ u32 xfer_count;
+ /* Packet count at start of transfer.*/
+ u16 start_pkt_count;
+
+ /*
+ * Flag to indicate whether the transfer has been started. Set to 1 if
+ * it has been started, 0 otherwise.
+ */
+ u8 xfer_started;
+
+ /*
+ * Set to 1 to indicate that a PING request should be issued on this
+ * channel. If 0, process normally.
+ */
+ u8 do_ping;
+
+ /*
+ * Set to 1 to indicate that the error count for this transaction is
+ * non-zero. Set to 0 if the error count is 0.
+ */
+ u8 error_state;
+
+ /*
+ * Set to 1 to indicate that this channel should be halted the next
+ * time a request is queued for the channel. This is necessary in
+ * slave mode if no request queue space is available when an attempt
+ * is made to halt the channel.
+ */
+ u8 halt_on_queue;
+
+ /*
+ * Set to 1 if the host channel has been halted, but the core is not
+ * finished flushing queued requests. Otherwise 0.
+ */
+ u8 halt_pending;
+
+ /* Reason for halting the host channel. */
+ enum dwc_halt_status halt_status;
+
+ /* Split settings for the host channel */
+ u8 do_split; /* Enable split for the channel */
+ u8 complete_split; /* Enable complete split */
+ u8 hub_addr; /* Address of high speed hub */
+ u8 port_addr; /* Port of the low/full speed device */
+
+ /*
+ * Split transaction position. One of the following values:
+ * - DWC_HCSPLIT_XACTPOS_MID
+ * - DWC_HCSPLIT_XACTPOS_BEGIN
+ * - DWC_HCSPLIT_XACTPOS_END
+ * - DWC_HCSPLIT_XACTPOS_ALL */
+ u8 xact_pos;
+
+ /* Set when the host channel does a short read. */
+ u8 short_read;
+
+ /*
+ * Number of requests issued for this channel since it was assigned to
+ * the current transfer (not counting PINGs).
+ */
+ u8 requests;
+
+ /* Queue Head for the transfer being processed by this channel. */
+ struct dwc_qh *qh;
+
+ /* Entry in list of host channels. */
+ struct list_head hc_list_entry;
+};
+
+/*
+ * The following parameters may be specified when starting the module. These
+ * parameters define how the DWC_otg controller should be configured. Parameter
+ * values are passed to the CIL initialization function dwc_otg_cil_init.
+ */
+struct core_params {
+ int opt;
+#define dwc_param_opt_default 1
+
+ /*
+ * Specifies the OTG capabilities. The driver will automatically
+ * detect the value for this parameter if none is specified.
+ * 0 - HNP and SRP capable (default)
+ * 1 - SRP Only capable
+ * 2 - No HNP/SRP capable
+ */
+ int otg_cap;
+#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
+#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
+#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
+
+#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
+
+ /*
+ * Specifies whether to use slave or DMA mode for accessing the data
+ * FIFOs. The driver will automatically detect the value for this
+ * parameter if none is specified.
+ * 0 - Slave
+ * 1 - DMA (default, if available)
+ */
+ int dma_enable;
+#define dwc_param_dma_enable_default 1
+
+ /*
+ * The DMA Burst size (applicable only for External DMA Mode).
+ * 1, 4, 8 16, 32, 64, 128, 256 (default 32)
+ */
+ int dma_burst_size; /* Translate this to GAHBCFG values */
+#define dwc_param_dma_burst_size_default 32
+
+ /*
+ * Specifies the maximum speed of operation in host and device mode.
+ * The actual speed depends on the speed of the attached device and
+ * the value of phy_type. The actual speed depends on the speed of the
+ * attached device.
+ * 0 - High Speed (default)
+ * 1 - Full Speed
+ */
+ int speed;
+#define dwc_param_speed_default 0
+#define DWC_SPEED_PARAM_HIGH 0
+#define DWC_SPEED_PARAM_FULL 1
+
+ /*
+ * Specifies whether low power mode is supported when attached to a Full
+ * Speed or Low Speed device in host mode.
+ * 0 - Don't support low power mode (default)
+ * 1 - Support low power mode
+ */
+ int host_support_fs_ls_low_power;
+#define dwc_param_host_support_fs_ls_low_power_default 0
+
+ /*
+ * Specifies the PHY clock rate in low power mode when connected to a
+ * Low Speed device in host mode. This parameter is applicable only if
+ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
+ * then defaults to 6 MHZ otherwise 48 MHZ.
+ *
+ * 0 - 48 MHz
+ * 1 - 6 MHz
+ */
+ int host_ls_low_power_phy_clk;
+#define dwc_param_host_ls_low_power_phy_clk_default 0
+#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
+#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
+
+ /*
+ * 0 - Use cC FIFO size parameters
+ * 1 - Allow dynamic FIFO sizing (default)
+ */
+ int enable_dynamic_fifo;
+#define dwc_param_enable_dynamic_fifo_default 1
+
+ /*
+ * Total number of 4-byte words in the data FIFO memory. This
+ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
+ * Tx FIFOs. 32 to 32768 (default 8192)
+ *
+ * Note: The total FIFO memory depth in the FPGA configuration is 8192.
+ */
+ int data_fifo_size;
+#define dwc_param_data_fifo_size_default 8192
+
+ /*
+ * Number of 4-byte words in the Rx FIFO in device mode when dynamic
+ * FIFO sizing is enabled. 16 to 32768 (default 1064)
+ */
+ int dev_rx_fifo_size;
+#define dwc_param_dev_rx_fifo_size_default 1064
+
+ /*
+ * Number of 4-byte words in the non-periodic Tx FIFO in device mode
+ * when dynamic FIFO sizing is enabled. 16 to 32768 (default 1024)
+ */
+ int dev_nperio_tx_fifo_size;
+#define dwc_param_dev_nperio_tx_fifo_size_default 1024
+
+ /*
+ * Number of 4-byte words in each of the periodic Tx FIFOs in device
+ * mode when dynamic FIFO sizing is enabled. 4 to 768 (default 256)
+ */
+ u32 dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
+#define dwc_param_dev_perio_tx_fifo_size_default 256
+
+ /*
+ * Number of 4-byte words in the Rx FIFO in host mode when dynamic
+ * FIFO sizing is enabled. 16 to 32768 (default 1024)
+ */
+ int host_rx_fifo_size;
+#define dwc_param_host_rx_fifo_size_default 1024
+
+ /*
+ * Number of 4-byte words in the non-periodic Tx FIFO in host mode
+ * when Dynamic FIFO sizing is enabled in the core. 16 to 32768
+ * (default 1024)
+ */
+ int host_nperio_tx_fifo_size;
+#define dwc_param_host_nperio_tx_fifo_size_default 1024
+
+ /*
+ Number of 4-byte words in the host periodic Tx FIFO when dynamic
+ * FIFO sizing is enabled. 16 to 32768 (default 1024)
+ */
+ int host_perio_tx_fifo_size;
+#define dwc_param_host_perio_tx_fifo_size_default 1024
+
+ /*
+ * The maximum transfer size supported in bytes. 2047 to 65,535
+ * (default 65,535)
+ */
+ int max_transfer_size;
+#define dwc_param_max_transfer_size_default 65535
+
+ /*
+ * The maximum number of packets in a transfer. 15 to 511 (default 511)
+ */
+ int max_packet_count;
+#define dwc_param_max_packet_count_default 511
+
+ /*
+ * The number of host channel registers to use.
+ * 1 to 16 (default 12)
+ * Note: The FPGA configuration supports a maximum of 12 host channels.
+ */
+ int host_channels;
+#define dwc_param_host_channels_default 12
+
+ /*
+ * The number of endpoints in addition to EP0 available for device
+ * mode operations.
+ * 1 to 15 (default 6 IN and OUT)
+ * Note: The FPGA configuration supports a maximum of 6 IN and OUT
+ * endpoints in addition to EP0.
+ */
+ int dev_endpoints;
+#define dwc_param_dev_endpoints_default 6
+
+ /*
+ * Specifies the type of PHY interface to use. By default, the driver
+ * will automatically detect the phy_type.
+ *
+ * 0 - Full Speed PHY
+ * 1 - UTMI+ (default)
+ * 2 - ULPI
+ */
+ int phy_type;
+#define DWC_PHY_TYPE_PARAM_FS 0
+#define DWC_PHY_TYPE_PARAM_UTMI 1
+#define DWC_PHY_TYPE_PARAM_ULPI 2
+#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
+
+ /*
+ * Specifies the UTMI+ Data Width. This parameter is applicable for a
+ * PHY_TYPE of UTMI+ or ULPI. (For a ULPI PHY_TYPE, this parameter
+ * indicates the data width between the MAC and the ULPI Wrapper.) Also,
+ * this parameter is applicable only if the OTG_HSPHY_WIDTH cC parameter
+ * was set to "8 and 16 bits", meaning that the core has been configured
+ * to work at either data path width.
+ *
+ * 8 or 16 bits (default 16)
+ */
+ int phy_utmi_width;
+#define dwc_param_phy_utmi_width_default 16
+
+ /*
+ * Specifies whether the ULPI operates at double or single
+ * data rate. This parameter is only applicable if PHY_TYPE is
+ * ULPI.
+ *
+ * 0 - single data rate ULPI interface with 8 bit wide data
+ * bus (default)
+ * 1 - double data rate ULPI interface with 4 bit wide data
+ * bus
+ */
+ int phy_ulpi_ddr;
+#define dwc_param_phy_ulpi_ddr_default 0
+
+ /*
+ * Specifies whether to use the internal or external supply to
+ * drive the vbus with a ULPI phy.
+ */
+ int phy_ulpi_ext_vbus;
+#define DWC_PHY_ULPI_INTERNAL_VBUS 0
+#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
+#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
+
+ /*
+ * Specifies whether to use the I2Cinterface for full speed PHY. This
+ * parameter is only applicable if PHY_TYPE is FS.
+ * 0 - No (default)
+ * 1 - Yes
+ */
+ int i2c_enable;
+#define dwc_param_i2c_enable_default 0
+
+ int ulpi_fs_ls;
+#define dwc_param_ulpi_fs_ls_default 0
+
+ int ts_dline;
+#define dwc_param_ts_dline_default 0
+
+ /*
+ * Specifies whether dedicated transmit FIFOs are enabled for non
+ * periodic IN endpoints in device mode
+ * 0 - No
+ * 1 - Yes
+ */
+ int en_multiple_tx_fifo;
+#define dwc_param_en_multiple_tx_fifo_default 1
+
+ /*
+ * Number of 4-byte words in each of the Tx FIFOs in device
+ * mode when dynamic FIFO sizing is enabled. 4 to 768 (default 256)
+ */
+ u32 dev_tx_fifo_size[MAX_TX_FIFOS];
+#define dwc_param_dev_tx_fifo_size_default 256
+
+ /*
+ * Thresholding enable flag
+ * bit 0 - enable non-ISO Tx thresholding
+ * bit 1 - enable ISO Tx thresholding
+ * bit 2 - enable Rx thresholding
+ */
+ u32 thr_ctl;
+#define dwc_param_thr_ctl_default 0
+
+ /* Thresholding length for Tx FIFOs in 32 bit DWORDs */
+ u32 tx_thr_length;
+#define dwc_param_tx_thr_length_default 64
+
+ /* Thresholding length for Rx FIFOs in 32 bit DWORDs */
+ u32 rx_thr_length;
+#define dwc_param_rx_thr_length_default 64
+
+};
+
+/*
+ * The core_if structure contains information needed to manage the
+ * DWC_otg controller acting in either host or device mode. It represents the
+ * programming view of the controller as a whole.
+ */
+struct core_if {
+ /* Parameters that define how the core should be configured.*/
+ struct core_params *core_params;
+
+ /* Core Global registers starting at offset 000h. */
+ struct core_global_regs *core_global_regs;
+
+ /* Device-specific information */
+ struct device_if *dev_if;
+ /* Host-specific information */
+ struct dwc_host_if *host_if;
+
+ /*
+ * Set to 1 if the core PHY interface bits in USBCFG have been
+ * initialized.
+ */
+ u8 phy_init_done;
+
+ /*
+ * SRP Success flag, set by srp success interrupt in FS I2C mode
+ */
+ u8 srp_success;
+ u8 srp_timer_started;
+
+ /* Common configuration information */
+ /* Power and Clock Gating Control Register */
+ u32 *pcgcctl;
+#define DWC_OTG_PCGCCTL_OFFSET 0xE00
+
+ /* Push/pop addresses for endpoints or host channels.*/
+ u32 *data_fifo[MAX_EPS_CHANNELS];
+#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
+#define DWC_OTG_DATA_FIFO_SIZE 0x1000
+
+ /* Total RAM for FIFOs (Bytes) */
+ u16 total_fifo_size;
+ /* Size of Rx FIFO (Bytes) */
+ u16 rx_fifo_size;
+ /* Size of Non-periodic Tx FIFO (Bytes) */
+ u16 nperio_tx_fifo_size;
+
+ /* 1 if DMA is enabled, 0 otherwise. */
+ u8 dma_enable;
+
+ /* 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */
+ u8 en_multiple_tx_fifo;
+
+ /*
+ * Set to 1 if multiple packets of a high-bandwidth transfer is in
+ * process of being queued
+ */
+ u8 queuing_high_bandwidth;
+
+ /* Hardware Configuration -- stored here for convenience.*/
+ union hwcfg1_data hwcfg1;
+ union hwcfg2_data hwcfg2;
+ union hwcfg3_data hwcfg3;
+ union hwcfg4_data hwcfg4;
+
+ /* HCD callbacks */
+ /* include/linux/usb/otg.h */
+
+ /* HCD callbacks */
+ struct cil_callbacks *hcd_cb;
+ /* PCD callbacks */
+ struct cil_callbacks *pcd_cb;
+
+ /* Device mode Periodic Tx FIFO Mask */
+ u32 p_tx_msk;
+ /* Device mode Periodic Tx FIFO Mask */
+ u32 tx_msk;
+
+ /* Features of various DWC implementation */
+ u32 features;
+
+ /* Added to support PLB DMA : phys-virt mapping */
+ resource_size_t phys_addr;
+
+ struct delayed_work usb_port_wakeup;
+ struct work_struct usb_port_otg;
+ struct otg_transceiver *xceiv;
+};
+
+/*
+ * The following functions support initialization of the CIL driver component
+ * and the DWC_otg controller.
+ */
+extern void dwc_otg_core_init(struct core_if *core_if);
+extern void init_fslspclksel(struct core_if *core_if);
+extern void dwc_otg_core_dev_init(struct core_if *core_if);
+extern const char *op_state_str(enum usb_otg_state state);
+extern void dwc_otg_enable_global_interrupts(struct core_if *core_if);
+extern void dwc_otg_disable_global_interrupts(struct core_if *core_if);
+extern void dwc_otg_enable_common_interrupts(struct core_if *core_if);
+
+/**
+ * This function Reads HPRT0 in preparation to modify. It keeps the WC bits 0
+ * so that if they are read as 1, they won't clear when you write it back
+ */
+static inline u32 dwc_otg_read_hprt0(struct core_if *core_if)
+{
+ union hprt0_data hprt0;
+ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
+ hprt0.b.prtena = 0;
+ hprt0.b.prtconndet = 0;
+ hprt0.b.prtenchng = 0;
+ hprt0.b.prtovrcurrchng = 0;
+ return hprt0.d32;
+}
+
+/*
+ * The following functions support managing the DWC_otg controller in either
+ * device or host mode.
+ */
+extern void dwc_otg_read_packet(struct core_if *core_if, u8 *dest,
+ u16 bytes);
+extern void dwc_otg_flush_tx_fifo(struct core_if *core_if, const int _num);
+extern void dwc_otg_flush_rx_fifo(struct core_if *core_if);
+
+#define NP_TXFIFO_EMPTY -1
+#define MAX_NP_TXREQUEST_Q_SLOTS 8
+
+/**
+ * This function returns the Core Interrupt register.
+ */
+static inline u32 dwc_otg_read_core_intr(struct core_if *core_if)
+{
+ return dwc_read_reg32(&core_if->core_global_regs->gintsts) &
+ dwc_read_reg32(&core_if->core_global_regs->gintmsk);
+}
+
+/**
+ * This function returns the mode of the operation, host or device.
+ */
+static inline u32 dwc_otg_mode(struct core_if *core_if)
+{
+ return dwc_read_reg32(&core_if->core_global_regs->gintsts) & 0x1;
+}
+
+static inline u8 dwc_otg_is_device_mode(struct core_if *core_if)
+{
+ return dwc_otg_mode(core_if) != DWC_HOST_MODE;
+}
+static inline u8 dwc_otg_is_host_mode(struct core_if *core_if)
+{
+ return dwc_otg_mode(core_if) == DWC_HOST_MODE;
+}
+
+extern int dwc_otg_handle_common_intr(struct core_if *core_if);
+
+/*
+ * DWC_otg CIL callback structure. This structure allows the HCD and PCD to
+ * register functions used for starting and stopping the PCD and HCD for role
+ * change on for a DRD.
+ */
+struct cil_callbacks {
+ /* Start function for role change */
+ int (*start) (void *_p);
+ /* Stop Function for role change */
+ int (*stop) (void *_p);
+ /* Disconnect Function for role change */
+ int (*disconnect) (void *_p);
+ /* Resume/Remote wakeup Function */
+ int (*resume_wakeup) (void *_p);
+ /* Suspend function */
+ int (*suspend) (void *_p);
+ /* Session Start (SRP) */
+ int (*session_start) (void *_p);
+ /* Pointer passed to start() and stop() */
+ void *p;
+};
+
+extern void dwc_otg_cil_register_pcd_callbacks(struct core_if *core_if,
+ struct cil_callbacks *cb, void *p);
+extern void dwc_otg_cil_register_hcd_callbacks(struct core_if *core_if,
+ struct cil_callbacks *cb, void *p);
+
+#define DWC_LIMITED_XFER 0x00000000
+#define DWC_DEVICE_ONLY 0x00000000
+#define DWC_HOST_ONLY 0x00000000
+
+#ifdef CONFIG_DWC_LIMITED_XFER_SIZE
+#undef DWC_LIMITED_XFER
+#define DWC_LIMITED_XFER 0x00000001
+#endif
+
+#ifdef CONFIG_DWC_DEVICE_ONLY
+#undef DWC_DEVICE_ONLY
+#define DWC_DEVICE_ONLY 0x00000002
+static inline void dwc_otg_hcd_remove(struct device *dev)
+{
+}
+static inline int dwc_otg_hcd_init(struct device *_dev,
+ struct dwc_otg_device *dwc_dev)
+{
+ return 0;
+}
+#else
+extern int __init dwc_otg_hcd_init(struct device *_dev,
+ struct dwc_otg_device *dwc_dev);
+extern void dwc_otg_hcd_remove(struct device *_dev);
+#endif
+
+#ifdef CONFIG_DWC_HOST_ONLY
+#undef DWC_HOST_ONLY
+#define DWC_HOST_ONLY 0x00000004
+static inline void dwc_otg_pcd_remove(struct device *dev)
+{
+}
+static inline int dwc_otg_pcd_init(struct device *dev)
+{
+ return 0;
+}
+#else
+extern void dwc_otg_pcd_remove(struct device *dev);
+extern int __init dwc_otg_pcd_init(struct device *dev);
+#endif
+
+extern void dwc_otg_cil_remove(struct core_if *core_if);
+extern struct core_if __devinit *dwc_otg_cil_init(const u32 *base,
+ struct core_params *params);
+
+static inline void dwc_set_feature(struct core_if *core_if)
+{
+ core_if->features = DWC_LIMITED_XFER | DWC_DEVICE_ONLY | DWC_HOST_ONLY;
+}
+
+static inline int dwc_has_feature(struct core_if *core_if,
+ unsigned long feature)
+{
+ return core_if->features & feature;
+}
+#endif
diff --git a/drivers/usb/dwc_otg/dwc_otg_cil_intr.c b/drivers/usb/dwc_otg/dwc_otg_cil_intr.c
new file mode 100644
index 0000000..bb11834
--- /dev/null
+++ b/drivers/usb/dwc_otg/dwc_otg_cil_intr.c
@@ -0,0 +1,631 @@
+/*
+ * DesignWare HS OTG controller driver
+ *
+ * Author: Mark Miesfeld <mmiesfeld at apm.com>
+ *
+ * Based on versions provided by APM and Synopsis which are:
+ * Copyright (C) 2009-2010 AppliedMicro(www.apm.com)
+ * Modified by Stefan Roese <sr at denx.de>, DENX Software Engineering
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+/*
+ * The Core Interface Layer provides basic services for accessing and
+ * managing the DWC_otg hardware. These services are used by both the
+ * Host Controller Driver and the Peripheral Controller Driver.
+ *
+ * This file contains the Common Interrupt handlers.
+ */
+#include <linux/delay.h>
+
+#include "dwc_otg_cil.h"
+
+/**
+ * This function will log a debug message
+ */
+static int dwc_otg_handle_mode_mismatch_intr(struct core_if *core_if)
+{
+ union gintsts_data gintsts;
+
+ printk(KERN_WARNING "Mode Mismatch Interrupt: currently in %s mode\n",
+ dwc_otg_mode(core_if) ? "Host" : "Device");
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.modemismatch = 1;
+ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
+
+ return 1;
+}
+
+/**
+ * Start the HCD. Helper function for using the HCD callbacks.
+ */
+static inline void hcd_start(struct core_if *core_if)
+{
+ if (core_if->hcd_cb && core_if->hcd_cb->start)
+ core_if->hcd_cb->start(core_if->hcd_cb->p);
+}
+
+/**
+ * Stop the HCD. Helper function for using the HCD callbacks.
+ */
+static inline void hcd_stop(struct core_if *core_if)
+{
+ if (core_if->hcd_cb && core_if->hcd_cb->stop)
+ core_if->hcd_cb->stop(core_if->hcd_cb->p);
+}
+
+/**
+ * Disconnect the HCD. Helper function for using the HCD callbacks.
+ */
+static inline void hcd_disconnect(struct core_if *core_if)
+{
+ if (core_if->hcd_cb && core_if->hcd_cb->disconnect)
+ core_if->hcd_cb->disconnect(core_if->hcd_cb->p);
+}
+
+/**
+ * Inform the HCD the a New Session has begun. Helper function for using the
+ * HCD callbacks.
+ */
+static inline void hcd_session_start(struct core_if *core_if)
+{
+ if (core_if->hcd_cb && core_if->hcd_cb->session_start)
+ core_if->hcd_cb->session_start(core_if->hcd_cb->p);
+}
+
+/**
+ * Start the PCD. Helper function for using the PCD callbacks.
+ */
+static inline void pcd_start(struct core_if *core_if)
+{
+ if (core_if->pcd_cb && core_if->pcd_cb->start) {
+ struct dwc_pcd *pcd;
+
+ pcd = (struct dwc_pcd *)core_if->pcd_cb->p;
+ spin_lock(&pcd->lock);
+ core_if->pcd_cb->start(core_if->pcd_cb->p);
+ spin_unlock(&pcd->lock);
+ }
+}
+
+/**
+ * Stop the PCD. Helper function for using the PCD callbacks.
+ */
+static inline void pcd_stop(struct core_if *core_if)
+{
+ if (core_if->pcd_cb && core_if->pcd_cb->stop) {
+ struct dwc_pcd *pcd;
+
+ pcd = (struct dwc_pcd *)core_if->pcd_cb->p;
+ spin_lock(&pcd->lock);
+ core_if->pcd_cb->stop(core_if->pcd_cb->p);
+ spin_unlock(&pcd->lock);
+ }
+}
+
+/**
+ * Suspend the PCD. Helper function for using the PCD callbacks.
+ */
+static inline void pcd_suspend(struct core_if *core_if)
+{
+ if (core_if->pcd_cb && core_if->pcd_cb->suspend) {
+ struct dwc_pcd *pcd;
+
+ pcd = (struct dwc_pcd *)core_if->pcd_cb->p;
+ spin_lock(&pcd->lock);
+ core_if->pcd_cb->suspend(core_if->pcd_cb->p);
+ spin_unlock(&pcd->lock);
+ }
+}
+
+/**
+ * Resume the PCD. Helper function for using the PCD callbacks.
+ */
+static inline void pcd_resume(struct core_if *core_if)
+{
+ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
+ struct dwc_pcd *pcd;
+
+ pcd = (struct dwc_pcd *)core_if->pcd_cb->p;
+ spin_lock(&pcd->lock);
+ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
+ spin_unlock(&pcd->lock);
+ }
+}
+
+/**
+ * This function handles the OTG Interrupts. It reads the OTG
+ * Interrupt Register (GOTGINT) to determine what interrupt has
+ * occurred.
+ */
+static int dwc_otg_handle_otg_intr(struct core_if *core_if)
+{
+ struct core_global_regs *global_regs = core_if->core_global_regs;
+ union gotgint_data gotgint;
+ union gotgctl_data gotgctl;
+ union gintmsk_data gintmsk;
+
+ gotgint.d32 = dwc_read_reg32(&global_regs->gotgint);
+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
+
+ if (gotgint.b.sesenddet) {
+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
+ if (core_if->xceiv->state == OTG_STATE_B_HOST) {
+ pcd_start(core_if);
+ core_if->xceiv->state = OTG_STATE_B_PERIPHERAL;
+ } else {
+ /*
+ * If not B_HOST and Device HNP still set. HNP did not
+ * succeed
+ */
+ if (gotgctl.b.devhnpen)
+ printk(KERN_ERR "Device Not Connected / "
+ "Responding\n");
+ /*
+ * If Session End Detected the B-Cable has been
+ * disconnected. Reset PCD and Gadget driver to a
+ * clean state.
+ */
+ pcd_stop(core_if);
+ }
+ gotgctl.d32 = 0;
+ gotgctl.b.devhnpen = 1;
+ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
+ }
+ if (gotgint.b.sesreqsucstschng) {
+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
+ if (gotgctl.b.sesreqscs) {
+ if (core_if->core_params->phy_type ==
+ DWC_PHY_TYPE_PARAM_FS &&
+ core_if->core_params->i2c_enable) {
+ core_if->srp_success = 1;
+ } else {
+ pcd_resume(core_if);
+
+ /* Clear Session Request */
+ gotgctl.d32 = 0;
+ gotgctl.b.sesreq = 1;
+ dwc_modify_reg32(&global_regs->gotgctl,
+ gotgctl.d32, 0);
+ }
+ }
+ }
+ if (gotgint.b.hstnegsucstschng) {
+ /*
+ * Print statements during the HNP interrupt handling can cause
+ * it to fail.
+ */
+ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
+ if (gotgctl.b.hstnegscs) {
+ if (dwc_otg_is_host_mode(core_if)) {
+ core_if->xceiv->state = OTG_STATE_B_HOST;
+ /*
+ * Need to disable SOF interrupt immediately.
+ * When switching from device to host, the PCD
+ * interrupt handler won't handle the
+ * interrupt if host mode is already set. The
+ * HCD interrupt handler won't get called if
+ * the HCD state is HALT. This means that the
+ * interrupt does not get handled and Linux
+ * complains loudly.
+ */
+ gintmsk.d32 = 0;
+ gintmsk.b.sofintr = 1;
+ dwc_modify_reg32(&global_regs->gintmsk,
+ gintmsk.d32, 0);
+ pcd_stop(core_if);
+ /* Initialize the Core for Host mode. */
+ hcd_start(core_if);
+ core_if->xceiv->state = OTG_STATE_B_HOST;
+ }
+ } else {
+ gotgctl.d32 = 0;
+ gotgctl.b.hnpreq = 1;
+ gotgctl.b.devhnpen = 1;
+ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
+
+ printk(KERN_ERR "Device Not Connected / Responding\n");
+ }
+ }
+ if (gotgint.b.hstnegdet) {
+ /*
+ * The disconnect interrupt is set at the same time as
+ * Host Negotiation Detected. During the mode
+ * switch all interrupts are cleared so the disconnect
+ * interrupt handler will not get executed.
+ */
+ if (dwc_otg_is_device_mode(core_if)) {
+ hcd_disconnect(core_if);
+ pcd_start(core_if);
+ core_if->xceiv->state = OTG_STATE_A_PERIPHERAL;
+ } else {
+ /*
+ * Need to disable SOF interrupt immediately. When
+ * switching from device to host, the PCD interrupt
+ * handler won't handle the interrupt if host mode is
+ * already set. The HCD interrupt handler won't get
+ * called if the HCD state is HALT. This means that
+ * the interrupt does not get handled and Linux
+ * complains loudly.
+ */
+ gintmsk.d32 = 0;
+ gintmsk.b.sofintr = 1;
+ dwc_modify_reg32(&global_regs->gintmsk, gintmsk.d32, 0);
+ pcd_stop(core_if);
+ hcd_start(core_if);
+ core_if->xceiv->state = OTG_STATE_A_HOST;
+ }
+ }
+ if (gotgint.b.adevtoutchng)
+ printk(KERN_INFO " ++OTG Interrupt: A-Device Timeout "
+ "Change++\n");
+ if (gotgint.b.debdone)
+ printk(KERN_INFO " ++OTG Interrupt: Debounce Done++\n");
+
+ /* Clear GOTGINT */
+ dwc_write_reg32(&core_if->core_global_regs->gotgint, gotgint.d32);
+ return 1;
+}
+
+/*
+ * Wakeup Workqueue implementation
+ */
+static void port_otg_wqfunc(struct work_struct *work)
+{
+ struct core_if *core_if = container_of(work, struct core_if,
+ usb_port_otg);
+ u32 count = 0;
+ union gotgctl_data gotgctl = {.d32 = 0};
+
+ printk(KERN_INFO "%s\n", __func__);
+ gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
+ if (gotgctl.b.conidsts) {
+ /*
+ * B-Device connector (device mode) wait for switch to device
+ * mode.
+ */
+ while (!dwc_otg_is_device_mode(core_if) && ++count <= 10000) {
+ printk(KERN_INFO "Waiting for Peripheral Mode, "
+ "Mode=%s\n", dwc_otg_is_host_mode(core_if) ?
+ "Host" : "Peripheral");
+ msleep(100);
+ }
+ BUG_ON(count > 10000);
+ core_if->xceiv->state = OTG_STATE_B_PERIPHERAL;
+ dwc_otg_core_init(core_if);
+ dwc_otg_enable_global_interrupts(core_if);
+ pcd_start(core_if);
+ } else {
+ /*
+ * A-Device connector (host mode) wait for switch to host
+ * mode.
+ */
+ while (!dwc_otg_is_host_mode(core_if) && ++count <= 10000) {
+ printk(KERN_INFO "Waiting for Host Mode, Mode=%s\n",
+ dwc_otg_is_host_mode(core_if) ?
+ "Host" : "Peripheral");
+ msleep(100);
+ }
+ BUG_ON(count > 10000);
+ core_if->xceiv->state = OTG_STATE_A_HOST;
+ dwc_otg_core_init(core_if);
+ dwc_otg_enable_global_interrupts(core_if);
+ hcd_start(core_if);
+ }
+}
+
+/**
+ * This function handles the Connector ID Status Change Interrupt. It
+ * reads the OTG Interrupt Register (GOTCTL) to determine whether this
+ * is a Device to Host Mode transition or a Host Mode to Device
+ * Transition.
+ *
+ * This only occurs when the cable is connected/removed from the PHY
+ * connector.
+ */
+static int dwc_otg_handle_conn_id_status_change_intr(struct core_if *core_if)
+{
+ union gintsts_data gintsts = {.d32 = 0};
+ union gintmsk_data gintmsk = {.d32 = 0};
+
+ /*
+ * Need to disable SOF interrupt immediately. If switching from device
+ * to host, the PCD interrupt handler won't handle the interrupt if
+ * host mode is already set. The HCD interrupt handler won't get
+ * called if the HCD state is HALT. This means that the interrupt does
+ * not get handled and Linux complains loudly.
+ */
+ gintmsk.b.sofintr = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
+
+ INIT_WORK(&core_if->usb_port_otg, port_otg_wqfunc);
+ schedule_work(&core_if->usb_port_otg);
+
+ /* Set flag and clear interrupt */
+ gintsts.b.conidstschng = 1;
+ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
+ return 1;
+}
+
+/**
+ * This interrupt indicates that a device is initiating the Session
+ * Request Protocol to request the host to turn on bus power so a new
+ * session can begin. The handler responds by turning on bus power. If
+ * the DWC_otg controller is in low power mode, the handler brings the
+ * controller out of low power mode before turning on bus power.
+ */
+static int dwc_otg_handle_session_req_intr(struct core_if *core_if)
+{
+ union gintsts_data gintsts;
+
+ if (!dwc_has_feature(core_if, DWC_HOST_ONLY)) {
+ union hprt0_data hprt0;
+
+ if (dwc_otg_is_device_mode(core_if)) {
+ printk(KERN_INFO "SRP: Device mode\n");
+ } else {
+ printk(KERN_INFO "SRP: Host mode\n");
+
+ /* Turn on the port power bit. */
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtpwr = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+
+ /*
+ * Start the Connection timer.
+ * A message can be displayed,
+ * if connect does not occur within 10 seconds.
+ */
+ hcd_session_start(core_if);
+ }
+ }
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.sessreqintr = 1;
+ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
+ return 1;
+}
+
+/**
+ * This interrupt indicates that the DWC_otg controller has detected a
+ * resume or remote wakeup sequence. If the DWC_otg controller is in
+ * low power mode, the handler must brings the controller out of low
+ * power mode. The controller automatically begins resume
+ * signaling. The handler schedules a time to stop resume signaling.
+ */
+static int dwc_otg_handle_wakeup_detected_intr(struct core_if *core_if)
+{
+ union gintsts_data gintsts;
+ struct device_if *dev_if = core_if->dev_if;
+
+ if (dwc_otg_is_device_mode(core_if)) {
+ union dctl_data dctl = {.d32 = 0};
+
+ /* Clear the Remote Wakeup Signalling */
+ dctl.b.rmtwkupsig = 1;
+ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, 0);
+
+ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup)
+ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
+ } else {
+ union pcgcctl_data pcgcctl = {.d32 = 0};
+
+ /* Restart the Phy Clock */
+ pcgcctl.b.stoppclk = 1;
+ dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0);
+ schedule_delayed_work(&core_if->usb_port_wakeup, 10);
+ }
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.wkupintr = 1;
+ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
+ return 1;
+}
+
+/**
+ * This interrupt indicates that a device has been disconnected from
+ * the root port.
+ */
+static int dwc_otg_handle_disconnect_intr(struct core_if *core_if)
+{
+ union gintsts_data gintsts;
+ struct core_global_regs *global_regs = core_if->core_global_regs;
+
+ if (!dwc_has_feature(core_if, DWC_HOST_ONLY)) {
+ if (core_if->xceiv->state == OTG_STATE_B_HOST) {
+ hcd_disconnect(core_if);
+ pcd_start(core_if);
+ core_if->xceiv->state = OTG_STATE_B_PERIPHERAL;
+ } else if (dwc_otg_is_device_mode(core_if)) {
+ union gotgctl_data gotgctl = {.d32 = 0};
+
+ gotgctl.d32 =
+ dwc_read_reg32(&global_regs->gotgctl);
+
+ /*
+ * If HNP is in process, do nothing.
+ * The OTG "Host Negotiation Detected"
+ * interrupt will do the mode switch.
+ * Otherwise, since we are in device mode,
+ * disconnect and stop the HCD,
+ * then start the PCD.
+ */
+ if (!gotgctl.b.devhnpen) {
+ hcd_disconnect(core_if);
+ pcd_start(core_if);
+ core_if->xceiv->state = OTG_STATE_B_PERIPHERAL;
+ }
+ } else if (core_if->xceiv->state == OTG_STATE_A_HOST) {
+ /* A-Cable still connected but device disconnected. */
+ hcd_disconnect(core_if);
+ }
+ }
+ gintsts.d32 = 0;
+ gintsts.b.disconnect = 1;
+ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
+ return 1;
+}
+
+/**
+ * This interrupt indicates that SUSPEND state has been detected on
+ * the USB.
+ *
+ * For HNP the USB Suspend interrupt signals the change from
+ * "a_peripheral" to "a_host".
+ *
+ * When power management is enabled the core will be put in low power
+ * mode.
+ */
+static int dwc_otg_handle_usb_suspend_intr(struct core_if *core_if)
+{
+ union dsts_data dsts;
+ union gintsts_data gintsts;
+ struct device_if *dev_if = core_if->dev_if;
+
+ if (dwc_otg_is_device_mode(core_if)) {
+ struct dwc_pcd *pcd;
+ /*
+ * Check the Device status register to determine if the Suspend
+ * state is active.
+ */
+ dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
+ /* PCD callback for suspend. */
+ pcd = (struct dwc_pcd *)core_if->pcd_cb->p;
+ pcd_suspend(core_if);
+ } else {
+ if (core_if->xceiv->state == OTG_STATE_A_PERIPHERAL) {
+ /* Clear the a_peripheral flag, back to a_host. */
+ pcd_stop(core_if);
+ hcd_start(core_if);
+ core_if->xceiv->state = OTG_STATE_A_HOST;
+ }
+ }
+
+ /* Clear interrupt */
+ gintsts.d32 = 0;
+ gintsts.b.usbsuspend = 1;
+ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
+ return 1;
+}
+
+/**
+ * This function returns the Core Interrupt register.
+ *
+ * Although the Host Port interrupt (portintr) is documented as host mode
+ * only, it appears to occur in device mode when Port Enable / Disable Changed
+ * bit in HPRT0 is set. The code in dwc_otg_handle_common_intr checks if in
+ * device mode and just clears the interrupt.
+ */
+static inline u32 dwc_otg_read_common_intr(struct core_if *core_if)
+{
+ union gintsts_data gintsts;
+ union gintmsk_data gintmsk;
+ union gintmsk_data gintmsk_common = {.d32 = 0};
+
+ gintmsk_common.b.wkupintr = 1;
+ gintmsk_common.b.sessreqintr = 1;
+ gintmsk_common.b.conidstschng = 1;
+ gintmsk_common.b.otgintr = 1;
+ gintmsk_common.b.modemismatch = 1;
+ gintmsk_common.b.disconnect = 1;
+ gintmsk_common.b.usbsuspend = 1;
+ gintmsk_common.b.portintr = 1;
+
+ gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts);
+ gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk);
+
+ return (gintsts.d32 & gintmsk.d32) & gintmsk_common.d32;
+}
+
+/**
+ * Common interrupt handler.
+ *
+ * The common interrupts are those that occur in both Host and Device mode.
+ * This handler handles the following interrupts:
+ * - Mode Mismatch Interrupt
+ * - Disconnect Interrupt
+ * - OTG Interrupt
+ * - Connector ID Status Change Interrupt
+ * - Session Request Interrupt.
+ * - Resume / Remote Wakeup Detected Interrupt.
+ *
+ * - Host Port Interrupt. Although this interrupt is documented as only
+ * occurring in Host mode, it also occurs in Device mode when Port Enable /
+ * Disable Changed bit in HPRT0 is set. If it is seen here, while in Device
+ * mode, the interrupt is just cleared.
+ *
+ */
+int dwc_otg_handle_common_intr(struct core_if *core_if)
+{
+ int retval = 0;
+ union gintsts_data gintsts;
+
+ gintsts.d32 = dwc_otg_read_common_intr(core_if);
+
+ if (gintsts.b.modemismatch)
+ retval |= dwc_otg_handle_mode_mismatch_intr(core_if);
+ if (gintsts.b.otgintr)
+ retval |= dwc_otg_handle_otg_intr(core_if);
+ if (gintsts.b.conidstschng)
+ retval |= dwc_otg_handle_conn_id_status_change_intr(core_if);
+ if (gintsts.b.disconnect)
+ retval |= dwc_otg_handle_disconnect_intr(core_if);
+ if (gintsts.b.sessreqintr)
+ retval |= dwc_otg_handle_session_req_intr(core_if);
+ if (gintsts.b.wkupintr)
+ retval |= dwc_otg_handle_wakeup_detected_intr(core_if);
+ if (gintsts.b.usbsuspend)
+ retval |= dwc_otg_handle_usb_suspend_intr(core_if);
+
+ if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) {
+ gintsts.d32 = 0;
+ gintsts.b.portintr = 1;
+ dwc_write_reg32(&core_if->core_global_regs->gintsts,
+ gintsts.d32);
+ retval |= 1;
+ printk(KERN_INFO "RECEIVED PORTINT while in Device mode\n");
+ }
+
+ return retval;
+}
diff --git a/drivers/usb/dwc_otg/dwc_otg_driver.h b/drivers/usb/dwc_otg/dwc_otg_driver.h
new file mode 100644
index 0000000..65c7c87
--- /dev/null
+++ b/drivers/usb/dwc_otg/dwc_otg_driver.h
@@ -0,0 +1,94 @@
+/*
+ * DesignWare HS OTG controller driver
+ *
+ * Author: Mark Miesfeld <mmiesfeld at apm.com>
+ *
+ * Based on versions provided by APM and Synopsis which are:
+ * Copyright (C) 2009-2010 AppliedMicro(www.apm.com)
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#if !defined(__DWC_OTG_DRIVER_H__)
+#define __DWC_OTG_DRIVER_H__
+
+/*
+ * This file contains the interface to the Linux driver.
+ */
+#include "dwc_otg_cil.h"
+
+/*
+ * This structure is a wrapper that encapsulates the driver components used to
+ * manage a single DWC_otg controller.
+ */
+struct dwc_otg_device {
+ /* Base address returned from ioremap() */
+ void *base;
+
+ /* Pointer to the core interface structure. */
+ struct core_if *core_if;
+
+ /* Register offset for Diagnostic API.*/
+ u32 reg_offset;
+
+ /* Pointer to the PCD structure. */
+ struct dwc_pcd *pcd;
+
+ /* Pointer to the HCD structure. */
+ struct dwc_hcd *hcd;
+
+ /* Flag to indicate whether the common IRQ handler is installed. */
+ u8 common_irq_installed;
+
+ /* Interrupt request number. */
+ unsigned int irq;
+
+ /*
+ * Physical address of Control and Status registers, used by
+ * release_mem_region().
+ */
+ resource_size_t phys_addr;
+
+ /* Length of memory region, used by release_mem_region(). */
+ unsigned long base_len;
+};
+extern struct core_params dwc_otg_module_params;
+extern int __devinit check_parameters(struct core_if *core_if);
+#endif
diff --git a/drivers/usb/dwc_otg/dwc_otg_hcd.c b/drivers/usb/dwc_otg/dwc_otg_hcd.c
new file mode 100644
index 0000000..2579e3a
--- /dev/null
+++ b/drivers/usb/dwc_otg/dwc_otg_hcd.c
@@ -0,0 +1,2413 @@
+/*
+ * DesignWare HS OTG controller driver
+ *
+ * Author: Mark Miesfeld <mmiesfeld at apm.com>
+ *
+ * Based on versions provided by APM and Synopsis which are:
+ * Copyright (C) 2009-2010 AppliedMicro(www.apm.com)
+ * Modified by Stefan Roese <sr at denx.de>, DENX Software Engineering
+ * Modified by Chuck Meade <chuck at theptrgroup.com>
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+/*
+ * This file contains the implementation of the HCD. In Linux, the HCD
+ * implements the hc_driver API.
+ */
+
+#include <asm/unaligned.h>
+#include <linux/dma-mapping.h>
+
+#include "dwc_otg_hcd.h"
+
+static const char dwc_otg_hcd_name[] = "dwc_otg_hcd";
+
+/**
+ * Clears the transfer state for a host channel. This function is normally
+ * called after a transfer is done and the host channel is being released. It
+ * clears the channel interrupt enables and any unhandled channel interrupt
+ * conditions.
+ */
+void dwc_otg_hc_cleanup(struct core_if *core_if, struct dwc_hc *hc)
+{
+ struct dwc_hc_regs *regs;
+
+ hc->xfer_started = 0;
+ regs = core_if->host_if->hc_regs[hc->hc_num];
+ dwc_write_reg32(®s->hcintmsk, 0);
+ dwc_write_reg32(®s->hcint, 0xFFFFFFFF);
+}
+
+/**
+ * This function enables the Host mode interrupts.
+ */
+static void dwc_otg_enable_host_interrupts(struct core_if *core_if)
+{
+ struct core_global_regs *global_regs = core_if->core_global_regs;
+ union gintmsk_data intr_mask = {.d32 = 0};
+
+ /* Disable all interrupts. */
+ dwc_write_reg32(&global_regs->gintmsk, 0);
+
+ /* Clear any pending interrupts. */
+ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
+
+ /* Enable the common interrupts */
+ dwc_otg_enable_common_interrupts(core_if);
+
+ /*
+ * Enable host mode interrupts without disturbing common
+ * interrupts.
+ */
+ intr_mask.b.sofintr = 1;
+ intr_mask.b.portintr = 1;
+ intr_mask.b.hcintr = 1;
+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
+}
+
+/**
+ * This function initializes the DWC_otg controller registers for
+ * host mode.
+ *
+ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
+ * request queues. Host channels are reset to ensure that they are ready for
+ * performing transfers.
+ */
+static void dwc_otg_core_host_init(struct core_if *core_if)
+{
+ struct core_global_regs *global_regs = core_if->core_global_regs;
+ struct dwc_host_if *host_if = core_if->host_if;
+ struct core_params *params = core_if->core_params;
+ union hprt0_data hprt0 = {.d32 = 0};
+ union fifosize_data nptxfifosize;
+ union fifosize_data ptxfifosize;
+ u32 i;
+ union hcchar_data hcchar;
+ union hcfg_data hcfg;
+ struct dwc_hc_regs *hc_regs;
+ int num_channels;
+ union gotgctl_data gotgctl = {.d32 = 0};
+
+ /* Restart the Phy Clock */
+ dwc_write_reg32(core_if->pcgcctl, 0);
+
+ /* Initialize Host Configuration Register */
+ init_fslspclksel(core_if);
+ if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
+ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
+ hcfg.b.fslssupp = 1;
+ dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
+ }
+
+ /* Configure data FIFO sizes */
+ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
+ /* Rx FIFO */
+ dwc_write_reg32(&global_regs->grxfsiz,
+ params->host_rx_fifo_size);
+
+ /* Non-periodic Tx FIFO */
+ nptxfifosize.b.depth = params->host_nperio_tx_fifo_size;
+ nptxfifosize.b.startaddr = params->host_rx_fifo_size;
+ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
+
+ /* Periodic Tx FIFO */
+ ptxfifosize.b.depth = params->host_perio_tx_fifo_size;
+ ptxfifosize.b.startaddr = nptxfifosize.b.startaddr +
+ nptxfifosize.b.depth;
+ dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
+ }
+
+ /* Clear Host Set HNP Enable in the OTG Control Register */
+ gotgctl.b.hstsethnpen = 1;
+ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
+
+ /* Make sure the FIFOs are flushed. */
+ dwc_otg_flush_tx_fifo(core_if, DWC_GRSTCTL_TXFNUM_ALL);
+ dwc_otg_flush_rx_fifo(core_if);
+
+ /* Flush out any leftover queued requests. */
+ num_channels = core_if->core_params->host_channels;
+ for (i = 0; i < num_channels; i++) {
+ hc_regs = core_if->host_if->hc_regs[i];
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcchar.b.chen = 0;
+ hcchar.b.chdis = 1;
+ hcchar.b.epdir = 0;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+ }
+
+ /* Halt all channels to put them into a known state. */
+ for (i = 0; i < num_channels; i++) {
+ int count = 0;
+
+ hc_regs = core_if->host_if->hc_regs[i];
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcchar.b.chen = 1;
+ hcchar.b.chdis = 1;
+ hcchar.b.epdir = 0;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+ do {
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ if (++count > 200) {
+ printk(KERN_ERR "%s: Unable to clear halt on "
+ "channel %d\n", __func__, i);
+ break;
+ }
+ udelay(100);
+ } while (hcchar.b.chen);
+ }
+
+ /* Turn on the vbus power. */
+ printk(KERN_INFO "Init: Port Power? op_state=%s\n",
+ op_state_str(core_if->xceiv->state));
+
+ if (core_if->xceiv->state == OTG_STATE_A_HOST) {
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ printk(KERN_INFO "Init: Power Port (%d)\n", hprt0.b.prtpwr);
+ if (hprt0.b.prtpwr == 0) {
+ hprt0.b.prtpwr = 1;
+ dwc_write_reg32(host_if->hprt0, hprt0.d32);
+ }
+ }
+ dwc_otg_enable_host_interrupts(core_if);
+}
+
+/**
+ * Initializes dynamic portions of the DWC_otg HCD state.
+ */
+static void hcd_reinit(struct dwc_hcd *hcd)
+{
+ struct list_head *item;
+ int num_channels;
+ u32 i;
+ struct dwc_hc *channel;
+
+ hcd->flags.d32 = 0;
+ hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
+ hcd->available_host_channels = hcd->core_if->core_params->host_channels;
+
+ /*
+ * Put all channels in the free channel list and clean up channel
+ * states.
+ */
+ item = hcd->free_hc_list.next;
+ while (item != &hcd->free_hc_list) {
+ list_del(item);
+ item = hcd->free_hc_list.next;
+ }
+
+ num_channels = hcd->core_if->core_params->host_channels;
+ for (i = 0; i < num_channels; i++) {
+ channel = hcd->hc_ptr_array[i];
+ list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list);
+ dwc_otg_hc_cleanup(hcd->core_if, channel);
+ }
+
+ /* Initialize the DWC core for host mode operation. */
+ dwc_otg_core_host_init(hcd->core_if);
+}
+
+/* Gets the dwc_hcd from a struct usb_hcd */
+static inline struct dwc_hcd *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
+{
+ return (struct dwc_hcd *) hcd->hcd_priv;
+}
+
+/**
+ * Initializes the DWC_otg controller and its root hub and prepares it for host
+ * mode operation. Activates the root port. Returns 0 on success and a negative
+ * error code on failure.
+*/
+static int dwc_otg_hcd_start(struct usb_hcd *hcd)
+{
+ struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+ struct usb_bus *bus = hcd_to_bus(hcd);
+
+ hcd->state = HC_STATE_RUNNING;
+
+ /* Inform the HUB driver to resume. */
+ if (bus->root_hub)
+ usb_hcd_resume_root_hub(hcd);
+
+ hcd_reinit(dwc_hcd);
+ return 0;
+}
+
+/**
+ * Work queue function for starting the HCD when A-Cable is connected.
+ * The dwc_otg_hcd_start() must be called in a process context.
+ */
+static void hcd_start_func(struct work_struct *work)
+{
+ struct dwc_hcd *priv =
+ container_of(work, struct dwc_hcd, start_work);
+ struct usb_hcd *usb_hcd = (struct usb_hcd *) priv->_p;
+
+ if (usb_hcd)
+ dwc_otg_hcd_start(usb_hcd);
+}
+
+/**
+ * HCD Callback function for starting the HCD when A-Cable is
+ * connected.
+ */
+static int dwc_otg_hcd_start_cb(void *_p)
+{
+ struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(_p);
+ struct core_if *core_if = dwc_hcd->core_if;
+ union hprt0_data hprt0;
+
+ if (core_if->xceiv->state == OTG_STATE_B_HOST) {
+ /*
+ * Reset the port. During a HNP mode switch the reset
+ * needs to occur within 1ms and have a duration of at
+ * least 50ms.
+ */
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtrst = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ ((struct usb_hcd *) _p)->self.is_b_host = 1;
+ } else {
+ ((struct usb_hcd *) _p)->self.is_b_host = 0;
+ }
+
+ /* Need to start the HCD in a non-interrupt context. */
+ dwc_hcd->_p = _p;
+ schedule_work(&dwc_hcd->start_work);
+ return 1;
+}
+
+/**
+ * This function disables the Host Mode interrupts.
+ */
+static void dwc_otg_disable_host_interrupts(struct core_if *core_if)
+{
+ struct core_global_regs *global_regs = core_if->core_global_regs;
+ union gintmsk_data intr_mask = {.d32 = 0};
+
+ /*
+ * Disable host mode interrupts without disturbing common
+ * interrupts.
+ */
+ intr_mask.b.sofintr = 1;
+ intr_mask.b.portintr = 1;
+ intr_mask.b.hcintr = 1;
+ intr_mask.b.ptxfempty = 1;
+ intr_mask.b.nptxfempty = 1;
+ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
+}
+
+/**
+ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
+ * stopped.
+ */
+static void dwc_otg_hcd_stop(struct usb_hcd *hcd)
+{
+ struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+ union hprt0_data hprt0 = {.d32 = 0};
+
+ /* Turn off all host-specific interrupts. */
+ dwc_otg_disable_host_interrupts(dwc_hcd->core_if);
+
+ /*
+ * The root hub should be disconnected before this function is called.
+ * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
+ * and the QH lists (via ..._hcd_endpoint_disable).
+ */
+
+ /* Turn off the vbus power */
+ printk(KERN_INFO "PortPower off\n");
+ hprt0.b.prtpwr = 0;
+ dwc_write_reg32(dwc_hcd->core_if->host_if->hprt0, hprt0.d32);
+}
+
+/**
+ * HCD Callback function for stopping the HCD.
+ */
+static int dwc_otg_hcd_stop_cb(void *_p)
+{
+ struct usb_hcd *usb_hcd = (struct usb_hcd *) _p;
+
+ dwc_otg_hcd_stop(usb_hcd);
+ return 1;
+}
+
+static void del_timers(struct dwc_hcd *hcd)
+{
+ del_timer_sync(&hcd->conn_timer);
+}
+
+/**
+ * Processes all the URBs in a single list of QHs. Completes them with
+ * -ETIMEDOUT and frees the QTD.
+ */
+static void kill_urbs_in_qh_list(struct dwc_hcd *hcd, struct list_head *qh_list)
+{
+ struct list_head *qh_item, *q;
+
+ qh_item = qh_list->next;
+ list_for_each_safe(qh_item, q, qh_list) {
+ struct dwc_qh *qh;
+ struct list_head *qtd_item;
+ struct dwc_qtd *qtd;
+
+ qh = list_entry(qh_item, struct dwc_qh, qh_list_entry);
+ qtd_item = qh->qtd_list.next;
+ qtd = list_entry(qtd_item, struct dwc_qtd, qtd_list_entry);
+ if (qtd->urb != NULL) {
+ spin_lock(&hcd->lock);
+ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -ETIMEDOUT);
+ dwc_otg_hcd_qtd_remove_and_free(qtd);
+ spin_unlock(&hcd->lock);
+ }
+ }
+}
+
+/**
+ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
+ * and periodic schedules. The QTD associated with each URB is removed from
+ * the schedule and freed. This function may be called when a disconnect is
+ * detected or when the HCD is being stopped.
+ */
+static void kill_all_urbs(struct dwc_hcd *hcd)
+{
+ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_deferred);
+ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
+ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
+ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
+}
+
+/**
+ * HCD Callback function for disconnect of the HCD.
+ */
+static int dwc_otg_hcd_disconnect_cb(void *_p)
+{
+ union gintsts_data intr;
+ struct dwc_hcd *hcd = hcd_to_dwc_otg_hcd(_p);
+ struct core_if *core_if = hcd->core_if;
+
+ /* Set status flags for the hub driver. */
+ hcd->flags.b.port_connect_status_change = 1;
+ hcd->flags.b.port_connect_status = 0;
+
+ /*
+ * Shutdown any transfers in process by clearing the Tx FIFO Empty
+ * interrupt mask and status bits and disabling subsequent host
+ * channel interrupts.
+ */
+ intr.d32 = 0;
+ intr.b.nptxfempty = 1;
+ intr.b.ptxfempty = 1;
+ intr.b.hcintr = 1;
+ dwc_modify_reg32(gintmsk_reg(hcd), intr.d32, 0);
+ dwc_modify_reg32(gintsts_reg(hcd), intr.d32, 0);
+
+ del_timers(hcd);
+
+ /*
+ * Turn off the vbus power only if the core has transitioned to device
+ * mode. If still in host mode, need to keep power on to detect a
+ * reconnection.
+ */
+ if (dwc_otg_is_device_mode(core_if)) {
+ if (core_if->xceiv->state != OTG_STATE_A_SUSPEND) {
+ union hprt0_data hprt0 = {.d32 = 0};
+
+ printk(KERN_INFO "Disconnect: PortPower off\n");
+ hprt0.b.prtpwr = 0;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ }
+ dwc_otg_disable_host_interrupts(core_if);
+ }
+
+ /* Respond with an error status to all URBs in the schedule. */
+ kill_all_urbs(hcd);
+ if (dwc_otg_is_host_mode(core_if)) {
+ /* Clean up any host channels that were in use. */
+ int num_channels;
+ u32 i;
+ struct dwc_hc *channel;
+ struct dwc_hc_regs *regs;
+ union hcchar_data hcchar;
+
+ num_channels = core_if->core_params->host_channels;
+ if (!core_if->dma_enable) {
+ /* Flush out any channel requests in slave mode. */
+ for (i = 0; i < num_channels; i++) {
+ channel = hcd->hc_ptr_array[i];
+ if (list_empty(&channel->hc_list_entry)) {
+ regs = core_if->host_if->hc_regs[i];
+ hcchar.d32 = dwc_read_reg32(
+ ®s->hcchar);
+
+ if (hcchar.b.chen) {
+ hcchar.b.chen = 0;
+ hcchar.b.chdis = 1;
+ hcchar.b.epdir = 0;
+ dwc_write_reg32(®s->hcchar,
+ hcchar.d32);
+ }
+ }
+ }
+ }
+
+ for (i = 0; i < num_channels; i++) {
+ channel = hcd->hc_ptr_array[i];
+ if (list_empty(&channel->hc_list_entry)) {
+ regs = core_if->host_if->hc_regs[i];
+ hcchar.d32 = dwc_read_reg32(®s->hcchar);
+
+ if (hcchar.b.chen) {
+ /* Halt the channel. */
+ hcchar.b.chdis = 1;
+ dwc_write_reg32(®s->hcchar,
+ hcchar.d32);
+ }
+ dwc_otg_hc_cleanup(core_if, channel);
+ list_add_tail(&channel->hc_list_entry,
+ &hcd->free_hc_list);
+ }
+ }
+ }
+
+ /*
+ * A disconnect will end the session so the B-Device is no
+ * longer a B-host.
+ */
+ ((struct usb_hcd *) _p)->self.is_b_host = 0;
+ return 1;
+}
+
+/**
+ * Connection timeout function. An OTG host is required to display a
+ * message if the device does not connect within 10 seconds.
+ */
+static void dwc_otg_hcd_connect_timeout(unsigned long _ptr)
+{
+ printk(KERN_INFO "Connect Timeout\n");
+ printk(KERN_ERR "Device Not Connected/Responding\n");
+}
+
+/**
+ * Start the connection timer. An OTG host is required to display a
+ * message if the device does not connect within 10 seconds. The
+ * timer is deleted if a port connect interrupt occurs before the
+ * timer expires.
+ */
+static void dwc_otg_hcd_start_connect_timer(struct dwc_hcd *hcd)
+{
+ init_timer(&hcd->conn_timer);
+ hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
+ hcd->conn_timer.data = (unsigned long) 0;
+ hcd->conn_timer.expires = jiffies + (HZ * 10);
+ add_timer(&hcd->conn_timer);
+}
+
+/**
+ * HCD Callback function for disconnect of the HCD.
+ */
+static int dwc_otg_hcd_session_start_cb(void *_p)
+{
+ struct dwc_hcd *hcd = hcd_to_dwc_otg_hcd(_p);
+
+ dwc_otg_hcd_start_connect_timer(hcd);
+ return 1;
+}
+
+/* HCD Callback structure for handling mode switching. */
+static struct cil_callbacks hcd_cil_callbacks = {
+ .start = dwc_otg_hcd_start_cb,
+ .stop = dwc_otg_hcd_stop_cb,
+ .disconnect = dwc_otg_hcd_disconnect_cb,
+ .session_start = dwc_otg_hcd_session_start_cb,
+ .p = 0,
+};
+
+/*
+ * Reset Workqueue implementation
+ */
+static void port_reset_wqfunc(struct work_struct *work)
+{
+ struct dwc_hcd *hcd = container_of(work, struct dwc_hcd,
+ usb_port_reset);
+ struct core_if *core_if = hcd->core_if;
+ union hprt0_data hprt0;
+ unsigned long flags;
+
+ printk(KERN_INFO "%s\n", __func__);
+ spin_lock_irqsave(&hcd->lock, flags);
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtrst = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ spin_unlock_irqrestore(&hcd->lock, flags);
+ msleep(60);
+ spin_lock_irqsave(&hcd->lock, flags);
+ hprt0.b.prtrst = 0;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ hcd->flags.b.port_reset_change = 1;
+ spin_unlock_irqrestore(&hcd->lock, flags);
+}
+
+/*
+ * Wakeup Workqueue implementation
+ */
+static void port_wakeup_wqfunc(struct work_struct *work)
+{
+ struct core_if *core_if = container_of(to_delayed_work(work),
+ struct core_if, usb_port_wakeup);
+ union hprt0_data hprt0;
+
+ printk(KERN_INFO "%s\n", __func__);
+ /* Now wait for 70 ms. */
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ msleep(70);
+ hprt0.b.prtres = 0; /* Resume */
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+}
+
+/**
+ * Starts processing a USB transfer request specified by a USB Request Block
+ * (URB). mem_flags indicates the type of memory allocation to use while
+ * processing this URB.
+ */
+static int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
+ gfp_t _mem_flags)
+{
+ int retval;
+ unsigned long flags;
+ struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+ struct dwc_qtd *qtd;
+
+ if (!dwc_hcd->flags.b.port_connect_status) {
+ /* No longer connected. */
+ retval = -ENODEV;
+ goto err_enq;
+ }
+
+ qtd = dwc_otg_hcd_qtd_create(urb, _mem_flags);
+ if (!qtd) {
+ printk(KERN_ERR "DWC OTG HCD URB Enqueue failed creating "
+ "QTD\n");
+ retval = -ENOMEM;
+ goto err_enq;
+ }
+
+ spin_lock_irqsave(&dwc_hcd->lock, flags);
+ retval = usb_hcd_link_urb_to_ep(hcd, urb);
+ if (unlikely(retval))
+ goto fail;
+
+ retval = dwc_otg_hcd_qtd_add(qtd, dwc_hcd);
+ if (retval < 0) {
+ printk(KERN_ERR "DWC OTG HCD URB Enqueue failed adding QTD. "
+ "Error status %d\n", retval);
+ usb_hcd_unlink_urb_from_ep(hcd, urb);
+ goto fail;
+ }
+
+fail:
+ if (retval)
+ dwc_otg_hcd_qtd_free(qtd);
+
+ spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+err_enq:
+
+ return retval;
+}
+
+/**
+ * Attempts to halt a host channel. This function should only be called in
+ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
+ * normal circumstances in DMA mode, the controller halts the channel when the
+ * transfer is complete or a condition occurs that requires application
+ * intervention.
+ *
+ * In slave mode, checks for a free request queue entry, then sets the Channel
+ * Enable and Channel Disable bits of the Host Channel Characteristics
+ * register of the specified channel to intiate the halt. If there is no free
+ * request queue entry, sets only the Channel Disable bit of the HCCHARn
+ * register to flush requests for this channel. In the latter case, sets a
+ * flag to indicate that the host channel needs to be halted when a request
+ * queue slot is open.
+ *
+ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
+ * HCCHARn register. The controller ensures there is space in the request
+ * queue before submitting the halt request.
+ *
+ * Some time may elapse before the core flushes any posted requests for this
+ * host channel and halts. The Channel Halted interrupt handler completes the
+ * deactivation of the host channel.
+ */
+void dwc_otg_hc_halt(struct core_if *core_if, struct dwc_hc *hc,
+ enum dwc_halt_status hlt_sts)
+{
+ union gnptxsts_data nptxsts;
+ union hptxsts_data hptxsts;
+ union hcchar_data hcchar;
+ struct dwc_hc_regs *hc_regs;
+ struct core_global_regs *global_regs;
+ struct host_global_regs *host_global_regs;
+
+ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+ global_regs = core_if->core_global_regs;
+ host_global_regs = core_if->host_if->host_global_regs;
+
+ WARN_ON(hlt_sts == DWC_OTG_HC_XFER_NO_HALT_STATUS);
+
+ if (hlt_sts == DWC_OTG_HC_XFER_URB_DEQUEUE ||
+ hlt_sts == DWC_OTG_HC_XFER_AHB_ERR) {
+ /*
+ * Disable all channel interrupts except Ch Halted. The QTD
+ * and QH state associated with this transfer has been cleared
+ * (in the case of URB_DEQUEUE), so the channel needs to be
+ * shut down carefully to prevent crashes.
+ */
+ union hcintmsk_data hcintmsk;
+ hcintmsk.d32 = 0;
+ hcintmsk.b.chhltd = 1;
+ dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
+
+ /*
+ * Make sure no other interrupts besides halt are currently
+ * pending. Handling another interrupt could cause a crash due
+ * to the QTD and QH state.
+ */
+ dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
+
+ /*
+ * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
+ * even if the channel was already halted for some other reason.
+ */
+ hc->halt_status = hlt_sts;
+
+ /*
+ * If the channel is not enabled, the channel is either already
+ * halted or it hasn't started yet. In DMA mode, the transfer
+ * may halt if it finishes normally or a condition occurs that
+ * requires driver intervention. Don't want to halt the channel
+ * again. In either Slave or DMA mode, it's possible that the
+ * transfer has been assigned to a channel, but not started yet
+ * when an URB is dequeued. Don't want to halt a channel that
+ * hasn't started yet.
+ */
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ if (!hcchar.b.chen)
+ return;
+ }
+
+ if (hc->halt_pending)
+ /*
+ * A halt has already been issued for this channel. This might
+ * happen when a transfer is aborted by a higher level in
+ * the stack.
+ */
+ return;
+
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcchar.b.chen = 1;
+ hcchar.b.chdis = 1;
+ if (!core_if->dma_enable) {
+ /* Check for space in the request queue to issue the halt. */
+ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
+ hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
+ nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
+
+ if (!nptxsts.b.nptxqspcavail)
+ hcchar.b.chen = 0;
+ } else {
+ hptxsts.d32 =
+ dwc_read_reg32(&host_global_regs->hptxsts);
+
+ if (!hptxsts.b.ptxqspcavail ||
+ core_if->queuing_high_bandwidth)
+ hcchar.b.chen = 0;
+ }
+ }
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+ hc->halt_status = hlt_sts;
+ if (hcchar.b.chen) {
+ hc->halt_pending = 1;
+ hc->halt_on_queue = 0;
+ } else {
+ hc->halt_on_queue = 1;
+ }
+}
+
+/**
+ * Aborts/cancels a USB transfer request. Always returns 0 to indicate
+ * success.
+ */
+static int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
+ int status)
+{
+ unsigned long flags;
+ struct dwc_hcd *dwc_hcd;
+ struct dwc_qtd *urb_qtd;
+ struct dwc_qh *qh;
+ int retval;
+
+ urb_qtd = (struct dwc_qtd *) urb->hcpriv;
+ if (!urb_qtd)
+ return -EINVAL;
+ qh = (struct dwc_qh *) urb_qtd->qtd_qh_ptr;
+ if (!qh)
+ return -EINVAL;
+
+ dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+ spin_lock_irqsave(&dwc_hcd->lock, flags);
+
+ retval = usb_hcd_check_unlink_urb(hcd, urb, status);
+ if (retval) {
+ spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+ return retval;
+ }
+
+ if (urb_qtd == qh->qtd_in_process) {
+ /* The QTD is in process (it has been assigned to a channel). */
+ if (dwc_hcd->flags.b.port_connect_status) {
+ /*
+ * If still connected (i.e. in host mode), halt the
+ * channel so it can be used for other transfers. If
+ * no longer connected, the host registers can't be
+ * written to halt the channel since the core is in
+ * device mode.
+ */
+ dwc_otg_hc_halt(dwc_hcd->core_if, qh->channel,
+ DWC_OTG_HC_XFER_URB_DEQUEUE);
+ }
+ }
+
+ /*
+ * Free the QTD and clean up the associated QH. Leave the QH in the
+ * schedule if it has any remaining QTDs.
+ */
+ dwc_otg_hcd_qtd_remove_and_free(urb_qtd);
+ if (qh && urb_qtd == qh->qtd_in_process) {
+ dwc_otg_hcd_qh_deactivate(dwc_hcd, qh, 0);
+ qh->channel = NULL;
+ qh->qtd_in_process = NULL;
+ } else if (qh && list_empty(&qh->qtd_list)) {
+ dwc_otg_hcd_qh_remove(dwc_hcd, qh);
+ }
+
+ urb->hcpriv = NULL;
+ usb_hcd_unlink_urb_from_ep(hcd, urb);
+ spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+
+ /* Higher layer software sets URB status. */
+ usb_hcd_giveback_urb(hcd, urb, status);
+
+ return 0;
+}
+
+/* Remove and free a QH */
+static inline void dwc_otg_hcd_qh_remove_and_free(struct dwc_hcd *hcd,
+ struct dwc_qh *qh)
+{
+ dwc_otg_hcd_qh_remove(hcd, qh);
+ dwc_otg_hcd_qh_free(qh);
+}
+
+static void qh_list_free(struct dwc_hcd *hcd, struct list_head *_qh_list)
+{
+ struct list_head *item, *tmp;
+ struct dwc_qh *qh;
+
+ /* If the list hasn't been initialized yet, return. */
+ if (_qh_list->next == NULL)
+ return;
+
+ /* Ensure there are no QTDs or URBs left. */
+ kill_urbs_in_qh_list(hcd, _qh_list);
+
+ list_for_each_safe(item, tmp, _qh_list) {
+ qh = list_entry(item, struct dwc_qh, qh_list_entry);
+ dwc_otg_hcd_qh_remove_and_free(hcd, qh);
+ }
+}
+
+/**
+ * Frees resources in the DWC_otg controller related to a given endpoint. Also
+ * clears state in the HCD related to the endpoint. Any URBs for the endpoint
+ * must already be dequeued.
+ */
+static void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
+ struct usb_host_endpoint *ep)
+{
+ struct dwc_qh *qh;
+ struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+ unsigned long flags;
+
+ spin_lock_irqsave(&dwc_hcd->lock, flags);
+ qh = (struct dwc_qh *) ep->hcpriv;
+ if (qh) {
+ dwc_otg_hcd_qh_remove_and_free(dwc_hcd, qh);
+ ep->hcpriv = NULL;
+ }
+ spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+}
+
+/**
+ * Creates Status Change bitmap for the root hub and root port. The bitmap is
+ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
+ * is the status change indicator for the single root port. Returns 1 if either
+ * change indicator is 1, otherwise returns 0.
+ */
+static int dwc_otg_hcd_hub_status_data(struct usb_hcd *_hcd, char *buf)
+{
+ struct dwc_hcd *hcd = hcd_to_dwc_otg_hcd(_hcd);
+
+ buf[0] = 0;
+ buf[0] |= (hcd->flags.b.port_connect_status_change
+ || hcd->flags.b.port_reset_change
+ || hcd->flags.b.port_enable_change
+ || hcd->flags.b.port_suspend_change
+ || hcd->flags.b.port_over_current_change) << 1;
+
+ return (buf[0] != 0);
+}
+
+/* Handles the hub class-specific ClearPortFeature request.*/
+static int do_clear_port_feature(struct dwc_hcd *hcd, u16 val)
+{
+ struct core_if *core_if = hcd->core_if;
+ union hprt0_data hprt0;
+ unsigned long flags;
+
+ spin_lock_irqsave(&hcd->lock, flags);
+ switch (val) {
+ case USB_PORT_FEAT_ENABLE:
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtena = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ break;
+ case USB_PORT_FEAT_SUSPEND:
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtres = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+
+ /* Clear Resume bit */
+ spin_unlock_irqrestore(&hcd->lock, flags);
+ msleep(100);
+ spin_lock_irqsave(&hcd->lock, flags);
+ hprt0.b.prtres = 0;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ break;
+ case USB_PORT_FEAT_POWER:
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtpwr = 0;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ break;
+ case USB_PORT_FEAT_INDICATOR:
+ /* Port inidicator not supported */
+ break;
+ case USB_PORT_FEAT_C_CONNECTION:
+ /* Clears drivers internal connect status change flag */
+ hcd->flags.b.port_connect_status_change = 0;
+ break;
+ case USB_PORT_FEAT_C_RESET:
+ /* Clears driver's internal Port Reset Change flag */
+ hcd->flags.b.port_reset_change = 0;
+ break;
+ case USB_PORT_FEAT_C_ENABLE:
+ /* Clears driver's internal Port Enable/Disable Change flag */
+ hcd->flags.b.port_enable_change = 0;
+ break;
+ case USB_PORT_FEAT_C_SUSPEND:
+ /*
+ * Clears the driver's internal Port Suspend
+ * Change flag, which is set when resume signaling on
+ * the host port is complete
+ */
+ hcd->flags.b.port_suspend_change = 0;
+ break;
+ case USB_PORT_FEAT_C_OVER_CURRENT:
+ hcd->flags.b.port_over_current_change = 0;
+ break;
+ default:
+ printk(KERN_ERR "DWC OTG HCD - ClearPortFeature request %xh "
+ "unknown or unsupported\n", val);
+ spin_unlock_irqrestore(&hcd->lock, flags);
+ return -EINVAL;
+ }
+ spin_unlock_irqrestore(&hcd->lock, flags);
+ return 0;
+}
+
+/* Handles the hub class-specific SetPortFeature request.*/
+static int do_set_port_feature(struct usb_hcd *hcd, u16 val, u16 index)
+{
+ struct core_if *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
+ union hprt0_data hprt0 = {.d32 = 0};
+ struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+ unsigned long flags;
+ union pcgcctl_data pcgcctl = {.d32 = 0};
+
+ spin_lock_irqsave(&dwc_hcd->lock, flags);
+
+ switch (val) {
+ case USB_PORT_FEAT_SUSPEND:
+ if (hcd->self.otg_port == index && hcd->self.b_hnp_enable) {
+ union gotgctl_data gotgctl = {.d32 = 0};
+ gotgctl.b.hstsethnpen = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
+ 0, gotgctl.d32);
+ core_if->xceiv->state = OTG_STATE_A_SUSPEND;
+ }
+
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtsusp = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+
+ /* Suspend the Phy Clock */
+ pcgcctl.b.stoppclk = 1;
+ dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
+
+ /* For HNP the bus must be suspended for at least 200ms. */
+ if (hcd->self.b_hnp_enable) {
+ spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+ msleep(200);
+ spin_lock_irqsave(&dwc_hcd->lock, flags);
+ }
+ break;
+ case USB_PORT_FEAT_POWER:
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+ hprt0.b.prtpwr = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ break;
+ case USB_PORT_FEAT_RESET:
+ hprt0.d32 = dwc_otg_read_hprt0(core_if);
+
+ /*
+ * When B-Host the Port reset bit is set in the Start HCD
+ * Callback function, so that the reset is started within 1ms
+ * of the HNP success interrupt.
+ */
+ if (!hcd->self.is_b_host) {
+ hprt0.b.prtrst = 1;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ }
+
+ /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
+ spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+ msleep(60);
+ spin_lock_irqsave(&dwc_hcd->lock, flags);
+ hprt0.b.prtrst = 0;
+ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
+ break;
+ case USB_PORT_FEAT_INDICATOR:
+ /* Not supported */
+ break;
+ default:
+ printk(KERN_ERR "DWC OTG HCD - "
+ "SetPortFeature request %xh "
+ "unknown or unsupported\n", val);
+ spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+ return -EINVAL;
+ }
+ spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+ return 0;
+}
+
+/* Handles hub class-specific requests.*/
+static int dwc_otg_hcd_hub_control(struct usb_hcd *hcd, u16 req_type, u16 val,
+ u16 index, char *buf, u16 len)
+{
+ int retval = 0;
+ struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+ struct core_if *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
+ struct usb_hub_descriptor *desc;
+ union hprt0_data hprt0 = {.d32 = 0};
+ u32 port_status;
+ unsigned long flags;
+
+ spin_lock_irqsave(&dwc_hcd->lock, flags);
+ switch (req_type) {
+ case ClearHubFeature:
+ switch (val) {
+ case C_HUB_LOCAL_POWER:
+ case C_HUB_OVER_CURRENT:
+ /* Nothing required here */
+ break;
+ default:
+ retval = -EINVAL;
+ printk(KERN_ERR "DWC OTG HCD - ClearHubFeature request"
+ " %xh unknown\n", val);
+ }
+ break;
+ case ClearPortFeature:
+ if (!index || index > 1)
+ goto error;
+ spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+ retval = do_clear_port_feature(dwc_hcd, val);
+ spin_lock_irqsave(&dwc_hcd->lock, flags);
+ break;
+ case GetHubDescriptor:
+ desc = (struct usb_hub_descriptor *) buf;
+ desc->bDescLength = 9;
+ desc->bDescriptorType = 0x29;
+ desc->bNbrPorts = 1;
+ desc->wHubCharacteristics = 0x08;
+ desc->bPwrOn2PwrGood = 1;
+ desc->bHubContrCurrent = 0;
+ desc->bitmap[0] = 0;
+ desc->bitmap[1] = 0xff;
+ break;
+ case GetHubStatus:
+ memset(buf, 0, 4);
+ break;
+ case GetPortStatus:
+ if (!index || index > 1)
+ goto error;
+
+ port_status = 0;
+ if (dwc_hcd->flags.b.port_connect_status_change)
+ port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
+ if (dwc_hcd->flags.b.port_enable_change)
+ port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
+ if (dwc_hcd->flags.b.port_suspend_change)
+ port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
+ if (dwc_hcd->flags.b.port_reset_change)
+ port_status |= (1 << USB_PORT_FEAT_C_RESET);
+ if (dwc_hcd->flags.b.port_over_current_change) {
+ printk(KERN_ERR "Device Not Supported\n");
+ port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
+ }
+ if (!dwc_hcd->flags.b.port_connect_status) {
+ /*
+ * The port is disconnected, which means the core is
+ * either in device mode or it soon will be. Just
+ * return 0's for the remainder of the port status
+ * since the port register can't be read if the core
+ * is in device mode.
+ */
+ *((__le32 *) buf) = cpu_to_le32(port_status);
+ break;
+ }
+
+ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
+
+ if (hprt0.b.prtconnsts)
+ port_status |= USB_PORT_STAT_CONNECTION;
+ if (hprt0.b.prtena)
+ port_status |= USB_PORT_STAT_ENABLE;
+ if (hprt0.b.prtsusp)
+ port_status |= USB_PORT_STAT_SUSPEND;
+ if (hprt0.b.prtovrcurract)
+ port_status |= USB_PORT_STAT_OVERCURRENT;
+ if (hprt0.b.prtrst)
+ port_status |= USB_PORT_STAT_RESET;
+ if (hprt0.b.prtpwr)
+ port_status |= USB_PORT_STAT_POWER;
+
+ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
+ port_status |= USB_PORT_STAT_HIGH_SPEED;
+ else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
+ port_status |= USB_PORT_STAT_LOW_SPEED;
+
+ if (hprt0.b.prttstctl)
+ port_status |= (1 << USB_PORT_FEAT_TEST);
+
+ /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
+ *((__le32 *) buf) = cpu_to_le32(port_status);
+ break;
+ case SetHubFeature:
+ /* No HUB features supported */
+ break;
+ case SetPortFeature:
+ if (val != USB_PORT_FEAT_TEST && (!index || index > 1))
+ goto error;
+
+ if (!dwc_hcd->flags.b.port_connect_status) {
+ /*
+ * The port is disconnected, which means the core is
+ * either in device mode or it soon will be. Just
+ * return without doing anything since the port
+ * register can't be written if the core is in device
+ * mode.
+ */
+ break;
+ }
+ spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+ retval = do_set_port_feature(hcd, val, index);
+ spin_lock_irqsave(&dwc_hcd->lock, flags);
+ break;
+ default:
+error:
+ retval = -EINVAL;
+ printk(KERN_WARNING "DWC OTG HCD - Unknown hub control request"
+ " type or invalid req_type: %xh index: %xh "
+ "val: %xh\n", req_type, index, val);
+ break;
+ }
+ spin_unlock_irqrestore(&dwc_hcd->lock, flags);
+ return retval;
+}
+
+/**
+ * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
+ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
+ * interrupt.
+ *
+ * This function is called by the USB core when an interrupt occurs
+ */
+static irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd)
+{
+ struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+
+ return IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_hcd));
+}
+
+static const struct hc_driver dwc_otg_hc_driver = {
+ .description = dwc_otg_hcd_name,
+ .product_desc = "DWC OTG Controller",
+ .hcd_priv_size = sizeof(struct dwc_hcd),
+ .irq = dwc_otg_hcd_irq,
+ .flags = HCD_MEMORY | HCD_USB2,
+ .start = dwc_otg_hcd_start,
+ .stop = dwc_otg_hcd_stop,
+ .urb_enqueue = dwc_otg_hcd_urb_enqueue,
+ .urb_dequeue = dwc_otg_hcd_urb_dequeue,
+ .endpoint_disable = dwc_otg_hcd_endpoint_disable,
+ .get_frame_number = dwc_otg_hcd_get_frame_number,
+ .hub_status_data = dwc_otg_hcd_hub_status_data,
+ .hub_control = dwc_otg_hcd_hub_control,
+};
+
+/**
+ * Frees secondary storage associated with the dwc_hcd structure contained
+ * in the struct usb_hcd field.
+ */
+static void dwc_otg_hcd_free(struct usb_hcd *hcd)
+{
+ struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+ u32 i;
+
+ del_timers(dwc_hcd);
+
+ /* Free memory for QH/QTD lists */
+ qh_list_free(dwc_hcd, &dwc_hcd->non_periodic_sched_inactive);
+ qh_list_free(dwc_hcd, &dwc_hcd->non_periodic_sched_deferred);
+ qh_list_free(dwc_hcd, &dwc_hcd->non_periodic_sched_active);
+ qh_list_free(dwc_hcd, &dwc_hcd->periodic_sched_inactive);
+ qh_list_free(dwc_hcd, &dwc_hcd->periodic_sched_ready);
+ qh_list_free(dwc_hcd, &dwc_hcd->periodic_sched_assigned);
+ qh_list_free(dwc_hcd, &dwc_hcd->periodic_sched_queued);
+
+ /* Free memory for the host channels. */
+ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
+ struct dwc_hc *hc = dwc_hcd->hc_ptr_array[i];
+
+ kfree(hc);
+ }
+ if (dwc_hcd->core_if->dma_enable) {
+ if (dwc_hcd->status_buf_dma)
+ dma_free_coherent(hcd->self.controller,
+ DWC_OTG_HCD_STATUS_BUF_SIZE,
+ dwc_hcd->status_buf, dwc_hcd->status_buf_dma);
+ } else {
+ kfree(dwc_hcd->status_buf);
+ }
+
+}
+
+/**
+ * Initializes the HCD. This function allocates memory for and initializes the
+ * static parts of the usb_hcd and dwc_hcd structures. It also registers the
+ * USB bus with the core and calls the hc_driver->start() function. It returns
+ * a negative error on failure.
+ */
+int __devinit dwc_otg_hcd_init(struct device *_dev,
+ struct dwc_otg_device *dwc_otg_device)
+{
+ struct usb_hcd *hcd = NULL;
+ struct dwc_hcd *dwc_hcd = NULL;
+ struct dwc_otg_device *otg_dev = dev_get_drvdata(_dev);
+ int num_channels;
+ u32 i;
+ struct dwc_hc *channel;
+ int retval = 0;
+
+ /*
+ * Allocate memory for the base HCD plus the DWC OTG HCD.
+ * Initialize the base HCD.
+ */
+ hcd = usb_create_hcd(&dwc_otg_hc_driver, _dev, dwc_otg_hcd_name);
+ if (!hcd) {
+ retval = -ENOMEM;
+ goto error1;
+ }
+ dev_set_drvdata(_dev, dwc_otg_device);
+ hcd->regs = otg_dev->base;
+ hcd->self.otg_port = 1;
+
+ /* Initialize the DWC OTG HCD. */
+ dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+ dwc_hcd->core_if = otg_dev->core_if;
+ spin_lock_init(&dwc_hcd->lock);
+ otg_dev->hcd = dwc_hcd;
+
+ /* Register the HCD CIL Callbacks */
+ dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if, &hcd_cil_callbacks,
+ hcd);
+
+ /* Initialize the non-periodic schedule. */
+ INIT_LIST_HEAD(&dwc_hcd->non_periodic_sched_inactive);
+ INIT_LIST_HEAD(&dwc_hcd->non_periodic_sched_active);
+ INIT_LIST_HEAD(&dwc_hcd->non_periodic_sched_deferred);
+
+ /* Initialize the periodic schedule. */
+ INIT_LIST_HEAD(&dwc_hcd->periodic_sched_inactive);
+ INIT_LIST_HEAD(&dwc_hcd->periodic_sched_ready);
+ INIT_LIST_HEAD(&dwc_hcd->periodic_sched_assigned);
+ INIT_LIST_HEAD(&dwc_hcd->periodic_sched_queued);
+
+ /*
+ * Create a host channel descriptor for each host channel implemented
+ * in the controller. Initialize the channel descriptor array.
+ */
+ INIT_LIST_HEAD(&dwc_hcd->free_hc_list);
+ num_channels = dwc_hcd->core_if->core_params->host_channels;
+
+ for (i = 0; i < num_channels; i++) {
+ channel = kzalloc(sizeof(struct dwc_hc), GFP_KERNEL);
+ if (!channel) {
+ retval = -ENOMEM;
+ printk(KERN_ERR "%s: host channel allocation failed\n",
+ __func__);
+ goto error2;
+ }
+
+ channel->hc_num = i;
+ dwc_hcd->hc_ptr_array[i] = channel;
+ }
+
+ /* Initialize the Connection timeout timer. */
+ init_timer(&dwc_hcd->conn_timer);
+
+ /* Initialize workqueue */
+ INIT_WORK(&dwc_hcd->usb_port_reset, port_reset_wqfunc);
+ INIT_WORK(&dwc_hcd->start_work, hcd_start_func);
+ INIT_WORK(&dwc_hcd->core_if->usb_port_otg, NULL);
+ INIT_DELAYED_WORK(&dwc_hcd->core_if->usb_port_wakeup,
+ port_wakeup_wqfunc);
+
+ /* Set device flags indicating whether the HCD supports DMA. */
+ if (otg_dev->core_if->dma_enable) {
+ static u64 dummy_mask = DMA_BIT_MASK(32);
+
+ printk(KERN_INFO "Using DMA mode\n");
+ _dev->dma_mask = (void *) &dummy_mask;
+ _dev->coherent_dma_mask = ~0;
+ } else {
+ printk(KERN_INFO "Using Slave mode\n");
+ _dev->dma_mask = (void *) 0;
+ _dev->coherent_dma_mask = 0;
+ }
+
+ init_hcd_usecs(dwc_hcd);
+ /*
+ * Finish generic HCD initialization and start the HCD. This function
+ * allocates the DMA buffer pool, registers the USB bus, requests the
+ * IRQ line, and calls dwc_otg_hcd_start method.
+ */
+ retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED);
+ if (retval < 0)
+ goto error2;
+
+ /*
+ * Allocate space for storing data on status transactions. Normally no
+ * data is sent, but this space acts as a bit bucket. This must be
+ * done after usb_add_hcd since that function allocates the DMA buffer
+ * pool.
+ */
+ if (otg_dev->core_if->dma_enable) {
+ dwc_hcd->status_buf =
+ dma_alloc_coherent(_dev, DWC_OTG_HCD_STATUS_BUF_SIZE,
+ &dwc_hcd->status_buf_dma,
+ GFP_KERNEL | GFP_DMA);
+ } else {
+ dwc_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
+ GFP_KERNEL);
+ }
+ if (!dwc_hcd->status_buf) {
+ retval = -ENOMEM;
+ printk(KERN_ERR "%s: status_buf allocation failed\n", __func__);
+ goto error3;
+ }
+ return 0;
+
+error3:
+ usb_remove_hcd(hcd);
+error2:
+ dwc_otg_hcd_free(hcd);
+ usb_put_hcd(hcd);
+error1:
+ return retval;
+}
+
+/**
+ * Removes the HCD.
+ * Frees memory and resources associated with the HCD and deregisters the bus.
+ */
+void __devexit dwc_otg_hcd_remove(struct device *_dev)
+{
+ struct dwc_otg_device *otg_dev = dev_get_drvdata(_dev);
+ struct dwc_hcd *dwc_hcd = otg_dev->hcd;
+ struct usb_hcd *hcd = dwc_otg_hcd_to_hcd(dwc_hcd);
+
+ /* Turn off all interrupts */
+ dwc_write_reg32(gintmsk_reg(dwc_hcd), 0);
+ dwc_modify_reg32(gahbcfg_reg(dwc_hcd), 1, 0);
+
+ cancel_work_sync(&dwc_hcd->start_work);
+ cancel_work_sync(&dwc_hcd->usb_port_reset);
+ cancel_work_sync(&dwc_hcd->core_if->usb_port_otg);
+ cancel_rearming_delayed_work(&dwc_hcd->core_if->usb_port_wakeup);
+
+ usb_remove_hcd(hcd);
+ dwc_otg_hcd_free(hcd);
+ usb_put_hcd(hcd);
+}
+
+/** Returns the current frame number. */
+int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd)
+{
+ struct dwc_hcd *dwc_hcd = hcd_to_dwc_otg_hcd(hcd);
+ union hfnum_data hfnum;
+
+ hfnum.d32 = dwc_read_reg32(&dwc_hcd->core_if->host_if->
+ host_global_regs->hfnum);
+
+ return hfnum.b.frnum;
+}
+
+/**
+ * Prepares a host channel for transferring packets to/from a specific
+ * endpoint. The HCCHARn register is set up with the characteristics specified
+ * in _hc. Host channel interrupts that may need to be serviced while this
+ * transfer is in progress are enabled.
+ */
+static void dwc_otg_hc_init(struct core_if *core_if, struct dwc_hc *hc)
+{
+ u32 intr_enable;
+ union hcintmsk_data hc_intr_mask;
+ union gintmsk_data gintmsk = {.d32 = 0};
+ union hcchar_data hcchar;
+ union hcsplt_data hcsplt;
+ u8 hc_num = hc->hc_num;
+ struct dwc_host_if *host_if = core_if->host_if;
+ struct dwc_hc_regs *hc_regs = host_if->hc_regs[hc_num];
+
+ /* Clear old interrupt conditions for this host channel. */
+ hc_intr_mask.d32 = 0xFFFFFFFF;
+ hc_intr_mask.b.reserved = 0;
+ dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
+
+ /* Enable channel interrupts required for this transfer. */
+ hc_intr_mask.d32 = 0;
+ hc_intr_mask.b.chhltd = 1;
+ if (core_if->dma_enable) {
+ hc_intr_mask.b.ahberr = 1;
+
+ if (hc->error_state && !hc->do_split &&
+ hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
+ hc_intr_mask.b.ack = 1;
+ if (hc->ep_is_in) {
+ hc_intr_mask.b.datatglerr = 1;
+ if (hc->ep_type != DWC_OTG_EP_TYPE_INTR)
+ hc_intr_mask.b.nak = 1;
+ }
+ }
+ } else {
+ switch (hc->ep_type) {
+ case DWC_OTG_EP_TYPE_CONTROL:
+ case DWC_OTG_EP_TYPE_BULK:
+ hc_intr_mask.b.xfercompl = 1;
+ hc_intr_mask.b.stall = 1;
+ hc_intr_mask.b.xacterr = 1;
+ hc_intr_mask.b.datatglerr = 1;
+
+ if (hc->ep_is_in) {
+ hc_intr_mask.b.bblerr = 1;
+ } else {
+ hc_intr_mask.b.nak = 1;
+ hc_intr_mask.b.nyet = 1;
+ if (hc->do_ping)
+ hc_intr_mask.b.ack = 1;
+ }
+
+ if (hc->do_split) {
+ hc_intr_mask.b.nak = 1;
+ if (hc->complete_split)
+ hc_intr_mask.b.nyet = 1;
+ else
+ hc_intr_mask.b.ack = 1;
+ }
+
+ if (hc->error_state)
+ hc_intr_mask.b.ack = 1;
+ break;
+ case DWC_OTG_EP_TYPE_INTR:
+ hc_intr_mask.b.xfercompl = 1;
+ hc_intr_mask.b.nak = 1;
+ hc_intr_mask.b.stall = 1;
+ hc_intr_mask.b.xacterr = 1;
+ hc_intr_mask.b.datatglerr = 1;
+ hc_intr_mask.b.frmovrun = 1;
+
+ if (hc->ep_is_in)
+ hc_intr_mask.b.bblerr = 1;
+ if (hc->error_state)
+ hc_intr_mask.b.ack = 1;
+
+ if (hc->do_split) {
+ if (hc->complete_split)
+ hc_intr_mask.b.nyet = 1;
+ else
+ hc_intr_mask.b.ack = 1;
+ }
+ break;
+ case DWC_OTG_EP_TYPE_ISOC:
+ hc_intr_mask.b.xfercompl = 1;
+ hc_intr_mask.b.frmovrun = 1;
+ hc_intr_mask.b.ack = 1;
+
+ if (hc->ep_is_in) {
+ hc_intr_mask.b.xacterr = 1;
+ hc_intr_mask.b.bblerr = 1;
+ }
+ break;
+ }
+ }
+ dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
+
+ /* Enable the top level host channel interrupt. */
+ intr_enable = (1 << hc_num);
+ dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
+
+ /* Make sure host channel interrupts are enabled. */
+ gintmsk.b.hcintr = 1;
+ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
+
+ /*
+ * Program the HCCHARn register with the endpoint characteristics for
+ * the current transfer.
+ */
+ hcchar.d32 = 0;
+ hcchar.b.devaddr = hc->dev_addr;
+ hcchar.b.epnum = hc->ep_num;
+ hcchar.b.epdir = hc->ep_is_in;
+ hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW);
+ hcchar.b.eptype = hc->ep_type;
+ hcchar.b.mps = hc->max_packet;
+ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
+
+ /* Program the HCSPLIT register for SPLITs */
+ hcsplt.d32 = 0;
+ if (hc->do_split) {
+ hcsplt.b.compsplt = hc->complete_split;
+ hcsplt.b.xactpos = hc->xact_pos;
+ hcsplt.b.hubaddr = hc->hub_addr;
+ hcsplt.b.prtaddr = hc->port_addr;
+ }
+ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
+}
+
+/**
+ * Assigns transactions from a QTD to a free host channel and initializes the
+ * host channel to perform the transactions. The host channel is removed from
+ * the free list.
+ */
+static void assign_and_init_hc(struct dwc_hcd *hcd, struct dwc_qh * qh)
+{
+ struct dwc_hc *hc;
+ struct dwc_qtd *qtd;
+ struct urb *urb;
+ struct usb_iso_packet_descriptor *frame_desc;
+
+ hc = list_entry(hcd->free_hc_list.next, struct dwc_hc, hc_list_entry);
+
+ /* Remove the host channel from the free list. */
+ list_del_init(&hc->hc_list_entry);
+ qtd = list_entry(qh->qtd_list.next, struct dwc_qtd, qtd_list_entry);
+ urb = qtd->urb;
+ qh->channel = hc;
+ qh->qtd_in_process = qtd;
+
+ /*
+ * Use usb_pipedevice to determine device address. This address is
+ * 0 before the SET_ADDRESS command and the correct address afterward.
+ */
+ hc->dev_addr = usb_pipedevice(urb->pipe);
+ hc->ep_num = usb_pipeendpoint(urb->pipe);
+
+ if (urb->dev->speed == USB_SPEED_LOW)
+ hc->speed = DWC_OTG_EP_SPEED_LOW;
+ else if (urb->dev->speed == USB_SPEED_FULL)
+ hc->speed = DWC_OTG_EP_SPEED_FULL;
+ else
+ hc->speed = DWC_OTG_EP_SPEED_HIGH;
+
+ hc->max_packet = dwc_max_packet(qh->maxp);
+ hc->xfer_started = 0;
+ hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
+ hc->error_state = (qtd->error_count > 0);
+ hc->halt_on_queue = 0;
+ hc->halt_pending = 0;
+ hc->requests = 0;
+
+ /*
+ * The following values may be modified in the transfer type section
+ * below. The xfer_len value may be reduced when the transfer is
+ * started to accommodate the max widths of the XferSize and PktCnt
+ * fields in the HCTSIZn register.
+ */
+ hc->do_ping = qh->ping_state;
+ hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
+ hc->data_pid_start = qh->data_toggle;
+ hc->multi_count = 1;
+
+ if (hcd->core_if->dma_enable)
+ hc->xfer_buff = (u8 *) urb->transfer_dma +
+ urb->actual_length;
+ else
+ hc->xfer_buff = (u8 *) urb->transfer_buffer +
+ urb->actual_length;
+
+ hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
+ hc->xfer_count = 0;
+
+ /*
+ * Set the split attributes
+ */
+ hc->do_split = 0;
+ if (qh->do_split) {
+ hc->do_split = 1;
+ hc->xact_pos = qtd->isoc_split_pos;
+ hc->complete_split = qtd->complete_split;
+ hc->hub_addr = urb->dev->tt->hub->devnum;
+ hc->port_addr = urb->dev->ttport;
+ }
+
+ switch (usb_pipetype(urb->pipe)) {
+ case PIPE_CONTROL:
+ hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
+
+ switch (qtd->control_phase) {
+ case DWC_OTG_CONTROL_SETUP:
+ hc->do_ping = 0;
+ hc->ep_is_in = 0;
+ hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
+
+ if (hcd->core_if->dma_enable)
+ hc->xfer_buff = (u8 *) urb->setup_dma;
+ else
+ hc->xfer_buff = (u8 *) urb->setup_packet;
+
+ hc->xfer_len = 8;
+ break;
+ case DWC_OTG_CONTROL_DATA:
+ hc->data_pid_start = qtd->data_toggle;
+ break;
+ case DWC_OTG_CONTROL_STATUS:
+ /*
+ * Direction is opposite of data direction or IN if no
+ * data.
+ */
+ if (urb->transfer_buffer_length == 0)
+ hc->ep_is_in = 1;
+ else
+ hc->ep_is_in = (usb_pipein(urb->pipe) !=
+ USB_DIR_IN);
+
+ if (hc->ep_is_in)
+ hc->do_ping = 0;
+
+ hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
+ hc->xfer_len = 0;
+ if (hcd->core_if->dma_enable)
+ hc->xfer_buff = (u8 *) hcd->status_buf_dma;
+ else
+ hc->xfer_buff = (u8 *) hcd->status_buf;
+ break;
+ }
+ break;
+ case PIPE_BULK:
+ hc->ep_type = DWC_OTG_EP_TYPE_BULK;
+ break;
+ case PIPE_INTERRUPT:
+ hc->ep_type = DWC_OTG_EP_TYPE_INTR;
+ break;
+ case PIPE_ISOCHRONOUS:
+ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
+ hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
+
+ if (hcd->core_if->dma_enable)
+ hc->xfer_buff = (u8 *) urb->transfer_dma;
+ else
+ hc->xfer_buff = (u8 *) urb->transfer_buffer;
+
+ hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset;
+ hc->xfer_len = frame_desc->length - qtd->isoc_split_offset;
+
+ if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
+ if (hc->xfer_len <= 188)
+ hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
+ else
+ hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN;
+ }
+ break;
+ }
+
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC)
+ /*
+ * This value may be modified when the transfer is started to
+ * reflect the actual transfer length.
+ */
+ hc->multi_count = dwc_hb_mult(qh->maxp);
+
+ dwc_otg_hc_init(hcd->core_if, hc);
+ hc->qh = qh;
+}
+
+/**
+ * This function selects transactions from the HCD transfer schedule and
+ * assigns them to available host channels. It is called from HCD interrupt
+ * handler functions.
+ */
+enum dwc_transaction_type dwc_otg_hcd_select_transactions(struct dwc_hcd *hcd)
+{
+ struct list_head *qh_ptr;
+ struct dwc_qh *qh;
+ int num_channels;
+ enum dwc_transaction_type ret_val = DWC_OTG_TRANSACTION_NONE;
+
+ /* Process entries in the periodic ready list. */
+ num_channels = hcd->core_if->core_params->host_channels;
+ qh_ptr = hcd->periodic_sched_ready.next;
+ while (qh_ptr != &hcd->periodic_sched_ready &&
+ !list_empty(&hcd->free_hc_list)) {
+ /* Leave one channel for non periodic transactions. */
+ if (hcd->available_host_channels <= 1)
+ break;
+ hcd->available_host_channels--;
+ qh = list_entry(qh_ptr, struct dwc_qh, qh_list_entry);
+ assign_and_init_hc(hcd, qh);
+ /*
+ * Move the QH from the periodic ready schedule to the
+ * periodic assigned schedule.
+ */
+ qh_ptr = qh_ptr->next;
+ list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned);
+ ret_val = DWC_OTG_TRANSACTION_PERIODIC;
+ }
+
+ /*
+ * Process entries in the deferred portion of the non-periodic list.
+ * A NAK put them here and, at the right time, they need to be
+ * placed on the sched_inactive list.
+ */
+ qh_ptr = hcd->non_periodic_sched_deferred.next;
+ while (qh_ptr != &hcd->non_periodic_sched_deferred) {
+ u16 frame_number =
+ dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
+ qh = list_entry(qh_ptr, struct dwc_qh, qh_list_entry);
+ qh_ptr = qh_ptr->next;
+
+ if (dwc_frame_num_le(qh->sched_frame, frame_number))
+ /*
+ * Move the QH from the non periodic deferred schedule
+ * to the non periodic inactive schedule.
+ */
+ list_move(&qh->qh_list_entry,
+ &hcd->non_periodic_sched_inactive);
+ }
+
+ /*
+ * Process entries in the inactive portion of the non-periodic
+ * schedule. Some free host channels may not be used if they are
+ * reserved for periodic transfers.
+ */
+ qh_ptr = hcd->non_periodic_sched_inactive.next;
+ num_channels = hcd->core_if->core_params->host_channels;
+
+ while (qh_ptr != &hcd->non_periodic_sched_inactive
+ && !list_empty(&hcd->free_hc_list)) {
+ if (hcd->available_host_channels < 1)
+ break;
+ hcd->available_host_channels--;
+ qh = list_entry(qh_ptr, struct dwc_qh, qh_list_entry);
+ assign_and_init_hc(hcd, qh);
+ /*
+ * Move the QH from the non-periodic inactive schedule to the
+ * non-periodic active schedule.
+ */
+ qh_ptr = qh_ptr->next;
+ list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active);
+ if (ret_val == DWC_OTG_TRANSACTION_NONE)
+ ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
+ else
+ ret_val = DWC_OTG_TRANSACTION_ALL;
+
+ }
+ return ret_val;
+}
+
+/**
+ * Sets the channel property that indicates in which frame a periodic transfer
+ * should occur. This is always set to the _next_ frame. This function has no
+ * effect on non-periodic transfers.
+ */
+static inline void hc_set_even_odd_frame(struct core_if *core_if,
+ struct dwc_hc *hc, union hcchar_data *hcchar)
+{
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+ union hfnum_data hfnum;
+
+ hfnum.d32 = dwc_read_reg32(
+ &core_if->host_if->host_global_regs->hfnum);
+
+ /* 1 if _next_ frame is odd, 0 if it's even */
+ hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
+ }
+}
+
+static void set_initial_xfer_pid(struct dwc_hc *hc)
+{
+ if (hc->speed == DWC_OTG_EP_SPEED_HIGH) {
+ if (hc->ep_is_in) {
+ if (hc->multi_count == 1)
+ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
+ else if (hc->multi_count == 2)
+ hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
+ else
+ hc->data_pid_start = DWC_OTG_HC_PID_DATA2;
+ } else {
+ if (hc->multi_count == 1)
+ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
+ else
+ hc->data_pid_start = DWC_OTG_HC_PID_MDATA;
+ }
+ } else {
+ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
+ }
+}
+
+/**
+ * Starts a PING transfer. This function should only be called in Slave mode.
+ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
+ */
+void dwc_otg_hc_do_ping(struct core_if *core_if, struct dwc_hc *hc)
+{
+ union hcchar_data hcchar;
+ union hctsiz_data hctsiz;
+ struct dwc_hc_regs *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+
+ hctsiz.d32 = 0;
+ hctsiz.b.dopng = 1;
+ hctsiz.b.pktcnt = 1;
+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
+
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcchar.b.chen = 1;
+ hcchar.b.chdis = 0;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+}
+
+/**
+ * This function writes a packet into the Tx FIFO associated with the Host
+ * Channel. For a channel associated with a non-periodic EP, the non-periodic
+ * Tx FIFO is written. For a channel associated with a periodic EP, the
+ * periodic Tx FIFO is written. This function should only be called in Slave
+ * mode.
+ *
+ * Upon return the xfer_buff and xfer_count fields in hc are incremented by
+ * then number of bytes written to the Tx FIFO.
+ */
+static void dwc_otg_hc_write_packet(struct core_if *core_if, struct dwc_hc *hc)
+{
+ u32 i;
+ u32 remaining_count;
+ u32 byte_count;
+ u32 dword_count;
+ u32 *data_buff = (u32 *) (hc->xfer_buff);
+ u32 *data_fifo = core_if->data_fifo[hc->hc_num];
+
+ remaining_count = hc->xfer_len - hc->xfer_count;
+ if (remaining_count > hc->max_packet)
+ byte_count = hc->max_packet;
+ else
+ byte_count = remaining_count;
+
+ dword_count = (byte_count + 3) / 4;
+
+ if (((unsigned long) data_buff) & 0x3)
+ /* xfer_buff is not DWORD aligned. */
+ for (i = 0; i < dword_count; i++, data_buff++)
+ dwc_write_datafifo32(data_fifo,
+ get_unaligned(data_buff));
+ else
+ /* xfer_buff is DWORD aligned. */
+ for (i = 0; i < dword_count; i++, data_buff++)
+ dwc_write_datafifo32(data_fifo, *data_buff);
+
+ hc->xfer_count += byte_count;
+ hc->xfer_buff += byte_count;
+}
+
+/**
+ * This function does the setup for a data transfer for a host channel and
+ * starts the transfer. May be called in either Slave mode or DMA mode. In
+ * Slave mode, the caller must ensure that there is sufficient space in the
+ * request queue and Tx Data FIFO.
+ *
+ * For an OUT transfer in Slave mode, it loads a data packet into the
+ * appropriate FIFO. If necessary, additional data packets will be loaded in
+ * the Host ISR.
+ *
+ * For an IN transfer in Slave mode, a data packet is requested. The data
+ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
+ * additional data packets are requested in the Host ISR.
+ *
+ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
+ * register along with a packet count of 1 and the channel is enabled. This
+ * causes a single PING transaction to occur. Other fields in HCTSIZ are
+ * simply set to 0 since no data transfer occurs in this case.
+ *
+ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
+ * all the information required to perform the subsequent data transfer. In
+ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
+ * controller performs the entire PING protocol, then starts the data
+ * transfer.
+ */
+static void dwc_otg_hc_start_transfer(struct core_if *core_if,
+ struct dwc_hc *hc)
+{
+ union hcchar_data hcchar;
+ union hctsiz_data hctsiz;
+ u16 num_packets;
+ u32 max_hc_xfer_size = core_if->core_params->max_transfer_size;
+ u16 max_hc_pkt_count = core_if->core_params->max_packet_count;
+ struct dwc_hc_regs *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+ hctsiz.d32 = 0;
+
+ if (hc->do_ping) {
+ if (!core_if->dma_enable) {
+ dwc_otg_hc_do_ping(core_if, hc);
+ hc->xfer_started = 1;
+ return;
+ } else {
+ hctsiz.b.dopng = 1;
+ }
+ }
+
+ if (hc->do_split) {
+ num_packets = 1;
+
+ if (hc->complete_split && !hc->ep_is_in)
+ /*
+ * For CSPLIT OUT Transfer, set the size to 0 so the
+ * core doesn't expect any data written to the FIFO
+ */
+ hc->xfer_len = 0;
+ else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet))
+ hc->xfer_len = hc->max_packet;
+ else if (!hc->ep_is_in && (hc->xfer_len > 188))
+ hc->xfer_len = 188;
+
+ hctsiz.b.xfersize = hc->xfer_len;
+ } else {
+ /*
+ * Ensure that the transfer length and packet count will fit
+ * in the widths allocated for them in the HCTSIZn register.
+ */
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+ u32 max_len = hc->multi_count * hc->max_packet;
+
+ /*
+ * Make sure the transfer size is no larger than one
+ * (micro)frame's worth of data. (A check was done
+ * when the periodic transfer was accepted to ensure
+ * that a (micro)frame's worth of data can be
+ * programmed into a channel.)
+ */
+ if (hc->xfer_len > max_len)
+ hc->xfer_len = max_len;
+ } else if (hc->xfer_len > max_hc_xfer_size) {
+ /*
+ * Make sure that xfer_len is a multiple of max packet
+ * size.
+ */
+ hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1;
+ }
+ if (hc->xfer_len > 0) {
+ num_packets = (hc->xfer_len + hc->max_packet - 1) /
+ hc->max_packet;
+ if (num_packets > max_hc_pkt_count) {
+ num_packets = max_hc_pkt_count;
+ hc->xfer_len = num_packets * hc->max_packet;
+ }
+ } else {
+ /* Need 1 packet for transfer length of 0. */
+ num_packets = 1;
+ }
+
+ if (hc->ep_is_in)
+ /*
+ * Always program an integral # of max packets for IN
+ * transfers.
+ */
+ hc->xfer_len = num_packets * hc->max_packet;
+
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC)
+ /*
+ * Make sure that the multi_count field matches the
+ * actual transfer length.
+ */
+ hc->multi_count = num_packets;
+
+ /* Set up the initial PID for the transfer. */
+ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC)
+ set_initial_xfer_pid(hc);
+
+ hctsiz.b.xfersize = hc->xfer_len;
+ }
+
+ hc->start_pkt_count = num_packets;
+ hctsiz.b.pktcnt = num_packets;
+ hctsiz.b.pid = hc->data_pid_start;
+ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
+
+ if (core_if->dma_enable)
+ dwc_write_reg32(&hc_regs->hcdma, (u32) hc->xfer_buff);
+
+ /* Start the split */
+ if (hc->do_split) {
+ union hcsplt_data hcsplt;
+
+ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
+ hcsplt.b.spltena = 1;
+ dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
+ }
+
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hcchar.b.multicnt = hc->multi_count;
+ hc_set_even_odd_frame(core_if, hc, &hcchar);
+
+ /* Set host channel enable after all other setup is complete. */
+ hcchar.b.chen = 1;
+ hcchar.b.chdis = 0;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+ hc->xfer_started = 1;
+ hc->requests++;
+ if (!core_if->dma_enable && !hc->ep_is_in && hc->xfer_len > 0)
+ /* Load OUT packet into the appropriate Tx FIFO. */
+ dwc_otg_hc_write_packet(core_if, hc);
+}
+
+/**
+ * This function continues a data transfer that was started by previous call
+ * to dwc_otg_hc_start_transfer</code>. The caller must ensure there is
+ * sufficient space in the request queue and Tx Data FIFO. This function
+ * should only be called in Slave mode. In DMA mode, the controller acts
+ * autonomously to complete transfers programmed to a host channel.
+ *
+ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
+ * if there is any data remaining to be queued. For an IN transfer, another
+ * data packet is always requested. For the SETUP phase of a control transfer,
+ * this function does nothing.
+ */
+static int dwc_otg_hc_continue_transfer(struct core_if *core_if,
+ struct dwc_hc *hc)
+{
+ if (hc->do_split) {
+ /* SPLITs always queue just once per channel */
+ return 0;
+ } else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
+ /* SETUPs are queued only once since they can't be NAKed. */
+ return 0;
+ } else if (hc->ep_is_in) {
+ /*
+ * Always queue another request for other IN transfers. If
+ * back-to-back INs are issued and NAKs are received for both,
+ * the driver may still be processing the first NAK when the
+ * second NAK is received. When the interrupt handler clears
+ * the NAK interrupt for the first NAK, the second NAK will
+ * not be seen. So we can't depend on the NAK interrupt
+ * handler to requeue a NAKed request. Instead, IN requests
+ * are issued each time this function is called. When the
+ * transfer completes, the extra requests for the channel will
+ * be flushed.
+ */
+ union hcchar_data hcchar;
+ struct dwc_hc_regs *hc_regs =
+ core_if->host_if->hc_regs[hc->hc_num];
+
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hc_set_even_odd_frame(core_if, hc, &hcchar);
+
+ hcchar.b.chen = 1;
+ hcchar.b.chdis = 0;
+ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
+
+ hc->requests++;
+ return 1;
+ } else {
+ /* OUT transfers. */
+ if (hc->xfer_count < hc->xfer_len) {
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+ union hcchar_data hcchar;
+ struct dwc_hc_regs *hc_regs;
+
+ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
+ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
+ hc_set_even_odd_frame(core_if, hc, &hcchar);
+ }
+
+ /* Load OUT packet into the appropriate Tx FIFO. */
+ dwc_otg_hc_write_packet(core_if, hc);
+ hc->requests++;
+ return 1;
+ } else {
+ return 0;
+ }
+ }
+}
+
+/**
+ * This function writes a packet into the Tx FIFO associated with the Host
+ * Channel. For a channel associated with a non-periodic EP, the non-periodic
+ * Tx FIFO is written. For a channel associated with a periodic EP, the
+ * periodic Tx FIFO is written. This function should only be called in Slave
+ * mode.
+ *
+ * Upon return the xfer_buff and xfer_count fields in hc are incremented by
+ * then number of bytes written to the Tx FIFO.
+ */
+
+/**
+ * Attempts to queue a single transaction request for a host channel
+ * associated with either a periodic or non-periodic transfer. This function
+ * assumes that there is space available in the appropriate request queue. For
+ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
+ * is available in the appropriate Tx FIFO.
+ */
+static int queue_transaction(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ u16 _fifo_dwords_avail)
+{
+ int retval;
+
+ if (hcd->core_if->dma_enable) {
+ if (!hc->xfer_started) {
+ dwc_otg_hc_start_transfer(hcd->core_if, hc);
+ hc->qh->ping_state = 0;
+ }
+ retval = 0;
+ } else if (hc->halt_pending) {
+ /* Don't queue a request if the channel has been halted. */
+ retval = 0;
+ } else if (hc->halt_on_queue) {
+ dwc_otg_hc_halt(hcd->core_if, hc, hc->halt_status);
+ retval = 0;
+ } else if (hc->do_ping) {
+ if (!hc->xfer_started)
+ dwc_otg_hc_start_transfer(hcd->core_if, hc);
+ retval = 0;
+ } else if (!hc->ep_is_in ||
+ hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
+ if ((_fifo_dwords_avail * 4) >= hc->max_packet) {
+ if (!hc->xfer_started) {
+ dwc_otg_hc_start_transfer(hcd->core_if, hc);
+ retval = 1;
+ } else {
+ retval = dwc_otg_hc_continue_transfer(
+ hcd->core_if, hc);
+ }
+ } else {
+ retval = -1;
+ }
+ } else {
+ if (!hc->xfer_started) {
+ dwc_otg_hc_start_transfer(hcd->core_if, hc);
+ retval = 1;
+ } else {
+ retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
+ }
+ }
+ return retval;
+}
+
+/**
+ * Processes active non-periodic channels and queues transactions for these
+ * channels to the DWC_otg controller. After queueing transactions, the NP Tx
+ * FIFO Empty interrupt is enabled if there are more transactions to queue as
+ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
+ * FIFO Empty interrupt is disabled.
+ */
+static void process_non_periodic_channels(struct dwc_hcd *hcd)
+{
+ union gnptxsts_data tx_status;
+ struct list_head *orig_qh_ptr;
+ struct dwc_qh *qh;
+ int status;
+ int no_queue_space = 0;
+ int no_fifo_space = 0;
+ int more_to_do = 0;
+ struct core_global_regs *regs = hcd->core_if->core_global_regs;
+
+ /*
+ * Keep track of the starting point. Skip over the start-of-list
+ * entry.
+ */
+ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active)
+ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
+ orig_qh_ptr = hcd->non_periodic_qh_ptr;
+
+ /*
+ * Process once through the active list or until no more space is
+ * available in the request queue or the Tx FIFO.
+ */
+ do {
+ tx_status.d32 = dwc_read_reg32(®s->gnptxsts);
+ if (!hcd->core_if->dma_enable &&
+ tx_status.b.nptxqspcavail == 0) {
+ no_queue_space = 1;
+ break;
+ }
+
+ qh = list_entry(hcd->non_periodic_qh_ptr, struct dwc_qh,
+ qh_list_entry);
+ status = queue_transaction(hcd, qh->channel,
+ tx_status.b.nptxfspcavail);
+
+ if (status > 0) {
+ more_to_do = 1;
+ } else if (status < 0) {
+ no_fifo_space = 1;
+ break;
+ }
+
+ /* Advance to next QH, skipping start-of-list entry. */
+ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
+ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active)
+ hcd->non_periodic_qh_ptr =
+ hcd->non_periodic_qh_ptr->next;
+ } while (hcd->non_periodic_qh_ptr != orig_qh_ptr);
+
+ if (!hcd->core_if->dma_enable) {
+ union gintmsk_data intr_mask = {.d32 = 0};
+
+ intr_mask.b.nptxfempty = 1;
+ if (more_to_do || no_queue_space || no_fifo_space) {
+ /*
+ * May need to queue more transactions as the request
+ * queue or Tx FIFO empties. Enable the non-periodic
+ * Tx FIFO empty interrupt. (Always use the half-empty
+ * level to ensure that new requests are loaded as
+ * soon as possible.)
+ */
+ dwc_modify_reg32(gintmsk_reg(hcd), 0, intr_mask.d32);
+ } else {
+ /*
+ * Disable the Tx FIFO empty interrupt since there are
+ * no more transactions that need to be queued right
+ * now. This function is called from interrupt
+ * handlers to queue more transactions as transfer
+ * states change.
+ */
+ dwc_modify_reg32(gintmsk_reg(hcd), intr_mask.d32, 0);
+ }
+ }
+}
+
+/**
+ * Processes periodic channels for the next frame and queues transactions for
+ * these channels to the DWC_otg controller. After queueing transactions, the
+ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
+ * to queue as Periodic Tx FIFO or request queue space becomes available.
+ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
+ */
+static void process_periodic_channels(struct dwc_hcd *hcd)
+{
+ union hptxsts_data tx_status;
+ struct list_head *qh_ptr;
+ struct dwc_qh *qh;
+ int status;
+ int no_queue_space = 0;
+ int no_fifo_space = 0;
+ struct host_global_regs *host_regs;
+
+ host_regs = hcd->core_if->host_if->host_global_regs;
+
+ qh_ptr = hcd->periodic_sched_assigned.next;
+ while (qh_ptr != &hcd->periodic_sched_assigned) {
+ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
+ if (tx_status.b.ptxqspcavail == 0) {
+ no_queue_space = 1;
+ break;
+ }
+
+ qh = list_entry(qh_ptr, struct dwc_qh, qh_list_entry);
+
+ /*
+ * Set a flag if we're queuing high-bandwidth in slave mode.
+ * The flag prevents any halts to get into the request queue in
+ * the middle of multiple high-bandwidth packets getting queued.
+ */
+ if (!hcd->core_if->dma_enable && qh->channel->multi_count > 1)
+ hcd->core_if->queuing_high_bandwidth = 1;
+
+ status = queue_transaction(hcd, qh->channel,
+ tx_status.b.ptxfspcavail);
+ if (status < 0) {
+ no_fifo_space = 1;
+ break;
+ }
+
+ /*
+ * In Slave mode, stay on the current transfer until there is
+ * nothing more to do or the high-bandwidth request count is
+ * reached. In DMA mode, only need to queue one request. The
+ * controller automatically handles multiple packets for
+ * high-bandwidth transfers.
+ */
+ if (hcd->core_if->dma_enable || (status == 0 ||
+ qh->channel->requests ==
+ qh->channel->multi_count)) {
+ qh_ptr = qh_ptr->next;
+
+ /*
+ * Move the QH from the periodic assigned schedule to
+ * the periodic queued schedule.
+ */
+ list_move(&qh->qh_list_entry,
+ &hcd->periodic_sched_queued);
+
+ /* done queuing high bandwidth */
+ hcd->core_if->queuing_high_bandwidth = 0;
+ }
+ }
+
+ if (!hcd->core_if->dma_enable) {
+ union gintmsk_data intr_mask = {.d32 = 0};
+
+ intr_mask.b.ptxfempty = 1;
+
+ if (!list_empty(&hcd->periodic_sched_assigned) ||
+ no_queue_space || no_fifo_space)
+ /*
+ * May need to queue more transactions as the request
+ * queue or Tx FIFO empties. Enable the periodic Tx
+ * FIFO empty interrupt. (Always use the half-empty
+ * level to ensure that new requests are loaded as
+ * soon as possible.)
+ */
+ dwc_modify_reg32(gintmsk_reg(hcd), 0, intr_mask.d32);
+ else
+ /*
+ * Disable the Tx FIFO empty interrupt since there are
+ * no more transactions that need to be queued right
+ * now. This function is called from interrupt
+ * handlers to queue more transactions as transfer
+ * states change.
+ */
+ dwc_modify_reg32(gintmsk_reg(hcd), intr_mask.d32, 0);
+ }
+}
+
+/**
+ * This function processes the currently active host channels and queues
+ * transactions for these channels to the DWC_otg controller. It is called
+ * from HCD interrupt handler functions.
+ */
+void dwc_otg_hcd_queue_transactions(struct dwc_hcd *hcd,
+ enum dwc_transaction_type tr_type)
+{
+ /* Process host channels associated with periodic transfers. */
+ if ((tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
+ tr_type == DWC_OTG_TRANSACTION_ALL) &&
+ !list_empty(&hcd->periodic_sched_assigned))
+ process_periodic_channels(hcd);
+
+ /* Process host channels associated with non-periodic transfers. */
+ if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
+ tr_type == DWC_OTG_TRANSACTION_ALL) {
+ if (!list_empty(&hcd->non_periodic_sched_active)) {
+ process_non_periodic_channels(hcd);
+ } else {
+ /*
+ * Ensure NP Tx FIFO empty interrupt is disabled when
+ * there are no non-periodic transfers to process.
+ */
+ union gintmsk_data gintmsk = {.d32 = 0};
+ gintmsk.b.nptxfempty = 1;
+ dwc_modify_reg32(gintmsk_reg(hcd), gintmsk.d32, 0);
+ }
+ }
+}
+
+/**
+ * Sets the final status of an URB and returns it to the device driver. Any
+ * required cleanup of the URB is performed.
+ */
+void dwc_otg_hcd_complete_urb(struct dwc_hcd *hcd, struct urb *urb, int status)
+__releases(hcd->lock)
+__acquires(hcd->lock)
+{
+ urb->hcpriv = NULL;
+ usb_hcd_unlink_urb_from_ep(dwc_otg_hcd_to_hcd(hcd), urb);
+
+ spin_unlock(&hcd->lock);
+ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status);
+ spin_lock(&hcd->lock);
+}
diff --git a/drivers/usb/dwc_otg/dwc_otg_hcd.h b/drivers/usb/dwc_otg/dwc_otg_hcd.h
new file mode 100644
index 0000000..dfe165e
--- /dev/null
+++ b/drivers/usb/dwc_otg/dwc_otg_hcd.h
@@ -0,0 +1,426 @@
+/*
+ * DesignWare HS OTG controller driver
+ *
+ * Author: Mark Miesfeld <mmiesfeld at apm.com>
+ *
+ * Based on versions provided by APM and Synopsis which are:
+ * Copyright (C) 2009-2010 AppliedMicro(www.apm.com)
+ * Modified by Stefan Roese <sr at denx.de>, DENX Software Engineering
+ * Modified by Chuck Meade <chuck at theptrgroup.com>
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#if !defined(__DWC_HCD_H__)
+#define __DWC_HCD_H__
+
+#include <linux/usb.h>
+#include <linux/usb/hcd.h>
+
+#include "dwc_otg_driver.h"
+
+/*
+ * This file contains the structures, constants, and interfaces for
+ * the Host Contoller Driver (HCD).
+ *
+ * The Host Controller Driver (HCD) is responsible for translating requests
+ * from the USB Driver into the appropriate actions on the DWC_otg controller.
+ * It isolates the USBD from the specifics of the controller by providing an
+ * API to the USBD.
+ */
+
+/* Phases for control transfers. */
+enum dwc_control_phase {
+ DWC_OTG_CONTROL_SETUP,
+ DWC_OTG_CONTROL_DATA,
+ DWC_OTG_CONTROL_STATUS
+};
+
+/* Transaction types. */
+enum dwc_transaction_type {
+ DWC_OTG_TRANSACTION_NONE,
+ DWC_OTG_TRANSACTION_PERIODIC,
+ DWC_OTG_TRANSACTION_NON_PERIODIC,
+ DWC_OTG_TRANSACTION_ALL
+};
+
+/*
+ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
+ * interrupt, or isochronous transfer. A single QTD is created for each URB
+ * (of one of these types) submitted to the HCD. The transfer associated with
+ * a QTD may require one or multiple transactions.
+ *
+ * A QTD is linked to a Queue Head, which is entered in either the
+ * non-periodic or periodic schedule for execution. When a QTD is chosen for
+ * execution, some or all of its transactions may be executed. After
+ * execution, the state of the QTD is updated. The QTD may be retired if all
+ * its transactions are complete or if an error occurred. Otherwise, it
+ * remains in the schedule so more transactions can be executed later.
+ */
+struct dwc_qtd {
+ /*
+ * Determines the PID of the next data packet for the data phase of
+ * control transfers. Ignored for other transfer types.
+ * One of the following values:
+ * - DWC_OTG_HC_PID_DATA0
+ * - DWC_OTG_HC_PID_DATA1
+ */
+ u8 data_toggle;
+
+ /* Current phase for control transfers (Setup, Data, or Status). */
+ enum dwc_control_phase control_phase;
+
+ /*
+ * Keep track of the current split type
+ * for FS/LS endpoints on a HS Hub
+ */
+ u8 complete_split;
+
+ /* How many bytes transferred during SSPLIT OUT */
+ u32 ssplit_out_xfer_count;
+
+ /*
+ * Holds the number of bus errors that have occurred for a transaction
+ * within this transfer.
+ */
+ u8 error_count;
+
+ /*
+ * Index of the next frame descriptor for an isochronous transfer. A
+ * frame descriptor describes the buffer position and length of the
+ * data to be transferred in the next scheduled (micro)frame of an
+ * isochronous transfer. It also holds status for that transaction.
+ * The frame index starts at 0.
+ */
+ int isoc_frame_index;
+
+ /* Position of the ISOC split on full/low speed */
+ u8 isoc_split_pos;
+
+ /* Position of the ISOC split in the buffer for the current frame */
+ u16 isoc_split_offset;
+
+ /* URB for this transfer */
+ struct urb *urb;
+
+ /* This list of QTDs */
+ struct list_head qtd_list_entry;
+
+ /* Field to track the qh pointer */
+ struct dwc_qh *qtd_qh_ptr;
+};
+
+/*
+ * A Queue Head (QH) holds the static characteristics of an endpoint and
+ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
+ * be entered in either the non-periodic or periodic schedule.
+ */
+struct dwc_qh {
+ /*
+ * Endpoint type.
+ * One of the following values:
+ * - USB_ENDPOINT_XFER_CONTROL
+ * - USB_ENDPOINT_XFER_ISOC
+ * - USB_ENDPOINT_XFER_BULK
+ * - USB_ENDPOINT_XFER_INT
+ */
+ u8 ep_type;
+ u8 ep_is_in;
+
+ /* wMaxPacketSize Field of Endpoint Descriptor. */
+ u16 maxp;
+
+ /*
+ * Determines the PID of the next data packet for non-control
+ * transfers. Ignored for control transfers.
+ * One of the following values:
+ * - DWC_OTG_HC_PID_DATA0
+ * - DWC_OTG_HC_PID_DATA1
+ */
+ u8 data_toggle;
+
+ /* Ping state if 1. */
+ u8 ping_state;
+
+ /* List of QTDs for this QH. */
+ struct list_head qtd_list;
+
+ /* Host channel currently processing transfers for this QH. */
+ struct dwc_hc *channel;
+
+ /* QTD currently assigned to a host channel for this QH. */
+ struct dwc_qtd *qtd_in_process;
+
+ /* Full/low speed endpoint on high-speed hub requires split. */
+ u8 do_split;
+
+ /* Periodic schedule information */
+
+ /* Bandwidth in microseconds per (micro)frame. */
+ u8 usecs;
+
+ /* Interval between transfers in (micro)frames. */
+ u16 interval;
+
+ /*
+ * (micro)frame to initialize a periodic transfer. The transfer
+ * executes in the following (micro)frame.
+ */
+ u16 sched_frame;
+
+ /* (micro)frame at which last start split was initialized. */
+ u16 start_split_frame;
+
+ u16 speed;
+ u16 frame_usecs[8];
+
+ /* Entry for QH in either the periodic or non-periodic schedule. */
+ struct list_head qh_list_entry;
+};
+
+/* Gets the struct usb_hcd that contains a struct dwc_hcd. */
+static inline struct usb_hcd *dwc_otg_hcd_to_hcd(struct dwc_hcd *dwc_hcd)
+{
+ return container_of((void *)dwc_hcd, struct usb_hcd, hcd_priv);
+}
+
+/* HCD Create/Destroy Functions */
+extern int __init dwc_otg_hcd_init(struct device *_dev,
+ struct dwc_otg_device *dwc_dev);
+extern void dwc_otg_hcd_remove(struct device *_dev);
+
+/*
+ * The following functions support managing the DWC_otg controller in host
+ * mode.
+ */
+extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
+extern void dwc_otg_hc_cleanup(struct core_if *core_if, struct dwc_hc *hc);
+extern void dwc_otg_hc_halt(struct core_if *core_if, struct dwc_hc *hc,
+ enum dwc_halt_status _halt_status);
+
+/* Transaction Execution Functions */
+extern enum dwc_transaction_type dwc_otg_hcd_select_transactions(
+ struct dwc_hcd *hcd);
+extern void dwc_otg_hcd_queue_transactions(struct dwc_hcd *hcd,
+ enum dwc_transaction_type tr_type);
+extern void dwc_otg_hcd_complete_urb(struct dwc_hcd *_hcd, struct urb *urb,
+ int status);
+
+/* Interrupt Handler Functions */
+extern int dwc_otg_hcd_handle_intr(struct dwc_hcd *hcd);
+
+/* Schedule Queue Functions */
+extern int init_hcd_usecs(struct dwc_hcd *hcd);
+extern void dwc_otg_hcd_qh_free(struct dwc_qh *qh);
+extern void dwc_otg_hcd_qh_remove(struct dwc_hcd *hcd, struct dwc_qh *qh);
+extern void dwc_otg_hcd_qh_deactivate(struct dwc_hcd *hcd, struct dwc_qh *qh,
+ int sched_csplit);
+extern int dwc_otg_hcd_qh_deferr(struct dwc_hcd *hcd, struct dwc_qh *qh,
+ int delay);
+extern struct dwc_qtd *dwc_otg_hcd_qtd_create(struct urb *urb,
+ gfp_t _mem_flags);
+extern int dwc_otg_hcd_qtd_add(struct dwc_qtd *qtd, struct dwc_hcd *dwc_hcd);
+
+/*
+ * Frees the memory for a QTD structure. QTD should already be removed from
+ * list.
+ */
+static inline void dwc_otg_hcd_qtd_free(struct dwc_qtd *_qtd)
+{
+ kfree(_qtd);
+}
+
+/* Removes a QTD from list. */
+static inline void dwc_otg_hcd_qtd_remove(struct dwc_qtd *_qtd)
+{
+ list_del(&_qtd->qtd_list_entry);
+}
+
+/* Remove and free a QTD */
+static inline void dwc_otg_hcd_qtd_remove_and_free(struct dwc_qtd *_qtd)
+{
+ dwc_otg_hcd_qtd_remove(_qtd);
+ dwc_otg_hcd_qtd_free(_qtd);
+}
+
+struct dwc_qh *dwc_urb_to_qh(struct urb *_urb);
+
+/* Gets the usb_host_endpoint associated with an URB. */
+static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *_urb)
+{
+ struct usb_device *dev = _urb->dev;
+ int ep_num = usb_pipeendpoint(_urb->pipe);
+
+ if (usb_pipein(_urb->pipe))
+ return dev->ep_in[ep_num];
+ else
+ return dev->ep_out[ep_num];
+}
+
+/*
+ * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
+ * qualified with its direction (possible 32 endpoints per device).
+ */
+#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) \
+ ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
+ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
+
+/* Gets the QH that contains the list_head */
+#define dwc_list_to_qh(_list_head_ptr_) \
+ (container_of(_list_head_ptr_, struct dwc_qh, qh_list_entry))
+
+/* Gets the QTD that contains the list_head */
+#define dwc_list_to_qtd(_list_head_ptr_) \
+ (container_of(_list_head_ptr_, struct dwc_qtd, qtd_list_entry))
+
+/* Check if QH is non-periodic */
+#define dwc_qh_is_non_per(_qh_ptr_) \
+ ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
+ (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
+
+/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
+#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
+
+/* Packet size for any kind of endpoint descriptor */
+#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
+
+/*
+ * Returns true if _frame1 is less than or equal to _frame2. The comparison is
+ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
+ * frame number when the max frame number is reached.
+ */
+static inline int dwc_frame_num_le(u16 _frame1, u16 _frame2)
+{
+ return ((_frame2 - _frame1) & DWC_HFNUM_MAX_FRNUM) <=
+ (DWC_HFNUM_MAX_FRNUM >> 1);
+}
+
+/*
+ * Returns true if _frame1 is greater than _frame2. The comparison is done
+ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
+ * number when the max frame number is reached.
+ */
+static inline int dwc_frame_num_gt(u16 _frame1, u16 _frame2)
+{
+ return (_frame1 != _frame2) &&
+ (((_frame1 - _frame2) &
+ DWC_HFNUM_MAX_FRNUM) < (DWC_HFNUM_MAX_FRNUM >> 1));
+}
+
+/*
+ * Increments _frame by the amount specified by _inc. The addition is done
+ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
+ */
+static inline u16 dwc_frame_num_inc(u16 _frame, u16 _inc)
+{
+ return (_frame + _inc) & DWC_HFNUM_MAX_FRNUM;
+}
+
+static inline u16 dwc_full_frame_num(u16 _frame)
+{
+ return ((_frame) & DWC_HFNUM_MAX_FRNUM) >> 3;
+}
+
+static inline u16 dwc_micro_frame_num(u16 _frame)
+{
+ return (_frame) & 0x7;
+}
+
+static inline u32 *gintsts_reg(struct dwc_hcd *hcd)
+{
+ return (u32 *) &hcd->core_if->core_global_regs->gintsts;
+}
+
+static inline u32 *gintmsk_reg(struct dwc_hcd *hcd)
+{
+ return (u32 *) &hcd->core_if->core_global_regs->gintmsk;
+}
+
+static inline u32 *gahbcfg_reg(struct dwc_hcd *hcd)
+{
+ return (u32 *) &hcd->core_if->core_global_regs->gahbcfg;
+}
+
+static inline const char *pipetype_str(unsigned int pipe)
+{
+ switch (usb_pipetype(pipe)) {
+ case PIPE_CONTROL:
+ return "control";
+ case PIPE_BULK:
+ return "bulk";
+ case PIPE_INTERRUPT:
+ return "interrupt";
+ case PIPE_ISOCHRONOUS:
+ return "isochronous";
+ default:
+ return "unknown";
+ }
+}
+
+static inline const char *dev_speed_str(enum usb_device_speed speed)
+{
+ switch (speed) {
+ case USB_SPEED_HIGH:
+ return "high";
+ case USB_SPEED_FULL:
+ return "full";
+ case USB_SPEED_LOW:
+ return "low";
+ default:
+ return "unknown";
+ }
+}
+
+static inline const char *ep_type_str(u8 type)
+{
+ switch (type) {
+ case USB_ENDPOINT_XFER_ISOC:
+ return "isochronous";
+ case USB_ENDPOINT_XFER_INT:
+ return "interrupt";
+ case USB_ENDPOINT_XFER_CONTROL:
+ return "control";
+ case USB_ENDPOINT_XFER_BULK:
+ return "bulk";
+ default:
+ return "?";
+ }
+}
+#endif
diff --git a/drivers/usb/dwc_otg/dwc_otg_hcd_intr.c b/drivers/usb/dwc_otg/dwc_otg_hcd_intr.c
new file mode 100644
index 0000000..613d9e6
--- /dev/null
+++ b/drivers/usb/dwc_otg/dwc_otg_hcd_intr.c
@@ -0,0 +1,1478 @@
+/*
+ * DesignWare HS OTG controller driver
+ *
+ * Author: Mark Miesfeld <mmiesfeld at apm.com>
+ *
+ * Based on versions provided by APM and Synopsis which are:
+ * Copyright (C) 2009-2010 AppliedMicro(www.apm.com)
+ * Modified by Stefan Roese <sr at denx.de>, DENX Software Engineering
+ * Modified by Chuck Meade <chuck at theptrgroup.com>
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include "dwc_otg_hcd.h"
+
+/* This file contains the implementation of the HCD Interrupt handlers. */
+static const int erratum_usb09_patched;
+static const int deferral_on = 1;
+static const int nak_deferral_delay = 8;
+static const int nyet_deferral_delay = 1;
+
+/**
+ * Handles the start-of-frame interrupt in host mode. Non-periodic
+ * transactions may be queued to the DWC_otg controller for the current
+ * (micro)frame. Periodic transactions may be queued to the controller for the
+ * next (micro)frame.
+ */
+static int dwc_otg_hcd_handle_sof_intr(struct dwc_hcd *hcd)
+{
+ union hfnum_data hfnum;
+ struct list_head *qh_entry;
+ struct dwc_qh *qh;
+ enum dwc_transaction_type tr_type;
+ union gintsts_data gintsts = {.d32 = 0};
+
+ hfnum.d32 =
+ dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
+
+ hcd->frame_number = hfnum.b.frnum;
+
+ /* Determine whether any periodic QHs should be executed. */
+ qh_entry = hcd->periodic_sched_inactive.next;
+ while (qh_entry != &hcd->periodic_sched_inactive) {
+ qh = list_entry(qh_entry, struct dwc_qh, qh_list_entry);
+ qh_entry = qh_entry->next;
+
+ /*
+ * If needed, move QH to the ready list to be executed next
+ * (micro)frame.
+ */
+ if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number))
+ list_move(&qh->qh_list_entry,
+ &hcd->periodic_sched_ready);
+ }
+
+ tr_type = dwc_otg_hcd_select_transactions(hcd);
+ if (tr_type != DWC_OTG_TRANSACTION_NONE)
+ dwc_otg_hcd_queue_transactions(hcd, tr_type);
+
+ /* Clear interrupt */
+ gintsts.b.sofintr = 1;
+ dwc_write_reg32(gintsts_reg(hcd), gintsts.d32);
+ return 1;
+}
+
+/**
+ * Handles the Rx Status Queue Level Interrupt, which indicates that there is at
+ * least one packet in the Rx FIFO. The packets are moved from the FIFO to
+ * memory if the DWC_otg controller is operating in Slave mode.
+ */
+static int dwc_otg_hcd_handle_rx_status_q_level_intr(struct dwc_hcd *hcd)
+{
+ union host_grxsts_data grxsts;
+ struct dwc_hc *hc = NULL;
+
+ grxsts.d32 = dwc_read_reg32(&hcd->core_if->core_global_regs->grxstsp);
+ hc = hcd->hc_ptr_array[grxsts.b.chnum];
+
+ /* Packet Status */
+ switch (grxsts.b.pktsts) {
+ case DWC_GRXSTS_PKTSTS_IN:
+ /* Read the data into the host buffer. */
+ if (grxsts.b.bcnt > 0) {
+ dwc_otg_read_packet(hcd->core_if, hc->xfer_buff,
+ grxsts.b.bcnt);
+ /* Update the HC fields for the next packet received. */
+ hc->xfer_count += grxsts.b.bcnt;
+ hc->xfer_buff += grxsts.b.bcnt;
+ }
+ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
+ case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
+ case DWC_GRXSTS_PKTSTS_CH_HALTED:
+ /* Handled in interrupt, just ignore data */
+ break;
+ default:
+ printk(KERN_ERR "RX_STS_Q Interrupt: Unknown status %d\n",
+ grxsts.b.pktsts);
+ break;
+ }
+ return 1;
+}
+
+/**
+ * This interrupt occurs when the non-periodic Tx FIFO is half-empty. More
+ * data packets may be written to the FIFO for OUT transfers. More requests
+ * may be written to the non-periodic request queue for IN transfers. This
+ * interrupt is enabled only in Slave mode.
+ */
+static int dwc_otg_hcd_handle_np_tx_fifo_empty_intr(struct dwc_hcd *hcd)
+{
+ dwc_otg_hcd_queue_transactions(hcd, DWC_OTG_TRANSACTION_NON_PERIODIC);
+ return 1;
+}
+
+/**
+ * This interrupt occurs when the periodic Tx FIFO is half-empty. More data
+ * packets may be written to the FIFO for OUT transfers. More requests may be
+ * written to the periodic request queue for IN transfers. This interrupt is
+ * enabled only in Slave mode.
+ */
+static int dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(struct dwc_hcd *hcd)
+{
+ dwc_otg_hcd_queue_transactions(hcd, DWC_OTG_TRANSACTION_PERIODIC);
+ return 1;
+}
+
+/**
+ * When the port changes to enabled it may be necessary to adjust the phy clock
+ * speed.
+ */
+static int adjusted_phy_clock_speed(struct dwc_hcd *hcd, union hprt0_data hprt0)
+{
+ int adjusted = 0;
+ union gusbcfg_data usbcfg;
+ struct core_params *params = hcd->core_if->core_params;
+ struct core_global_regs *g_regs = hcd->core_if->core_global_regs;
+ struct host_global_regs *h_regs =
+ hcd->core_if->host_if->host_global_regs;
+
+ usbcfg.d32 = dwc_read_reg32(&g_regs->gusbcfg);
+
+ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED ||
+ hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED) {
+ /* Low power */
+ union hcfg_data hcfg;
+
+ if (usbcfg.b.phylpwrclksel == 0) {
+ /* Set PHY low power clock select for FS/LS devices */
+ usbcfg.b.phylpwrclksel = 1;
+ dwc_write_reg32(&g_regs->gusbcfg, usbcfg.d32);
+ adjusted = 1;
+ }
+
+ hcfg.d32 = dwc_read_reg32(&h_regs->hcfg);
+ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED &&
+ params->host_ls_low_power_phy_clk ==
+ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ) {
+ /* 6 MHZ, check for 6 MHZ clock select */
+ if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) {
+ hcfg.b.fslspclksel = DWC_HCFG_6_MHZ;
+ dwc_write_reg32(&h_regs->hcfg, hcfg.d32);
+ adjusted = 1;
+ }
+ } else if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) {
+ /* 48 MHZ and clock select is not 48 MHZ */
+ hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
+ dwc_write_reg32(&h_regs->hcfg, hcfg.d32);
+ adjusted = 1;
+ }
+ } else if (usbcfg.b.phylpwrclksel == 1) {
+ usbcfg.b.phylpwrclksel = 0;
+ dwc_write_reg32(&g_regs->gusbcfg, usbcfg.d32);
+ adjusted = 1;
+ }
+ if (adjusted)
+ schedule_work(&hcd->usb_port_reset);
+
+ return adjusted;
+}
+
+/**
+ * Helper function to handle the port enable changed interrupt when the port
+ * becomes enabled. Checks if we need to adjust the PHY clock speed for low
+ * power and adjusts it if needed.
+ */
+static void port_enabled(struct dwc_hcd *hcd, union hprt0_data hprt0)
+{
+ if (hcd->core_if->core_params->host_support_fs_ls_low_power)
+ if (!adjusted_phy_clock_speed(hcd, hprt0))
+ hcd->flags.b.port_reset_change = 1;
+}
+
+/**
+ * There are multiple conditions that can cause a port interrupt. This function
+ * determines which interrupt conditions have occurred and handles them
+ * appropriately.
+ */
+static int dwc_otg_hcd_handle_port_intr(struct dwc_hcd *hcd)
+{
+ int retval = 0;
+ union hprt0_data hprt0;
+ union hprt0_data hprt0_modify;
+
+ hprt0.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
+ hprt0_modify.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
+
+ /*
+ * Clear appropriate bits in HPRT0 to clear the interrupt bit in
+ * GINTSTS
+ */
+ hprt0_modify.b.prtena = 0;
+ hprt0_modify.b.prtconndet = 0;
+ hprt0_modify.b.prtenchng = 0;
+ hprt0_modify.b.prtovrcurrchng = 0;
+
+ /* Port connect detected interrupt */
+ if (hprt0.b.prtconndet) {
+ /* Set the status flags and clear interrupt*/
+ hcd->flags.b.port_connect_status_change = 1;
+ hcd->flags.b.port_connect_status = 1;
+ hprt0_modify.b.prtconndet = 1;
+
+ /* B-Device has connected, Delete the connection timer. */
+ del_timer_sync(&hcd->conn_timer);
+
+ /*
+ * The Hub driver asserts a reset when it sees port connect
+ * status change flag
+ */
+ retval |= 1;
+ }
+
+ /* Port enable changed interrupt */
+ if (hprt0.b.prtenchng) {
+ /* Set the internal flag if the port was disabled */
+ if (hprt0.b.prtena)
+ port_enabled(hcd, hprt0);
+ else
+ hcd->flags.b.port_enable_change = 1;
+
+ /* Clear the interrupt */
+ hprt0_modify.b.prtenchng = 1;
+ retval |= 1;
+ }
+
+ /* Overcurrent change interrupt */
+ if (hprt0.b.prtovrcurrchng) {
+ hcd->flags.b.port_over_current_change = 1;
+ hprt0_modify.b.prtovrcurrchng = 1;
+ retval |= 1;
+ }
+
+ /* Clear the port interrupts */
+ dwc_write_reg32(hcd->core_if->host_if->hprt0, hprt0_modify.d32);
+ return retval;
+}
+
+/**
+ * Gets the actual length of a transfer after the transfer halts. halt_status
+ * holds the reason for the halt.
+ *
+ * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE, _short_read
+ * is set to 1 upon return if less than the requested number of bytes were
+ * transferred. Otherwise, _short_read is set to 0 upon return. _short_read may
+ * also be NULL on entry, in which case it remains unchanged.
+ */
+static u32 get_actual_xfer_length(struct dwc_hc *hc, struct dwc_hc_regs *regs,
+ struct dwc_qtd *qtd, enum dwc_halt_status halt_status,
+ int *_short_read)
+{
+ union hctsiz_data hctsiz;
+ u32 length;
+
+ if (_short_read)
+ *_short_read = 0;
+
+ hctsiz.d32 = dwc_read_reg32(®s->hctsiz);
+ if (halt_status == DWC_OTG_HC_XFER_COMPLETE) {
+ if (hc->ep_is_in) {
+ length = hc->xfer_len - hctsiz.b.xfersize;
+ if (_short_read)
+ *_short_read = (hctsiz.b.xfersize != 0);
+ } else if (hc->qh->do_split) {
+ length = qtd->ssplit_out_xfer_count;
+ } else {
+ length = hc->xfer_len;
+ }
+ } else {
+ /*
+ * Must use the hctsiz.pktcnt field to determine how much data
+ * has been transferred. This field reflects the number of
+ * packets that have been transferred via the USB. This is
+ * always an integral number of packets if the transfer was
+ * halted before its normal completion. (Can't use the
+ * hctsiz.xfersize field because that reflects the number of
+ * bytes transferred via the AHB, not the USB).
+ */
+ length = (hc->start_pkt_count - hctsiz.b.pktcnt) *
+ hc->max_packet;
+ }
+ return length;
+}
+
+/**
+ * Updates the state of the URB after a Transfer Complete interrupt on the
+ * host channel. Updates the actual_length field of the URB based on the
+ * number of bytes transferred via the host channel. Sets the URB status
+ * if the data transfer is finished.
+ */
+static int update_urb_state_xfer_comp(struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct urb *urb,
+ struct dwc_qtd *qtd, int *status)
+{
+ int xfer_done = 0;
+ int short_read = 0;
+
+ urb->actual_length += get_actual_xfer_length(hc, regs, qtd,
+ DWC_OTG_HC_XFER_COMPLETE, &short_read);
+
+ if (short_read || urb->actual_length == urb->transfer_buffer_length) {
+ xfer_done = 1;
+ if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK))
+ *status = -EREMOTEIO;
+ else
+ *status = 0;
+ }
+ return xfer_done;
+}
+
+/*
+ * Save the starting data toggle for the next transfer. The data toggle is
+ * saved in the QH for non-control transfers and it's saved in the QTD for
+ * control transfers.
+ */
+static void save_data_toggle(struct dwc_hc *hc, struct dwc_hc_regs *regs,
+ struct dwc_qtd *qtd)
+{
+ union hctsiz_data hctsiz;
+ hctsiz.d32 = dwc_read_reg32(®s->hctsiz);
+
+ if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
+ struct dwc_qh *qh = hc->qh;
+ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0)
+ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
+ else
+ qh->data_toggle = DWC_OTG_HC_PID_DATA1;
+ } else {
+ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0)
+ qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
+ else
+ qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
+ }
+}
+
+/**
+ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
+ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
+ * still linked to the QH, the QH is added to the end of the inactive
+ * non-periodic schedule. For periodic QHs, removes the QH from the periodic
+ * schedule if no more QTDs are linked to the QH.
+ */
+static void deactivate_qh(struct dwc_hcd *hcd, struct dwc_qh *qh, int free_qtd)
+{
+ int continue_split = 0;
+ struct dwc_qtd *qtd;
+
+ qtd = list_entry(qh->qtd_list.next, struct dwc_qtd, qtd_list_entry);
+ if (qtd->complete_split)
+ continue_split = 1;
+ else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID ||
+ qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END)
+ continue_split = 1;
+
+ if (free_qtd) {
+ dwc_otg_hcd_qtd_remove(qtd);
+ continue_split = 0;
+ }
+
+ qh->channel = NULL;
+ qh->qtd_in_process = NULL;
+ dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split);
+}
+
+/**
+ * Updates the state of an Isochronous URB when the transfer is stopped for
+ * any reason. The fields of the current entry in the frame descriptor array
+ * are set based on the transfer state and the input status. Completes the
+ * Isochronous URB if all the URB frames have been completed.
+ */
+static enum dwc_halt_status update_isoc_urb_state(struct dwc_hcd *hcd,
+ struct dwc_hc *hc, struct dwc_hc_regs *regs,
+ struct dwc_qtd *qtd, enum dwc_halt_status status)
+{
+ struct urb *urb = qtd->urb;
+ enum dwc_halt_status ret_val = status;
+ struct usb_iso_packet_descriptor *frame_desc;
+ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
+
+ switch (status) {
+ case DWC_OTG_HC_XFER_COMPLETE:
+ frame_desc->status = 0;
+ frame_desc->actual_length =
+ get_actual_xfer_length(hc, regs, qtd, status, NULL);
+ break;
+ case DWC_OTG_HC_XFER_FRAME_OVERRUN:
+ urb->error_count++;
+ if (hc->ep_is_in)
+ frame_desc->status = -ENOSR;
+ else
+ frame_desc->status = -ECOMM;
+
+ frame_desc->actual_length = 0;
+ break;
+ case DWC_OTG_HC_XFER_BABBLE_ERR:
+ /* Don't need to update actual_length in this case. */
+ urb->error_count++;
+ frame_desc->status = -EOVERFLOW;
+ break;
+ case DWC_OTG_HC_XFER_XACT_ERR:
+ urb->error_count++;
+ frame_desc->status = -EPROTO;
+ frame_desc->actual_length =
+ get_actual_xfer_length(hc, regs, qtd, status, NULL);
+ default:
+ printk(KERN_ERR "%s: Unhandled halt_status (%d)\n", __func__,
+ status);
+ BUG();
+ break;
+ }
+
+ if (++qtd->isoc_frame_index == urb->number_of_packets) {
+ /*
+ * urb->status is not used for isoc transfers.
+ * The individual frame_desc statuses are used instead.
+ */
+ dwc_otg_hcd_complete_urb(hcd, urb, 0);
+ ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
+ } else {
+ ret_val = DWC_OTG_HC_XFER_COMPLETE;
+ }
+ return ret_val;
+}
+
+/**
+ * Releases a host channel for use by other transfers. Attempts to select and
+ * queue more transactions since at least one host channel is available.
+ */
+static void release_channel(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_qtd *qtd, enum dwc_halt_status halt_status,
+ int *must_free)
+{
+ enum dwc_transaction_type tr_type;
+ int free_qtd;
+ int deact = 1;
+ struct dwc_qh *qh;
+ int retry_delay = 1;
+
+ switch (halt_status) {
+ case DWC_OTG_HC_XFER_NYET:
+ case DWC_OTG_HC_XFER_NAK:
+ if (halt_status == DWC_OTG_HC_XFER_NYET)
+ retry_delay = nyet_deferral_delay;
+ else
+ retry_delay = nak_deferral_delay;
+ free_qtd = 0;
+ if (deferral_on && hc->do_split) {
+ qh = hc->qh;
+ if (qh)
+ deact = dwc_otg_hcd_qh_deferr(hcd, qh,
+ retry_delay);
+ }
+ break;
+ case DWC_OTG_HC_XFER_URB_COMPLETE:
+ free_qtd = 1;
+ break;
+ case DWC_OTG_HC_XFER_AHB_ERR:
+ case DWC_OTG_HC_XFER_STALL:
+ case DWC_OTG_HC_XFER_BABBLE_ERR:
+ free_qtd = 1;
+ break;
+ case DWC_OTG_HC_XFER_XACT_ERR:
+ if (qtd->error_count >= 3) {
+ free_qtd = 1;
+ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO);
+ } else {
+ free_qtd = 0;
+ }
+ break;
+ case DWC_OTG_HC_XFER_URB_DEQUEUE:
+ /*
+ * The QTD has already been removed and the QH has been
+ * deactivated. Don't want to do anything except release the
+ * host channel and try to queue more transfers.
+ */
+ goto cleanup;
+ case DWC_OTG_HC_XFER_NO_HALT_STATUS:
+ printk(KERN_ERR "%s: No halt_status, channel %d\n", __func__,
+ hc->hc_num);
+ free_qtd = 0;
+ break;
+ default:
+ free_qtd = 0;
+ break;
+ }
+ if (free_qtd)
+ /* must_free pre-initialized to zero */
+ *must_free = 1;
+ if (deact)
+ deactivate_qh(hcd, hc->qh, free_qtd);
+
+cleanup:
+ /*
+ * Release the host channel for use by other transfers. The cleanup
+ * function clears the channel interrupt enables and conditions, so
+ * there's no need to clear the Channel Halted interrupt separately.
+ */
+ dwc_otg_hc_cleanup(hcd->core_if, hc);
+ list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list);
+ hcd->available_host_channels++;
+ /* Try to queue more transfers now that there's a free channel. */
+ if (!erratum_usb09_patched) {
+ tr_type = dwc_otg_hcd_select_transactions(hcd);
+ if (tr_type != DWC_OTG_TRANSACTION_NONE)
+ dwc_otg_hcd_queue_transactions(hcd, tr_type);
+ }
+}
+
+/**
+ * Halts a host channel. If the channel cannot be halted immediately because
+ * the request queue is full, this function ensures that the FIFO empty
+ * interrupt for the appropriate queue is enabled so that the halt request can
+ * be queued when there is space in the request queue.
+ *
+ * This function may also be called in DMA mode. In that case, the channel is
+ * simply released since the core always halts the channel automatically in
+ * DMA mode.
+ */
+static void halt_channel(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_qtd *qtd, enum dwc_halt_status halt_status, int *must_free)
+{
+ if (hcd->core_if->dma_enable) {
+ release_channel(hcd, hc, qtd, halt_status, must_free);
+ return;
+ }
+
+ /* Slave mode processing... */
+ dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
+ if (hc->halt_on_queue) {
+ union gintmsk_data gintmsk = {.d32 = 0};
+
+ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
+ hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
+ /*
+ * Make sure the Non-periodic Tx FIFO empty interrupt
+ * is enabled so that the non-periodic schedule will
+ * be processed.
+ */
+ gintmsk.b.nptxfempty = 1;
+ dwc_modify_reg32(gintmsk_reg(hcd), 0, gintmsk.d32);
+ } else {
+ /*
+ * Move the QH from the periodic queued schedule to
+ * the periodic assigned schedule. This allows the
+ * halt to be queued when the periodic schedule is
+ * processed.
+ */
+ list_move(&hc->qh->qh_list_entry,
+ &hcd->periodic_sched_assigned);
+
+ /*
+ * Make sure the Periodic Tx FIFO Empty interrupt is
+ * enabled so that the periodic schedule will be
+ * processed.
+ */
+ gintmsk.b.ptxfempty = 1;
+ dwc_modify_reg32(gintmsk_reg(hcd), 0, gintmsk.d32);
+ }
+ }
+}
+
+/**
+ * Performs common cleanup for non-periodic transfers after a Transfer
+ * Complete interrupt. This function should be called after any endpoint type
+ * specific handling is finished to release the host channel.
+ */
+static void complete_non_periodic_xfer(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct dwc_qtd *qtd,
+ enum dwc_halt_status halt_status, int *must_free)
+{
+ union hcint_data hcint;
+
+ qtd->error_count = 0;
+ hcint.d32 = dwc_read_reg32(®s->hcint);
+ if (hcint.b.nyet) {
+ union hcint_data hcint_clear = { .d32 = 0};
+
+ hcint_clear.b.nyet = 1;
+ /*
+ * Got a NYET on the last transaction of the transfer. This
+ * means that the endpoint should be in the PING state at the
+ * beginning of the next transfer.
+ */
+ hc->qh->ping_state = 1;
+ dwc_write_reg32(&(regs->hcint), hcint_clear.d32);
+ }
+
+ /*
+ * Always halt and release the host channel to make it available for
+ * more transfers. There may still be more phases for a control
+ * transfer or more data packets for a bulk transfer at this point,
+ * but the host channel is still halted. A channel will be reassigned
+ * to the transfer when the non-periodic schedule is processed after
+ * the channel is released. This allows transactions to be queued
+ * properly via dwc_otg_hcd_queue_transactions, which also enables the
+ * Tx FIFO Empty interrupt if necessary.
+ *
+ * IN transfers in Slave mode require an explicit disable to
+ * halt the channel. (In DMA mode, this call simply releases
+ * the channel.)
+ *
+ * The channel is automatically disabled by the core for OUT
+ * transfers in Slave mode.
+ */
+ if (hc->ep_is_in)
+ halt_channel(hcd, hc, qtd, halt_status, must_free);
+ else
+ release_channel(hcd, hc, qtd, halt_status, must_free);
+}
+
+/**
+ * Performs common cleanup for periodic transfers after a Transfer Complete
+ * interrupt. This function should be called after any endpoint type specific
+ * handling is finished to release the host channel.
+ */
+static void complete_periodic_xfer(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct dwc_qtd *qtd,
+ enum dwc_halt_status halt_status, int *must_free)
+{
+ union hctsiz_data hctsiz;
+
+ hctsiz.d32 = dwc_read_reg32(®s->hctsiz);
+ qtd->error_count = 0;
+
+ /*
+ * For OUT transfers and 0 packet count, the Core halts the channel,
+ * otherwise, Flush any outstanding requests from the Tx queue.
+ */
+ if (!hc->ep_is_in || hctsiz.b.pktcnt == 0)
+ release_channel(hcd, hc, qtd, halt_status, must_free);
+ else
+ halt_channel(hcd, hc, qtd, halt_status, must_free);
+}
+
+/**
+ * Handles a host channel Transfer Complete interrupt. This handler may be
+ * called in either DMA mode or Slave mode.
+ */
+static int handle_hc_xfercomp_intr(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct dwc_qtd *qtd, int *must_free)
+{
+ int urb_xfer_done;
+ enum dwc_halt_status halt_status = DWC_OTG_HC_XFER_COMPLETE;
+ struct urb *urb = qtd->urb;
+ int pipe_type = usb_pipetype(urb->pipe);
+ int status = -EINPROGRESS;
+ union hcintmsk_data hcintmsk = {.d32 = 0};
+
+ /* Handle xfer complete on CSPLIT. */
+ if (hc->qh->do_split)
+ qtd->complete_split = 0;
+
+ /* Update the QTD and URB states. */
+ switch (pipe_type) {
+ case PIPE_CONTROL:
+ switch (qtd->control_phase) {
+ case DWC_OTG_CONTROL_SETUP:
+ if (urb->transfer_buffer_length > 0)
+ qtd->control_phase = DWC_OTG_CONTROL_DATA;
+ else
+ qtd->control_phase = DWC_OTG_CONTROL_STATUS;
+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
+ break;
+ case DWC_OTG_CONTROL_DATA:
+ urb_xfer_done = update_urb_state_xfer_comp(hc, regs,
+ urb, qtd, &status);
+ if (urb_xfer_done)
+ qtd->control_phase = DWC_OTG_CONTROL_STATUS;
+ else
+ save_data_toggle(hc, regs, qtd);
+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
+ break;
+ case DWC_OTG_CONTROL_STATUS:
+ if (status == -EINPROGRESS)
+ status = 0;
+ dwc_otg_hcd_complete_urb(hcd, urb, status);
+ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
+ break;
+ }
+ complete_non_periodic_xfer(hcd, hc, regs, qtd,
+ halt_status, must_free);
+ break;
+ case PIPE_BULK:
+ urb_xfer_done = update_urb_state_xfer_comp(hc, regs, urb, qtd,
+ &status);
+ if (urb_xfer_done) {
+ dwc_otg_hcd_complete_urb(hcd, urb, status);
+ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
+ } else {
+ halt_status = DWC_OTG_HC_XFER_COMPLETE;
+ }
+
+ save_data_toggle(hc, regs, qtd);
+ complete_non_periodic_xfer(hcd, hc, regs, qtd,
+ halt_status, must_free);
+ break;
+ case PIPE_INTERRUPT:
+ update_urb_state_xfer_comp(hc, regs, urb, qtd, &status);
+ /*
+ * Interrupt URB is done on the first transfer complete
+ * interrupt.
+ */
+ dwc_otg_hcd_complete_urb(hcd, urb, status);
+ save_data_toggle(hc, regs, qtd);
+ complete_periodic_xfer(hcd, hc, regs, qtd,
+ DWC_OTG_HC_XFER_URB_COMPLETE, must_free);
+ break;
+ case PIPE_ISOCHRONOUS:
+ if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) {
+ halt_status = update_isoc_urb_state(hcd, hc, regs, qtd,
+ DWC_OTG_HC_XFER_COMPLETE);
+ }
+ complete_periodic_xfer(hcd, hc, regs, qtd,
+ halt_status, must_free);
+ break;
+ }
+
+ /* disable xfercompl */
+ hcintmsk.b.xfercompl = 1;
+ dwc_modify_reg32(®s->hcintmsk, hcintmsk.d32, 0);
+
+ return 1;
+}
+
+/**
+ * Handles a host channel STALL interrupt. This handler may be called in
+ * either DMA mode or Slave mode.
+ */
+static int handle_hc_stall_intr(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct dwc_qtd *qtd, int *must_free)
+{
+ struct urb *urb = qtd->urb;
+ int pipe_type = usb_pipetype(urb->pipe);
+ union hcintmsk_data hcintmsk = {.d32 = 0};
+
+ if (pipe_type == PIPE_CONTROL)
+ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE);
+
+ if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
+ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE);
+ /*
+ * USB protocol requires resetting the data toggle for bulk
+ * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
+ * setup command is issued to the endpoint. Anticipate the
+ * CLEAR_FEATURE command since a STALL has occurred and reset
+ * the data toggle now.
+ */
+ hc->qh->data_toggle = 0;
+ }
+
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL, must_free);
+ /* disable stall */
+ hcintmsk.b.stall = 1;
+ dwc_modify_reg32(®s->hcintmsk, hcintmsk.d32, 0);
+
+ return 1;
+}
+
+/**
+ * Updates the state of the URB when a transfer has been stopped due to an
+ * abnormal condition before the transfer completes. Modifies the
+ * actual_length field of the URB to reflect the number of bytes that have
+ * actually been transferred via the host channel.
+ */
+static void update_urb_state_xfer_intr(struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct urb *urb, struct dwc_qtd *qtd,
+ enum dwc_halt_status sts)
+{
+ u32 xfr_len = get_actual_xfer_length(hc, regs, qtd, sts, NULL);
+ urb->actual_length += xfr_len;
+}
+
+/**
+ * Handles a host channel NAK interrupt. This handler may be called in either
+ * DMA mode or Slave mode.
+ */
+static int handle_hc_nak_intr(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct dwc_qtd *qtd, int *must_free)
+{
+ union hcintmsk_data hcintmsk = {.d32 = 0};
+
+ /*
+ * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
+ * interrupt. Re-start the SSPLIT transfer.
+ */
+ if (hc->do_split) {
+ if (hc->complete_split)
+ qtd->error_count = 0;
+
+ qtd->complete_split = 0;
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK, must_free);
+ goto handle_nak_done;
+ }
+ switch (usb_pipetype(qtd->urb->pipe)) {
+ case PIPE_CONTROL:
+ case PIPE_BULK:
+ if (hcd->core_if->dma_enable && hc->ep_is_in) {
+ /*
+ * NAK interrupts are enabled on bulk/control IN
+ * transfers in DMA mode for the sole purpose of
+ * resetting the error count after a transaction error
+ * occurs. The core will continue transferring data.
+ */
+ qtd->error_count = 0;
+ goto handle_nak_done;
+ }
+
+ /*
+ * NAK interrupts normally occur during OUT transfers in DMA
+ * or Slave mode. For IN transfers, more requests will be
+ * queued as request queue space is available.
+ */
+ qtd->error_count = 0;
+ if (!hc->qh->ping_state) {
+ update_urb_state_xfer_intr(hc, regs, qtd->urb, qtd,
+ DWC_OTG_HC_XFER_NAK);
+
+ save_data_toggle(hc, regs, qtd);
+ if (qtd->urb->dev->speed == USB_SPEED_HIGH)
+ hc->qh->ping_state = 1;
+ }
+
+ /*
+ * Halt the channel so the transfer can be re-started from
+ * the appropriate point or the PING protocol will
+ * start/continue.
+ */
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK, must_free);
+ break;
+ case PIPE_INTERRUPT:
+ qtd->error_count = 0;
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK, must_free);
+ break;
+ case PIPE_ISOCHRONOUS:
+ /* Should never get called for isochronous transfers. */
+ BUG();
+ break;
+ }
+
+handle_nak_done:
+ /* disable nak */
+ hcintmsk.b.nak = 1;
+ dwc_modify_reg32(®s->hcintmsk, hcintmsk.d32, 0);
+
+ return 1;
+}
+
+/**
+ * Helper function for handle_hc_ack_intr(). Sets the split values for an ACK
+ * on SSPLIT for ISOC OUT.
+ */
+static void set_isoc_out_vals(struct dwc_hc *hc, struct dwc_qtd *qtd)
+{
+ struct usb_iso_packet_descriptor *frame_desc;
+
+ switch (hc->xact_pos) {
+ case DWC_HCSPLIT_XACTPOS_ALL:
+ break;
+ case DWC_HCSPLIT_XACTPOS_END:
+ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
+ qtd->isoc_split_offset = 0;
+ break;
+ case DWC_HCSPLIT_XACTPOS_BEGIN:
+ case DWC_HCSPLIT_XACTPOS_MID:
+ /*
+ * For BEGIN or MID, calculate the length for the next
+ * microframe to determine the correct SSPLIT token, either MID
+ * or END.
+ */
+ frame_desc = &qtd->urb->iso_frame_desc[qtd->isoc_frame_index];
+ qtd->isoc_split_offset += 188;
+
+ if ((frame_desc->length - qtd->isoc_split_offset) <= 188)
+ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END;
+ else
+ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID;
+
+ break;
+ }
+}
+
+/**
+ * Handles a host channel ACK interrupt. This interrupt is enabled when
+ * performing the PING protocol in Slave mode, when errors occur during
+ * either Slave mode or DMA mode, and during Start Split transactions.
+ */
+static int handle_hc_ack_intr(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct dwc_qtd *qtd,
+ int *must_free)
+{
+ union hcintmsk_data hcintmsk = {.d32 = 0};
+
+ if (hc->do_split) {
+ /* Handle ACK on SSPLIT. ACK should not occur in CSPLIT. */
+ if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP)
+ qtd->ssplit_out_xfer_count = hc->xfer_len;
+
+ /* Don't need complete for isochronous out transfers. */
+ if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in))
+ qtd->complete_split = 1;
+
+ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)
+ set_isoc_out_vals(hc, qtd);
+ else
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK,
+ must_free);
+ } else {
+ qtd->error_count = 0;
+ if (hc->qh->ping_state) {
+ hc->qh->ping_state = 0;
+
+ /*
+ * Halt the channel so the transfer can be re-started
+ * from the appropriate point. This only happens in
+ * Slave mode. In DMA mode, the ping_state is cleared
+ * when the transfer is started because the core
+ * automatically executes the PING, then the transfer.
+ */
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK,
+ must_free);
+ }
+ }
+
+ /*
+ * If the ACK occurred when _not_ in the PING state, let the channel
+ * continue transferring data after clearing the error count.
+ */
+ /* disable ack */
+ hcintmsk.b.ack = 1;
+ dwc_modify_reg32(®s->hcintmsk, hcintmsk.d32, 0);
+
+ return 1;
+}
+
+/**
+ * Handles a host channel NYET interrupt. This interrupt should only occur on
+ * Bulk and Control OUT endpoints and for complete split transactions. If a
+ * NYET occurs at the same time as a Transfer Complete interrupt, it is
+ * handled in the xfercomp interrupt handler, not here. This handler may be
+ * called in either DMA mode or Slave mode.
+ */
+static int handle_hc_nyet_intr(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct dwc_qtd *qtd, int *must_free)
+{
+ union hcintmsk_data hcintmsk = {.d32 = 0};
+ union hcint_data hcint_clear = {.d32 = 0};
+
+ /*
+ * NYET on CSPLIT
+ * re-do the CSPLIT immediately on non-periodic
+ */
+ if (hc->do_split && hc->complete_split) {
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+ int frnum = dwc_otg_hcd_get_frame_number(
+ dwc_otg_hcd_to_hcd(hcd));
+ if (dwc_full_frame_num(frnum) !=
+ dwc_full_frame_num(hc->qh->sched_frame)) {
+ qtd->complete_split = 0;
+ halt_channel(hcd, hc, qtd,
+ DWC_OTG_HC_XFER_XACT_ERR, must_free);
+ goto handle_nyet_done;
+ }
+ }
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET, must_free);
+ goto handle_nyet_done;
+ }
+ hc->qh->ping_state = 1;
+ qtd->error_count = 0;
+ update_urb_state_xfer_intr(hc, regs, qtd->urb, qtd,
+ DWC_OTG_HC_XFER_NYET);
+ save_data_toggle(hc, regs, qtd);
+ /*
+ * Halt the channel and re-start the transfer so the PING
+ * protocol will start.
+ */
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET, must_free);
+
+handle_nyet_done:
+ /* disable nyet */
+ hcintmsk.b.nyet = 1;
+ dwc_modify_reg32(®s->hcintmsk, hcintmsk.d32, 0);
+ /* clear nyet */
+ hcint_clear.b.nyet = 1;
+ dwc_write_reg32(&(regs->hcint), hcint_clear.d32);
+ return 1;
+}
+
+/**
+ * Handles a host channel babble interrupt. This handler may be called in
+ * either DMA mode or Slave mode.
+ */
+static int handle_hc_babble_intr(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct dwc_qtd *qtd, int *must_free)
+{
+ union hcintmsk_data hcintmsk = {.d32 = 0};
+
+ if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
+ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW);
+ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR,
+ must_free);
+ } else {
+ enum dwc_halt_status halt_status;
+ halt_status = update_isoc_urb_state(hcd, hc, regs, qtd,
+ DWC_OTG_HC_XFER_BABBLE_ERR);
+ halt_channel(hcd, hc, qtd, halt_status, must_free);
+ }
+ /* disable bblerr */
+ hcintmsk.b.bblerr = 1;
+ dwc_modify_reg32(®s->hcintmsk, hcintmsk.d32, 0);
+ return 1;
+}
+
+/**
+ * Handles a host channel AHB error interrupt. This handler is only called in
+ * DMA mode.
+ */
+static int handle_hc_ahberr_intr(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct dwc_qtd *qtd)
+{
+ union hcchar_data hcchar;
+ union hcsplt_data hcsplt;
+ union hctsiz_data hctsiz;
+ u32 hcdma;
+ struct urb *urb = qtd->urb;
+ union hcintmsk_data hcintmsk = {.d32 = 0};
+
+ hcchar.d32 = dwc_read_reg32(®s->hcchar);
+ hcsplt.d32 = dwc_read_reg32(®s->hcsplt);
+ hctsiz.d32 = dwc_read_reg32(®s->hctsiz);
+ hcdma = dwc_read_reg32(®s->hcdma);
+
+ printk(KERN_ERR "AHB ERROR, Channel %d\n", hc->hc_num);
+ printk(KERN_ERR " hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32,
+ hcsplt.d32);
+ printk(KERN_ERR " hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
+
+ printk(KERN_ERR " Device address: %d\n", usb_pipedevice(urb->pipe));
+ printk(KERN_ERR " Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
+ (usb_pipein(urb->pipe) ? "IN" : "OUT"));
+
+ printk(KERN_ERR " Endpoint type: %s\n", pipetype_str(urb->pipe));
+ printk(KERN_ERR " Speed: %s\n", dev_speed_str(urb->dev->speed));
+ printk(KERN_ERR " Max packet size: %d\n",
+ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
+ printk(KERN_ERR " Data buffer length: %d\n",
+ urb->transfer_buffer_length);
+ printk(KERN_ERR " Transfer buffer: %p, Transfer DMA: %p\n",
+ urb->transfer_buffer, (void *) urb->transfer_dma);
+ printk(KERN_ERR " Setup buffer: %p, Setup DMA: %p\n",
+ urb->setup_packet, (void *) urb->setup_dma);
+ printk(KERN_ERR " Interval: %d\n", urb->interval);
+
+ dwc_otg_hcd_complete_urb(hcd, urb, -EIO);
+
+ /*
+ * Force a channel halt. Don't call halt_channel because that won't
+ * write to the HCCHARn register in DMA mode to force the halt.
+ */
+ dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR);
+ /* disable ahberr */
+ hcintmsk.b.ahberr = 1;
+ dwc_modify_reg32(®s->hcintmsk, hcintmsk.d32, 0);
+
+ return 1;
+}
+
+/**
+ * Handles a host channel transaction error interrupt. This handler may be
+ * called in either DMA mode or Slave mode.
+ */
+static int handle_hc_xacterr_intr(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct dwc_qtd *qtd, int *must_free)
+{
+ enum dwc_halt_status status = DWC_OTG_HC_XFER_XACT_ERR;
+ union hcintmsk_data hcintmsk = {.d32 = 0};
+
+ switch (usb_pipetype(qtd->urb->pipe)) {
+ case PIPE_CONTROL:
+ case PIPE_BULK:
+ qtd->error_count++;
+ if (!hc->qh->ping_state) {
+ update_urb_state_xfer_intr(hc, regs, qtd->urb, qtd,
+ status);
+ save_data_toggle(hc, regs, qtd);
+
+ if (!hc->ep_is_in && qtd->urb->dev->speed ==
+ USB_SPEED_HIGH)
+ hc->qh->ping_state = 1;
+ }
+ /*
+ * Halt the channel so the transfer can be re-started from
+ * the appropriate point or the PING protocol will start.
+ */
+ halt_channel(hcd, hc, qtd, status, must_free);
+ break;
+ case PIPE_INTERRUPT:
+ qtd->error_count++;
+ if (hc->do_split && hc->complete_split)
+ qtd->complete_split = 0;
+
+ halt_channel(hcd, hc, qtd, status, must_free);
+ break;
+ case PIPE_ISOCHRONOUS:
+ status = update_isoc_urb_state(hcd, hc, regs, qtd, status);
+ halt_channel(hcd, hc, qtd, status, must_free);
+ break;
+ }
+ /* Disable xacterr */
+ hcintmsk.b.xacterr = 1;
+ dwc_modify_reg32(®s->hcintmsk, hcintmsk.d32, 0);
+
+ return 1;
+}
+
+/**
+ * Handles a host channel frame overrun interrupt. This handler may be called
+ * in either DMA mode or Slave mode.
+ */
+static int handle_hc_frmovrun_intr(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct dwc_qtd *qtd, int *must_free)
+{
+ enum dwc_halt_status status = DWC_OTG_HC_XFER_FRAME_OVERRUN;
+ union hcintmsk_data hcintmsk = {.d32 = 0};
+
+ switch (usb_pipetype(qtd->urb->pipe)) {
+ case PIPE_CONTROL:
+ case PIPE_BULK:
+ break;
+ case PIPE_INTERRUPT:
+ halt_channel(hcd, hc, qtd, status, must_free);
+ break;
+ case PIPE_ISOCHRONOUS:
+ status = update_isoc_urb_state(hcd, hc, regs, qtd, status);
+ halt_channel(hcd, hc, qtd, status, must_free);
+ break;
+ }
+ /* Disable frmovrun */
+ hcintmsk.b.frmovrun = 1;
+ dwc_modify_reg32(®s->hcintmsk, hcintmsk.d32, 0);
+
+ return 1;
+}
+
+/**
+ * Handles a host channel data toggle error interrupt. This handler may be
+ * called in either DMA mode or Slave mode.
+ */
+static int handle_hc_datatglerr_intr(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct dwc_qtd *qtd)
+{
+ union hcintmsk_data hcintmsk = {.d32 = 0};
+
+ if (hc->ep_is_in)
+ qtd->error_count = 0;
+ else
+ printk(KERN_ERR "Data Toggle Error on OUT transfer, channel "
+ "%d\n", hc->hc_num);
+
+ /* disable datatglerr */
+ hcintmsk.b.datatglerr = 1;
+ dwc_modify_reg32(®s->hcintmsk, hcintmsk.d32, 0);
+
+ return 1;
+}
+
+/**
+ * Handles a host Channel Halted interrupt in DMA mode. This handler
+ * determines the reason the channel halted and proceeds accordingly.
+ */
+static void handle_hc_chhltd_intr_dma(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct dwc_qtd *qtd, int *must_free)
+{
+ union hcint_data hcint;
+ union hcintmsk_data hcintmsk;
+
+ if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
+ hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
+ /*
+ * Just release the channel. A dequeue can happen on a
+ * transfer timeout. In the case of an AHB Error, the channel
+ * was forced to halt because there's no way to gracefully
+ * recover.
+ */
+ release_channel(hcd, hc, qtd, hc->halt_status, must_free);
+ return;
+ }
+
+ /* Read the HCINTn register to determine the cause for the halt. */
+ hcint.d32 = dwc_read_reg32(®s->hcint);
+ hcintmsk.d32 = dwc_read_reg32(®s->hcintmsk);
+ if (hcint.b.xfercomp) {
+ /*
+ * This is here because of a possible hardware bug. Spec
+ * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT
+ * interrupt w/ACK bit set should occur, but I only see the
+ * XFERCOMP bit, even with it masked out. This is a workaround
+ * for that behavior. Should fix this when hardware is fixed.
+ */
+ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)
+ handle_hc_ack_intr(hcd, hc, regs, qtd, must_free);
+
+ handle_hc_xfercomp_intr(hcd, hc, regs, qtd, must_free);
+ } else if (hcint.b.stall) {
+ handle_hc_stall_intr(hcd, hc, regs, qtd, must_free);
+ } else if (hcint.b.xacterr) {
+ /*
+ * Must handle xacterr before nak or ack. Could get a xacterr
+ * at the same time as either of these on a BULK/CONTROL OUT
+ * that started with a PING. The xacterr takes precedence.
+ */
+ handle_hc_xacterr_intr(hcd, hc, regs, qtd, must_free);
+ } else if (hcint.b.nyet) {
+ /*
+ * Must handle nyet before nak or ack. Could get a nyet at the
+ * same time as either of those on a BULK/CONTROL OUT that
+ * started with a PING. The nyet takes precedence.
+ */
+ handle_hc_nyet_intr(hcd, hc, regs, qtd, must_free);
+ } else if (hcint.b.bblerr) {
+ handle_hc_babble_intr(hcd, hc, regs, qtd, must_free);
+ } else if (hcint.b.frmovrun) {
+ handle_hc_frmovrun_intr(hcd, hc, regs, qtd, must_free);
+ } else if (hcint.b.datatglerr) {
+ handle_hc_datatglerr_intr(hcd, hc, regs, qtd);
+ hc->qh->data_toggle = 0;
+ halt_channel(hcd, hc, qtd, hc->halt_status, must_free);
+ } else if (hcint.b.nak && !hcintmsk.b.nak) {
+ /*
+ * If nak is not masked, it's because a non-split IN transfer
+ * is in an error state. In that case, the nak is handled by
+ * the nak interrupt handler, not here. Handle nak here for
+ * BULK/CONTROL OUT transfers, which halt on a NAK to allow
+ * rewinding the buffer pointer.
+ */
+ handle_hc_nak_intr(hcd, hc, regs, qtd, must_free);
+ } else if (hcint.b.ack && !hcintmsk.b.ack) {
+ /*
+ * If ack is not masked, it's because a non-split IN transfer
+ * is in an error state. In that case, the ack is handled by
+ * the ack interrupt handler, not here. Handle ack here for
+ * split transfers. Start splits halt on ACK.
+ */
+ handle_hc_ack_intr(hcd, hc, regs, qtd, must_free);
+ } else {
+ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
+ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
+ /*
+ * A periodic transfer halted with no other channel
+ * interrupts set. Assume it was halted by the core
+ * because it could not be completed in its scheduled
+ * (micro)frame.
+ */
+ halt_channel(hcd, hc, qtd,
+ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
+ must_free);
+ } else {
+ printk(KERN_ERR "%s: Channel %d, DMA Mode -- ChHltd "
+ "set, but reason for halting is unknown, "
+ "hcint 0x%08x, intsts 0x%08x\n",
+ __func__, hc->hc_num, hcint.d32,
+ dwc_read_reg32(gintsts_reg(hcd)));
+ }
+ }
+}
+
+/**
+ * Handles a host channel Channel Halted interrupt.
+ *
+ * In slave mode, this handler is called only when the driver specifically
+ * requests a halt. This occurs during handling other host channel interrupts
+ * (e.g. nak, xacterr, stall, nyet, etc.).
+ *
+ * In DMA mode, this is the interrupt that occurs when the core has finished
+ * processing a transfer on a channel. Other host channel interrupts (except
+ * ahberr) are disabled in DMA mode.
+ */
+static int handle_hc_chhltd_intr(struct dwc_hcd *hcd, struct dwc_hc *hc,
+ struct dwc_hc_regs *regs, struct dwc_qtd *qtd, int *must_free)
+{
+ if (hcd->core_if->dma_enable)
+ handle_hc_chhltd_intr_dma(hcd, hc, regs, qtd, must_free);
+ else
+ release_channel(hcd, hc, qtd, hc->halt_status, must_free);
+
+ return 1;
+}
+
+/* Handles interrupt for a specific Host Channel */
+static int dwc_otg_hcd_handle_hc_n_intr(struct dwc_hcd *hcd, u32 num)
+{
+ int must_free = 0;
+ int retval = 0;
+ union hcint_data hcint;
+ union hcintmsk_data hcintmsk;
+ struct dwc_hc *hc;
+ struct dwc_hc_regs *hc_regs;
+ struct dwc_qtd *qtd;
+
+ hc = hcd->hc_ptr_array[num];
+ hc_regs = hcd->core_if->host_if->hc_regs[num];
+ qtd = list_entry(hc->qh->qtd_list.next, struct dwc_qtd, qtd_list_entry);
+
+ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
+ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
+
+ hcint.d32 = hcint.d32 & hcintmsk.d32;
+ if (!hcd->core_if->dma_enable && hcint.b.chhltd && hcint.d32 != 0x2)
+ hcint.b.chhltd = 0;
+
+ if (hcint.b.xfercomp) {
+ retval |= handle_hc_xfercomp_intr(hcd, hc, hc_regs,
+ qtd, &must_free);
+ /*
+ * If NYET occurred at same time as Xfer Complete, the NYET is
+ * handled by the Xfer Complete interrupt handler. Don't want
+ * to call the NYET interrupt handler in this case.
+ */
+ hcint.b.nyet = 0;
+ }
+
+ if (hcint.b.chhltd)
+ retval |= handle_hc_chhltd_intr(hcd, hc, hc_regs,
+ qtd, &must_free);
+ if (hcint.b.ahberr)
+ retval |= handle_hc_ahberr_intr(hcd, hc, hc_regs, qtd);
+ if (hcint.b.stall)
+ retval |= handle_hc_stall_intr(hcd, hc, hc_regs,
+ qtd, &must_free);
+ if (hcint.b.nak)
+ retval |= handle_hc_nak_intr(hcd, hc, hc_regs,
+ qtd, &must_free);
+ if (hcint.b.ack)
+ retval |= handle_hc_ack_intr(hcd, hc, hc_regs,
+ qtd, &must_free);
+ if (hcint.b.nyet)
+ retval |= handle_hc_nyet_intr(hcd, hc, hc_regs,
+ qtd, &must_free);
+ if (hcint.b.xacterr)
+ retval |= handle_hc_xacterr_intr(hcd, hc, hc_regs,
+ qtd, &must_free);
+ if (hcint.b.bblerr)
+ retval |= handle_hc_babble_intr(hcd, hc, hc_regs,
+ qtd, &must_free);
+ if (hcint.b.frmovrun)
+ retval |= handle_hc_frmovrun_intr(hcd, hc, hc_regs,
+ qtd, &must_free);
+ if (hcint.b.datatglerr)
+ retval |= handle_hc_datatglerr_intr(hcd, hc, hc_regs, qtd);
+
+ if (must_free)
+ /* Free the qtd here now that we are done using it. */
+ dwc_otg_hcd_qtd_free(qtd);
+ return retval;
+}
+
+/**
+ * This function returns the Host All Channel Interrupt register
+ */
+static inline u32 dwc_otg_read_host_all_channels_intr(struct core_if
+ *core_if)
+{
+ return dwc_read_reg32(&core_if->host_if->host_global_regs->haint);
+}
+
+/**
+ * This interrupt indicates that one or more host channels has a pending
+ * interrupt. There are multiple conditions that can cause each host channel
+ * interrupt. This function determines which conditions have occurred for each
+ * host channel interrupt and handles them appropriately.
+ */
+static int dwc_otg_hcd_handle_hc_intr(struct dwc_hcd *hcd)
+{
+ u32 i;
+ int retval = 0;
+ union haint_data haint;
+
+ /*
+ * Clear appropriate bits in HCINTn to clear the interrupt bit in
+ * GINTSTS
+ */
+ haint.d32 = dwc_otg_read_host_all_channels_intr(hcd->core_if);
+ for (i = 0; i < hcd->core_if->core_params->host_channels; i++)
+ if (haint.b2.chint & (1 << i))
+ retval |= dwc_otg_hcd_handle_hc_n_intr(hcd, i);
+
+ return retval;
+}
+
+/* This function handles interrupts for the HCD.*/
+int dwc_otg_hcd_handle_intr(struct dwc_hcd *hcd)
+{
+ int ret = 0;
+ struct core_if *core_if = hcd->core_if;
+ union gintsts_data gintsts;
+
+ /* Check if HOST Mode */
+ if (dwc_otg_is_host_mode(core_if)) {
+ spin_lock(&hcd->lock);
+ gintsts.d32 = dwc_otg_read_core_intr(core_if);
+ if (!gintsts.d32) {
+ spin_unlock(&hcd->lock);
+ return IRQ_NONE;
+ }
+
+ if (gintsts.b.sofintr)
+ ret |= dwc_otg_hcd_handle_sof_intr(hcd);
+ if (gintsts.b.rxstsqlvl)
+ ret |= dwc_otg_hcd_handle_rx_status_q_level_intr(hcd);
+ if (gintsts.b.nptxfempty)
+ ret |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(hcd);
+ if (gintsts.b.portintr)
+ ret |= dwc_otg_hcd_handle_port_intr(hcd);
+ if (gintsts.b.hcintr)
+ ret |= dwc_otg_hcd_handle_hc_intr(hcd);
+ if (gintsts.b.ptxfempty)
+ ret |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(hcd);
+
+ spin_unlock(&hcd->lock);
+ }
+ return ret;
+}
diff --git a/drivers/usb/dwc_otg/dwc_otg_hcd_queue.c b/drivers/usb/dwc_otg/dwc_otg_hcd_queue.c
new file mode 100644
index 0000000..a129a14
--- /dev/null
+++ b/drivers/usb/dwc_otg/dwc_otg_hcd_queue.c
@@ -0,0 +1,710 @@
+/*
+ * DesignWare HS OTG controller driver
+ *
+ * Author: Mark Miesfeld <mmiesfeld at apm.com>
+ *
+ * Based on versions provided by APM and Synopsis which are:
+ * Copyright (C) 2009-2010 AppliedMicro(www.apm.com)
+ * Modified by Stefan Roese <sr at denx.de>, DENX Software Engineering
+ * Modified by Chuck Meade <chuck at theptrgroup.com>
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+/*
+ * This file contains the functions to manage Queue Heads and Queue
+ * Transfer Descriptors.
+ */
+
+#include "dwc_otg_hcd.h"
+
+static inline int is_fs_ls(enum usb_device_speed speed)
+{
+ return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW;
+}
+
+/* Allocates memory for a QH structure. */
+static inline struct dwc_qh *dwc_otg_hcd_qh_alloc(void)
+{
+ return kmalloc(sizeof(struct dwc_qh), GFP_ATOMIC);
+}
+
+/**
+ * Initializes a QH structure to initialize the QH.
+ */
+#define SCHEDULE_SLOP 10
+static void dwc_otg_hcd_qh_init(struct dwc_hcd *hcd, struct dwc_qh *qh,
+ struct urb *urb)
+{
+ memset(qh, 0, sizeof(struct dwc_qh));
+
+ /* Initialize QH */
+ switch (usb_pipetype(urb->pipe)) {
+ case PIPE_CONTROL:
+ qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
+ break;
+ case PIPE_BULK:
+ qh->ep_type = USB_ENDPOINT_XFER_BULK;
+ break;
+ case PIPE_ISOCHRONOUS:
+ qh->ep_type = USB_ENDPOINT_XFER_ISOC;
+ break;
+ case PIPE_INTERRUPT:
+ qh->ep_type = USB_ENDPOINT_XFER_INT;
+ break;
+ }
+
+ qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0;
+ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
+ qh->maxp = usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)));
+
+ INIT_LIST_HEAD(&qh->qtd_list);
+ INIT_LIST_HEAD(&qh->qh_list_entry);
+
+ qh->channel = NULL;
+ qh->speed = urb->dev->speed;
+
+ /*
+ * FS/LS Enpoint on HS Hub NOT virtual root hub
+ */
+ qh->do_split = 0;
+ if (is_fs_ls(urb->dev->speed) && urb->dev->tt && urb->dev->tt->hub &&
+ urb->dev->tt->hub->devnum != 1)
+ qh->do_split = 1;
+
+ if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
+ qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
+ /* Compute scheduling parameters once and save them. */
+ union hprt0_data hprt;
+ int bytecount = dwc_hb_mult(qh->maxp) *
+ dwc_max_packet(qh->maxp);
+
+ qh->usecs = NS_TO_US(usb_calc_bus_time(urb->dev->speed,
+ usb_pipein(urb->pipe),
+ (qh->ep_type == USB_ENDPOINT_XFER_ISOC),
+ bytecount));
+
+ /* Start in a slightly future (micro)frame. */
+ qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
+ SCHEDULE_SLOP);
+ qh->interval = urb->interval;
+
+ hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
+ if (hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED &&
+ is_fs_ls(urb->dev->speed)) {
+ qh->interval *= 8;
+ qh->sched_frame |= 0x7;
+ qh->start_split_frame = qh->sched_frame;
+ }
+ }
+}
+
+/**
+ * This function allocates and initializes a QH.
+ */
+static struct dwc_qh *dwc_otg_hcd_qh_create(struct dwc_hcd *hcd,
+ struct urb *urb)
+{
+ struct dwc_qh *qh;
+
+ /* Allocate memory */
+ qh = dwc_otg_hcd_qh_alloc();
+ if (qh == NULL)
+ return NULL;
+
+ dwc_otg_hcd_qh_init(hcd, qh, urb);
+ return qh;
+}
+
+/**
+ * Free each QTD in the QH's QTD-list then free the QH. QH should already be
+ * removed from a list. QTD list should already be empty if called from URB
+ * Dequeue.
+ */
+void dwc_otg_hcd_qh_free(struct dwc_qh *qh)
+{
+ struct dwc_qtd *qtd;
+ struct list_head *pos, *temp;
+
+ /* Free each QTD in the QTD list */
+ list_for_each_safe(pos, temp, &qh->qtd_list) {
+ list_del(pos);
+ qtd = dwc_list_to_qtd(pos);
+ dwc_otg_hcd_qtd_free(qtd);
+ }
+ kfree(qh);
+}
+
+/**
+ * Microframe scheduler
+ * track the total use in hcd->frame_usecs
+ * keep each qh use in qh->frame_usecs
+ * when surrendering the qh then donate the time back
+ */
+static const u16 max_uframe_usecs[] = {100, 100, 100, 100, 100, 100, 30, 0};
+
+/*
+ * called from dwc_otg_hcd.c:dwc_otg_hcd_init
+ */
+int init_hcd_usecs(struct dwc_hcd *hcd)
+{
+ int i;
+
+ for (i = 0; i < 8; i++)
+ hcd->frame_usecs[i] = max_uframe_usecs[i];
+
+ return 0;
+}
+
+static int find_single_uframe(struct dwc_hcd *hcd, struct dwc_qh *qh)
+{
+ int i;
+ u16 utime;
+ int t_left;
+ int ret;
+ int done;
+
+ ret = -1;
+ utime = qh->usecs;
+ t_left = utime;
+ i = 0;
+ done = 0;
+ while (done == 0) {
+ /* At the start hcd->frame_usecs[i] = max_uframe_usecs[i]; */
+ if (utime <= hcd->frame_usecs[i]) {
+ hcd->frame_usecs[i] -= utime;
+ qh->frame_usecs[i] += utime;
+ t_left -= utime;
+ ret = i;
+ done = 1;
+ return ret;
+ } else {
+ i++;
+ if (i == 8) {
+ done = 1;
+ ret = -1;
+ }
+ }
+ }
+ return ret;
+}
+
+/*
+ * use this for FS apps that can span multiple uframes
+ */
+static int find_multi_uframe(struct dwc_hcd *hcd, struct dwc_qh *qh)
+{
+ int i;
+ int j;
+ u16 utime;
+ int t_left;
+ int ret;
+ int done;
+ u16 xtime;
+
+ ret = -1;
+ utime = qh->usecs;
+ t_left = utime;
+ i = 0;
+ done = 0;
+loop:
+ while (done == 0) {
+ if (hcd->frame_usecs[i] <= 0) {
+ i++;
+ if (i == 8) {
+ done = 1;
+ ret = -1;
+ }
+ goto loop;
+ }
+
+ /*
+ * We need n consequtive slots so use j as a start slot.
+ * j plus j+1 must be enough time (for now)
+ */
+ xtime = hcd->frame_usecs[i];
+ for (j = i + 1; j < 8; j++) {
+ /*
+ * if we add this frame remaining time to xtime we may
+ * be OK, if not we need to test j for a complete frame.
+ */
+ if ((xtime+hcd->frame_usecs[j]) < utime) {
+ if (hcd->frame_usecs[j] < max_uframe_usecs[j]) {
+ j = 8;
+ ret = -1;
+ continue;
+ }
+ }
+ if (xtime >= utime) {
+ ret = i;
+ j = 8; /* stop loop with a good value ret */
+ continue;
+ }
+ /* add the frame time to x time */
+ xtime += hcd->frame_usecs[j];
+ /* we must have a fully available next frame or break */
+ if ((xtime < utime) &&
+ (hcd->frame_usecs[j] == max_uframe_usecs[j])) {
+ ret = -1;
+ j = 8; /* stop loop with a bad value ret */
+ continue;
+ }
+ }
+ if (ret >= 0) {
+ t_left = utime;
+ for (j = i; (t_left > 0) && (j < 8); j++) {
+ t_left -= hcd->frame_usecs[j];
+ if (t_left <= 0) {
+ qh->frame_usecs[j] +=
+ hcd->frame_usecs[j] + t_left;
+ hcd->frame_usecs[j] = -t_left;
+ ret = i;
+ done = 1;
+ } else {
+ qh->frame_usecs[j] +=
+ hcd->frame_usecs[j];
+ hcd->frame_usecs[j] = 0;
+ }
+ }
+ } else {
+ i++;
+ if (i == 8) {
+ done = 1;
+ ret = -1;
+ }
+ }
+ }
+ return ret;
+}
+
+static int find_uframe(struct dwc_hcd *hcd, struct dwc_qh *qh)
+{
+ int ret = -1;
+
+ if (qh->speed == USB_SPEED_HIGH)
+ /* if this is a hs transaction we need a full frame */
+ ret = find_single_uframe(hcd, qh);
+ else
+ /* FS transaction may need a sequence of frames */
+ ret = find_multi_uframe(hcd, qh);
+
+ return ret;
+}
+
+/**
+ * Checks that the max transfer size allowed in a host channel is large enough
+ * to handle the maximum data transfer in a single (micro)frame for a periodic
+ * transfer.
+ */
+static int check_max_xfer_size(struct dwc_hcd *hcd, struct dwc_qh *qh)
+{
+ int status = 0;
+ u32 max_xfer_size;
+ u32 max_channel_xfer_size;
+
+ max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
+ max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
+
+ if (max_xfer_size > max_channel_xfer_size) {
+ printk(KERN_NOTICE "%s: Periodic xfer length %d > max xfer "
+ "length for channel %d\n", __func__, max_xfer_size,
+ max_channel_xfer_size);
+ status = -ENOSPC;
+ }
+
+ return status;
+}
+
+/**
+ * Schedules an interrupt or isochronous transfer in the periodic schedule.
+ */
+static int schedule_periodic(struct dwc_hcd *hcd, struct dwc_qh *qh)
+{
+ int status;
+ struct usb_bus *bus = hcd_to_bus(dwc_otg_hcd_to_hcd(hcd));
+ int frame;
+
+ status = find_uframe(hcd, qh);
+ frame = -1;
+ if (status == 0) {
+ frame = 7;
+ } else {
+ if (status > 0)
+ frame = status-1;
+ }
+ /* Set the new frame up */
+ if (frame > -1) {
+ qh->sched_frame &= ~0x7;
+ qh->sched_frame |= (frame & 7);
+ }
+ if (status != -1)
+ status = 0;
+ if (status) {
+ printk(KERN_NOTICE "%s: Insufficient periodic bandwidth for "
+ "periodic transfer.\n", __func__);
+ return status;
+ }
+ status = check_max_xfer_size(hcd, qh);
+ if (status) {
+ printk(KERN_NOTICE "%s: Channel max transfer size too small "
+ "for periodic transfer.\n", __func__);
+ return status;
+ }
+ /* Always start in the inactive schedule. */
+ list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive);
+
+ /* Update claimed usecs per (micro)frame. */
+ hcd->periodic_usecs += qh->usecs;
+
+ /*
+ * Update average periodic bandwidth claimed and # periodic reqs for
+ * usbfs.
+ */
+ bus->bandwidth_allocated += qh->usecs / qh->interval;
+
+ if (qh->ep_type == USB_ENDPOINT_XFER_INT)
+ bus->bandwidth_int_reqs++;
+ else
+ bus->bandwidth_isoc_reqs++;
+
+ return status;
+}
+
+/**
+ * This function adds a QH to either the non periodic or periodic schedule if
+ * it is not already in the schedule. If the QH is already in the schedule, no
+ * action is taken.
+ */
+static int dwc_otg_hcd_qh_add(struct dwc_hcd *hcd, struct dwc_qh *qh)
+{
+ int status = 0;
+
+ /* QH may already be in a schedule. */
+ if (!list_empty(&qh->qh_list_entry))
+ goto done;
+ /*
+ * Add the new QH to the appropriate schedule. For non-periodic, always
+ * start in the inactive schedule.
+ */
+ if (dwc_qh_is_non_per(qh))
+ list_add_tail(&qh->qh_list_entry,
+ &hcd->non_periodic_sched_inactive);
+ else
+ status = schedule_periodic(hcd, qh);
+
+done:
+ return status;
+}
+
+/**
+ * This function adds a QH to the non periodic deferred schedule.
+ *
+ * @return 0 if successful, negative error code otherwise.
+ */
+int dwc_otg_hcd_qh_add_deferred(struct dwc_hcd *hcd, struct dwc_qh *qh)
+{
+ if (!list_empty(&qh->qh_list_entry))
+ /* QH already in a schedule. */
+ goto done;
+
+ /* Add the new QH to the non periodic deferred schedule */
+ if (dwc_qh_is_non_per(qh))
+ list_add_tail(&qh->qh_list_entry,
+ &hcd->non_periodic_sched_deferred);
+done:
+ return 0;
+}
+
+
+/**
+ * Removes an interrupt or isochronous transfer from the periodic schedule.
+ */
+static void deschedule_periodic(struct dwc_hcd *hcd, struct dwc_qh *qh)
+{
+ struct usb_bus *bus = hcd_to_bus(dwc_otg_hcd_to_hcd(hcd));
+ int i;
+
+ list_del_init(&qh->qh_list_entry);
+ /* Update claimed usecs per (micro)frame. */
+ hcd->periodic_usecs -= qh->usecs;
+ for (i = 0; i < 8; i++) {
+ hcd->frame_usecs[i] += qh->frame_usecs[i];
+ qh->frame_usecs[i] = 0;
+ }
+ /*
+ * Update average periodic bandwidth claimed and # periodic reqs for
+ * usbfs.
+ */
+ bus->bandwidth_allocated -= qh->usecs / qh->interval;
+
+ if (qh->ep_type == USB_ENDPOINT_XFER_INT)
+ bus->bandwidth_int_reqs--;
+ else
+ bus->bandwidth_isoc_reqs--;
+}
+
+/**
+ * Removes a QH from either the non-periodic or periodic schedule. Memory is
+ * not freed.
+ */
+void dwc_otg_hcd_qh_remove(struct dwc_hcd *hcd, struct dwc_qh *qh)
+{
+ /* Do nothing if QH is not in a schedule */
+ if (list_empty(&qh->qh_list_entry))
+ return;
+
+ if (dwc_qh_is_non_per(qh)) {
+ if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry)
+ hcd->non_periodic_qh_ptr =
+ hcd->non_periodic_qh_ptr->next;
+ list_del_init(&qh->qh_list_entry);
+ } else {
+ deschedule_periodic(hcd, qh);
+ }
+}
+
+/**
+ * Defers a QH. For non-periodic QHs, removes the QH from the active
+ * non-periodic schedule. The QH is added to the deferred non-periodic
+ * schedule if any QTDs are still attached to the QH.
+ */
+int dwc_otg_hcd_qh_deferr(struct dwc_hcd *hcd, struct dwc_qh *qh, int delay)
+{
+ int deact = 1;
+
+ if (dwc_qh_is_non_per(qh)) {
+ qh->sched_frame =
+ dwc_frame_num_inc(hcd->frame_number,
+ delay);
+ qh->channel = NULL;
+ qh->qtd_in_process = NULL;
+ deact = 0;
+ dwc_otg_hcd_qh_remove(hcd, qh);
+ if (!list_empty(&qh->qtd_list))
+ /* Add back to deferred non-periodic schedule. */
+ dwc_otg_hcd_qh_add_deferred(hcd, qh);
+ }
+ return deact;
+}
+
+/**
+ * Schedule the next continuing periodic split transfer
+ */
+static void sched_next_per_split_xfr(struct dwc_qh *qh, u16 fr_num,
+ int sched_split)
+{
+ if (sched_split) {
+ qh->sched_frame = fr_num;
+ if (dwc_frame_num_le(fr_num,
+ dwc_frame_num_inc(qh->start_split_frame, 1))) {
+ /*
+ * Allow one frame to elapse after start split
+ * microframe before scheduling complete split, but DONT
+ * if we are doing the next start split in the
+ * same frame for an ISOC out.
+ */
+ if (qh->ep_type != USB_ENDPOINT_XFER_ISOC ||
+ qh->ep_is_in)
+ qh->sched_frame = dwc_frame_num_inc(
+ qh->sched_frame, 1);
+ }
+ } else {
+ qh->sched_frame = dwc_frame_num_inc(qh->start_split_frame,
+ qh->interval);
+
+ if (dwc_frame_num_le(qh->sched_frame, fr_num))
+ qh->sched_frame = fr_num;
+ qh->sched_frame |= 0x7;
+ qh->start_split_frame = qh->sched_frame;
+ }
+}
+
+/**
+ * Deactivates a periodic QH. The QH is removed from the periodic queued
+ * schedule. If there are any QTDs still attached to the QH, the QH is added to
+ * either the periodic inactive schedule or the periodic ready schedule and its
+ * next scheduled frame is calculated. The QH is placed in the ready schedule if
+ * the scheduled frame has been reached already. Otherwise it's placed in the
+ * inactive schedule. If there are no QTDs attached to the QH, the QH is
+ * completely removed from the periodic schedule.
+ */
+static void deactivate_periodic_qh(struct dwc_hcd *hcd, struct dwc_qh *qh,
+ int sched_next_split)
+{
+ /* unsigned long flags; */
+ u16 fr_num = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
+
+ if (qh->do_split) {
+ sched_next_per_split_xfr(qh, fr_num, sched_next_split);
+ } else {
+ qh->sched_frame = dwc_frame_num_inc(qh->sched_frame,
+ qh->interval);
+ if (dwc_frame_num_le(qh->sched_frame, fr_num))
+ qh->sched_frame = fr_num;
+ }
+
+ if (list_empty(&qh->qtd_list)) {
+ dwc_otg_hcd_qh_remove(hcd, qh);
+ } else {
+ /*
+ * Remove from periodic_sched_queued and move to appropriate
+ * queue.
+ */
+ if (qh->sched_frame == fr_num)
+ list_move(&qh->qh_list_entry,
+ &hcd->periodic_sched_ready);
+ else
+ list_move(&qh->qh_list_entry,
+ &hcd->periodic_sched_inactive);
+ }
+}
+
+/**
+ * Deactivates a non-periodic QH. Removes the QH from the active non-periodic
+ * schedule. The QH is added to the inactive non-periodic schedule if any QTDs
+ * are still attached to the QH.
+ */
+static void deactivate_non_periodic_qh(struct dwc_hcd *hcd, struct dwc_qh *qh)
+{
+ dwc_otg_hcd_qh_remove(hcd, qh);
+ if (!list_empty(&qh->qtd_list))
+ dwc_otg_hcd_qh_add(hcd, qh);
+}
+
+/**
+ * Deactivates a QH. Determines if the QH is periodic or non-periodic and takes
+ * the appropriate action.
+ */
+void dwc_otg_hcd_qh_deactivate(struct dwc_hcd *hcd, struct dwc_qh *qh,
+ int sched_next_periodic_split)
+{
+ if (dwc_qh_is_non_per(qh))
+ deactivate_non_periodic_qh(hcd, qh);
+ else
+ deactivate_periodic_qh(hcd, qh, sched_next_periodic_split);
+}
+
+/**
+ * Initializes a QTD structure.
+ */
+static void dwc_otg_hcd_qtd_init(struct dwc_qtd *qtd, struct urb *urb)
+{
+ memset(qtd, 0, sizeof(struct dwc_qtd));
+ qtd->urb = urb;
+
+ if (usb_pipecontrol(urb->pipe)) {
+ /*
+ * The only time the QTD data toggle is used is on the data
+ * phase of control transfers. This phase always starts with
+ * DATA1.
+ */
+ qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
+ qtd->control_phase = DWC_OTG_CONTROL_SETUP;
+ }
+
+ /* start split */
+ qtd->complete_split = 0;
+ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
+ qtd->isoc_split_offset = 0;
+
+ /* Store the qtd ptr in the urb to reference what QTD. */
+ urb->hcpriv = qtd;
+
+ INIT_LIST_HEAD(&qtd->qtd_list_entry);
+ return;
+}
+
+/* Allocates memory for a QTD structure. */
+static inline struct dwc_qtd *dwc_otg_hcd_qtd_alloc(gfp_t _mem_flags)
+{
+ return kmalloc(sizeof(struct dwc_qtd), _mem_flags);
+}
+
+/**
+ * This function allocates and initializes a QTD.
+ */
+struct dwc_qtd *dwc_otg_hcd_qtd_create(struct urb *urb, gfp_t _mem_flags)
+{
+ struct dwc_qtd *qtd = dwc_otg_hcd_qtd_alloc(_mem_flags);
+
+ if (!qtd)
+ return NULL;
+
+ dwc_otg_hcd_qtd_init(qtd, urb);
+ return qtd;
+}
+
+/**
+ * This function adds a QTD to the QTD-list of a QH. It will find the correct
+ * QH to place the QTD into. If it does not find a QH, then it will create a
+ * new QH. If the QH to which the QTD is added is not currently scheduled, it
+ * is placed into the proper schedule based on its EP type.
+ *
+ */
+int dwc_otg_hcd_qtd_add(struct dwc_qtd *qtd, struct dwc_hcd *hcd)
+{
+ struct usb_host_endpoint *ep;
+ struct dwc_qh *qh;
+ int retval = 0;
+ struct urb *urb = qtd->urb;
+
+ /*
+ * Get the QH which holds the QTD-list to insert to. Create QH if it
+ * doesn't exist.
+ */
+ ep = dwc_urb_to_endpoint(urb);
+
+ qh = (struct dwc_qh *) ep->hcpriv;
+ if (!qh) {
+ qh = dwc_otg_hcd_qh_create(hcd, urb);
+ if (!qh) {
+ retval = -1;
+ goto done;
+ }
+ ep->hcpriv = qh;
+ }
+ qtd->qtd_qh_ptr = qh;
+ retval = dwc_otg_hcd_qh_add(hcd, qh);
+ if (!retval)
+ list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
+
+done:
+ return retval;
+}
diff --git a/drivers/usb/dwc_otg/dwc_otg_param.c b/drivers/usb/dwc_otg/dwc_otg_param.c
new file mode 100644
index 0000000..30a23a5
--- /dev/null
+++ b/drivers/usb/dwc_otg/dwc_otg_param.c
@@ -0,0 +1,744 @@
+/*
+ * DesignWare HS OTG controller driver
+ *
+ * Author: Mark Miesfeld <mmiesfeld at apm.com>
+ *
+ * Based on versions provided by APM and Synopsis which are:
+ * Copyright (C) 2009-2010 AppliedMicro(www.apm.com)
+ * Modified by Stefan Roese <sr at denx.de>, DENX Software Engineering
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+/*
+ * This file provides dwc_otg driver parameter and parameter checking.
+ */
+
+#include "dwc_otg_cil.h"
+
+/* Global Debug Level Mask. */
+static u32 g_dbg_lvl = 0x0; /* OFF */
+
+/*
+ * Encapsulate the module parameter settings
+ */
+struct core_params dwc_otg_module_params = {
+ .opt = -1,
+ .otg_cap = -1,
+ .dma_enable = -1,
+ .dma_burst_size = -1,
+ .speed = -1,
+ .host_support_fs_ls_low_power = -1,
+ .host_ls_low_power_phy_clk = -1,
+ .enable_dynamic_fifo = -1,
+ .data_fifo_size = -1,
+ .dev_rx_fifo_size = -1,
+ .dev_nperio_tx_fifo_size = -1,
+ .dev_perio_tx_fifo_size = {
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
+ }, /* 15 */
+ .host_rx_fifo_size = -1,
+ .host_nperio_tx_fifo_size = -1,
+ .host_perio_tx_fifo_size = -1,
+ .max_transfer_size = -1,
+ .max_packet_count = -1,
+ .host_channels = -1,
+ .dev_endpoints = -1,
+ .phy_type = -1,
+ .phy_utmi_width = -1,
+ .phy_ulpi_ddr = -1,
+ .phy_ulpi_ext_vbus = -1,
+ .i2c_enable = -1,
+ .ulpi_fs_ls = -1,
+ .ts_dline = -1,
+ .en_multiple_tx_fifo = -1,
+ .dev_tx_fifo_size = {
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
+ }, /* 15 */
+ .thr_ctl = -1,
+ .tx_thr_length = -1,
+ .rx_thr_length = -1,
+};
+
+/**
+ * Determines if the OTG capability parameter is valid under the current
+ * hardware configuration.
+ */
+static int is_valid_otg_cap(struct core_if *core_if)
+{
+ int valid = 1;
+
+ switch (dwc_otg_module_params.otg_cap) {
+ case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
+ if (core_if->hwcfg2.b.op_mode !=
+ DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
+ valid = 0;
+ break;
+ case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
+ if (core_if->hwcfg2.b.op_mode !=
+ DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG &&
+ core_if->hwcfg2.b.op_mode !=
+ DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG &&
+ core_if->hwcfg2.b.op_mode !=
+ DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE &&
+ core_if->hwcfg2.b.op_mode !=
+ DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)
+ valid = 0;
+ break;
+ case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
+ /* always valid */
+ break;
+ }
+ return valid;
+}
+
+/**
+ * Returns a valid OTG capability setting for the current hardware
+ * configuration.
+ */
+static int get_valid_otg_cap(struct core_if *core_if)
+{
+ if (core_if->hwcfg2.b.op_mode ==
+ DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG ||
+ core_if->hwcfg2.b.op_mode ==
+ DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG ||
+ core_if->hwcfg2.b.op_mode ==
+ DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
+ core_if->hwcfg2.b.op_mode ==
+ DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)
+ return DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE;
+ else
+ return DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE;
+}
+
+/**
+ * Checks that, if the user set a periodic Tx FIFO size parameter, the size is
+ * within the valid range. If not, the parameter is set to the default.
+ */
+static int chk_param_perio_tx_fifo_sizes(int retval)
+{
+ u32 *s = &dwc_otg_module_params.dev_perio_tx_fifo_size[0];
+ u32 i;
+
+ for (i = 0; i < MAX_PERIO_FIFOS; i++, s++) {
+ if (*s != -1 && (*s < 4 || *s > 768)) {
+ printk(KERN_ERR "`%d' invalid for parameter "
+ "`dev_perio_tx_fifo_size_%d'\n", *s, i);
+
+ *s = dwc_param_dev_perio_tx_fifo_size_default;
+ retval++;
+ }
+ }
+ return retval;
+}
+
+/**
+ * Checks that, if the user set a Tx FIFO size parameter, the size is within the
+ * valid range. If not, the parameter is set to the default.
+ */
+static int chk_param_tx_fifo_sizes(int retval)
+{
+ u32 *s = &dwc_otg_module_params.dev_tx_fifo_size[0];
+ u32 i;
+
+ for (i = 0; i < MAX_TX_FIFOS; i++, s++) {
+ if (*s != -1 && (*s < 4 || *s > 768)) {
+ printk(KERN_ERR "`%d' invalid for parameter "
+ "`dev_perio_tx_fifo_size_%d'\n", *s, i);
+
+ *s = dwc_param_dev_tx_fifo_size_default;
+ retval++;
+ }
+ }
+ return retval;
+}
+
+/**
+ * Checks that parameter settings for the periodic Tx FIFO sizes are correct
+ * according to the hardware configuration. Sets the size to the hardware
+ * configuration if an incorrect size is detected.
+ */
+static int chk_valid_perio_tx_fifo_sizes(struct core_if *core_if, int retval)
+{
+ struct core_global_regs *regs = core_if->core_global_regs;
+ u32 *param_size = &dwc_otg_module_params.dev_perio_tx_fifo_size[0];
+ u32 i;
+
+ for (i = 0; i < MAX_PERIO_FIFOS; i++, param_size++) {
+ int changed = 1;
+ int error = 0;
+ u32 size;
+
+ if (*param_size == -1) {
+ changed = 0;
+ *param_size = dwc_param_dev_perio_tx_fifo_size_default;
+ }
+
+ size = dwc_read_reg32(®s->dptxfsiz_dieptxf[i]);
+ if (*param_size > size) {
+ if (changed) {
+ printk(KERN_ERR "%d' invalid for parameter "
+ "`dev_perio_tx_fifo_size_%d'. Check HW "
+ "configuration.\n", *param_size, i);
+ error = 1;
+ }
+ *param_size = size;
+ }
+ retval += error;
+ }
+ return retval;
+}
+
+/**
+ * Checks that parameter settings for the Tx FIFO sizes are correct according to
+ * the hardware configuration. Sets the size to the hardware configuration if
+ * an incorrect size is detected.
+ */
+static int chk_valid_tx_fifo_sizes(struct core_if *core_if, int retval)
+{
+ struct core_global_regs *regs = core_if->core_global_regs;
+ u32 *param_size = &dwc_otg_module_params.dev_tx_fifo_size[0];
+ u32 i;
+
+ for (i = 0; i < MAX_TX_FIFOS; i++, param_size) {
+ int changed = 1;
+ int error = 0;
+ u32 size;
+
+ if (*param_size == -1) {
+ changed = 0;
+ *param_size = dwc_param_dev_tx_fifo_size_default;
+ }
+
+ size = dwc_read_reg32(®s->dptxfsiz_dieptxf[i]);
+ if (*param_size > size) {
+ if (changed) {
+ printk(KERN_ERR "%d' invalid for parameter "
+ "`dev_tx_fifo_size_%d'. Check HW "
+ "configuration.\n", *param_size, i);
+ error = 1;
+ }
+ *param_size = size;
+ }
+ retval += error;
+ }
+ return retval;
+}
+
+/**
+ * This function is called during module intialization to verify that
+ * the module parameters are in a valid state.
+ */
+int __devinit check_parameters(struct core_if *core_if)
+{
+ int retval = 0;
+
+ /* Checks if the parameter is outside of its valid range of values */
+#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \
+ ((dwc_otg_module_params._param_ < (_low_)) || \
+ (dwc_otg_module_params._param_ > (_high_)))
+
+ /*
+ * If the parameter has been set by the user, check that the parameter
+ * value is within the value range of values. If not, report a module
+ * error.
+ */
+#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_) \
+ do { \
+ if (dwc_otg_module_params._param_ != -1) { \
+ if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \
+ printk(KERN_ERR "`%d' invalid for parameter " \
+ "`%s'\n", \
+ dwc_otg_module_params._param_, \
+ _string_); \
+ dwc_otg_module_params._param_ = \
+ dwc_param_##_param_##_default; \
+ retval++; \
+ } \
+ } \
+ } while (0)
+
+ DWC_OTG_PARAM_ERR(opt, 0, 1, "opt");
+ DWC_OTG_PARAM_ERR(otg_cap, 0, 2, "otg_cap");
+ DWC_OTG_PARAM_ERR(dma_enable, 0, 1, "dma_enable");
+ DWC_OTG_PARAM_ERR(speed, 0, 1, "speed");
+
+ DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power, 0, 1,
+ "host_support_fs_ls_low_power");
+ DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk, 0, 1,
+ "host_ls_low_power_phy_clk");
+
+ DWC_OTG_PARAM_ERR(enable_dynamic_fifo, 0, 1, "enable_dynamic_fifo");
+ DWC_OTG_PARAM_ERR(data_fifo_size, 32, 32768, "data_fifo_size");
+ DWC_OTG_PARAM_ERR(dev_rx_fifo_size, 16, 32768, "dev_rx_fifo_size");
+ DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size, 16, 32768,
+ "dev_nperio_tx_fifo_size");
+ DWC_OTG_PARAM_ERR(host_rx_fifo_size, 16, 32768, "host_rx_fifo_size");
+ DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size, 16, 32768,
+ "host_nperio_tx_fifo_size");
+ DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size, 16, 32768,
+ "host_perio_tx_fifo_size");
+
+ DWC_OTG_PARAM_ERR(max_transfer_size, 2047, 524288,
+ "max_transfer_size");
+ DWC_OTG_PARAM_ERR(max_packet_count, 15, 511, "max_packet_count");
+
+ DWC_OTG_PARAM_ERR(host_channels, 1, 16, "host_channels");
+ DWC_OTG_PARAM_ERR(dev_endpoints, 1, 15, "dev_endpoints");
+
+ DWC_OTG_PARAM_ERR(phy_type, 0, 2, "phy_type");
+ DWC_OTG_PARAM_ERR(phy_ulpi_ddr, 0, 1, "phy_ulpi_ddr");
+ DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus, 0, 1, "phy_ulpi_ext_vbus");
+ DWC_OTG_PARAM_ERR(i2c_enable, 0, 1, "i2c_enable");
+ DWC_OTG_PARAM_ERR(ulpi_fs_ls, 0, 1, "ulpi_fs_ls");
+ DWC_OTG_PARAM_ERR(ts_dline, 0, 1, "ts_dline");
+
+ if (dwc_otg_module_params.dma_burst_size != -1) {
+ if (DWC_OTG_PARAM_TEST(dma_burst_size, 1, 1) &&
+ DWC_OTG_PARAM_TEST(dma_burst_size, 4, 4) &&
+ DWC_OTG_PARAM_TEST(dma_burst_size, 8, 8) &&
+ DWC_OTG_PARAM_TEST(dma_burst_size, 16, 16) &&
+ DWC_OTG_PARAM_TEST(dma_burst_size, 32, 32) &&
+ DWC_OTG_PARAM_TEST(dma_burst_size, 64, 64) &&
+ DWC_OTG_PARAM_TEST(dma_burst_size, 128, 128) &&
+ DWC_OTG_PARAM_TEST(dma_burst_size, 256, 256)) {
+ printk(KERN_ERR "`%d' invalid for parameter "
+ "`dma_burst_size'\n",
+ dwc_otg_module_params.dma_burst_size);
+ dwc_otg_module_params.dma_burst_size = 32;
+ retval++;
+ }
+ }
+
+ if (dwc_otg_module_params.phy_utmi_width != -1) {
+ if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) &&
+ DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) {
+ printk(KERN_ERR "`%d'invalid for parameter "
+ "`phy_utmi_width'\n",
+ dwc_otg_module_params.phy_utmi_width);
+ dwc_otg_module_params.phy_utmi_width = 8;
+ retval++;
+ }
+ }
+
+ DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo");
+ retval += chk_param_perio_tx_fifo_sizes(retval);
+ retval += chk_param_tx_fifo_sizes(retval);
+
+ DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl");
+ DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length");
+ DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length");
+
+ /*
+ * At this point, all module parameters that have been set by the user
+ * are valid, and those that have not are left unset. Now set their
+ * default values and/or check the parameters against the hardware
+ * configurations of the OTG core.
+ */
+
+ /*
+ * This sets the parameter to the default value if it has not been set
+ * by the user
+ */
+#define DWC_OTG_PARAM_SET_DEFAULT(_param_) ({ \
+ int changed = 1; \
+ if (dwc_otg_module_params._param_ == -1) { \
+ changed = 0; \
+ dwc_otg_module_params._param_ = \
+ dwc_param_##_param_##_default; \
+ } \
+ changed; \
+ })
+
+ /*
+ * This checks the macro against the hardware configuration to see if it
+ * is valid. It is possible that the default value could be invalid.
+ * In this case, it will report a module error if the user touched the
+ * parameter. Otherwise it will adjust the value without any error.
+ */
+#define DWC_OTG_PARAM_CHECK_VALID(_param_, _str_, _is_valid_ , _set_valid_) ({ \
+ int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \
+ int error = 0; \
+ if (!(_is_valid_)) { \
+ if (changed) { \
+ printk(KERN_ERR "`%d' invalid for parameter " \
+ "`%s' Check HW configuration.\n", \
+ dwc_otg_module_params._param_, \
+ _str_); \
+ error = 1; \
+ } \
+ dwc_otg_module_params._param_ = (_set_valid_); \
+ } \
+ error; \
+ })
+
+ /* OTG Cap */
+ retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap, "otg_cap",
+ is_valid_otg_cap(core_if), get_valid_otg_cap(core_if));
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable, "dma_enable",
+ ((dwc_otg_module_params.dma_enable == 1) &&
+ (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1, 0);
+ retval += DWC_OTG_PARAM_CHECK_VALID(opt, "opt", 1, 0);
+ DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size);
+ retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power,
+ "host_support_fs_ls_low_power", 1, 0);
+ retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo,
+ "enable_dynamic_fifo",
+ ((dwc_otg_module_params.enable_dynamic_fifo == 0) ||
+ (core_if->hwcfg2.b.dynamic_fifo == 1)), 0);
+ retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size, "data_fifo_size",
+ (dwc_otg_module_params.data_fifo_size <=
+ core_if->hwcfg3.b.dfifo_depth),
+ core_if->hwcfg3.b.dfifo_depth);
+ retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size,
+ "dev_rx_fifo_size",
+ (dwc_otg_module_params.dev_rx_fifo_size <=
+ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
+ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
+ retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size,
+ "dev_nperio_tx_fifo_size",
+ (dwc_otg_module_params.dev_nperio_tx_fifo_size <=
+ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz)
+ >> 16)),
+ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz)
+ >> 16));
+ retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size,
+ "host_rx_fifo_size",
+ (dwc_otg_module_params.host_rx_fifo_size <=
+ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
+ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
+ retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size,
+ "host_nperio_tx_fifo_size",
+ (dwc_otg_module_params.host_nperio_tx_fifo_size <=
+ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz)
+ >> 16)),
+ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz)
+ >> 16));
+ retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size,
+ "host_perio_tx_fifo_size",
+ (dwc_otg_module_params.host_perio_tx_fifo_size <=
+ ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz)
+ >> 16))),
+ ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz)
+ >> 16)));
+ retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size,
+ "max_transfer_size",
+ (dwc_otg_module_params.max_transfer_size <
+ (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))),
+ ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))
+ - 1));
+ retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count,
+ "max_packet_count",
+ (dwc_otg_module_params.max_packet_count <
+ (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))),
+ ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))
+ - 1));
+ retval += DWC_OTG_PARAM_CHECK_VALID(host_channels, "host_channels",
+ (dwc_otg_module_params.host_channels <=
+ (core_if->hwcfg2.b.num_host_chan + 1)),
+ (core_if->hwcfg2.b.num_host_chan + 1));
+ retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints, "dev_endpoints",
+ (dwc_otg_module_params.dev_endpoints <=
+ (core_if->hwcfg2.b.num_dev_ep)),
+ core_if->hwcfg2.b.num_dev_ep);
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type, "phy_type", 1, 0);
+ retval += DWC_OTG_PARAM_CHECK_VALID(speed, "speed",
+ (dwc_otg_module_params.speed == 0) &&
+ (dwc_otg_module_params.phy_type ==
+ DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
+ dwc_otg_module_params.phy_type ==
+ DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
+ retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk,
+ "host_ls_low_power_phy_clk",
+ ((dwc_otg_module_params.host_ls_low_power_phy_clk ==
+ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) &&
+ (dwc_otg_module_params.phy_type ==
+ DWC_PHY_TYPE_PARAM_FS) ? 0 : 1),
+ ((dwc_otg_module_params.phy_type ==
+ DWC_PHY_TYPE_PARAM_FS) ?
+ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ :
+ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ));
+
+ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr);
+ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus);
+ DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width);
+ DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls);
+ DWC_OTG_PARAM_SET_DEFAULT(ts_dline);
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0);
+
+ retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo,
+ "en_multiple_tx_fifo",
+ ((dwc_otg_module_params.en_multiple_tx_fifo == 1) &&
+ (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1, 0);
+
+ retval += chk_valid_perio_tx_fifo_sizes(core_if, retval);
+ retval += chk_valid_tx_fifo_sizes(core_if, retval);
+
+ DWC_OTG_PARAM_SET_DEFAULT(thr_ctl);
+ DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length);
+ DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length);
+
+ return retval;
+}
+
+module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
+MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
+module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
+MODULE_PARM_DESC(opt, "OPT Mode");
+module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
+MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
+module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size,
+ int, 0444);
+MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, "
+ "128, 256");
+module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
+MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
+module_param_named(host_support_fs_ls_low_power,
+ dwc_otg_module_params.host_support_fs_ls_low_power,
+ int, 0444);
+MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS "
+ "0=Support 1=Don't Support");
+module_param_named(host_ls_low_power_phy_clk,
+ dwc_otg_module_params.host_ls_low_power_phy_clk,
+ int, 0444);
+MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock "
+ "0=48Mhz 1=6Mhz");
+module_param_named(enable_dynamic_fifo,
+ dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
+MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
+module_param_named(data_fifo_size,
+ dwc_otg_module_params.data_fifo_size, int, 0444);
+MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO "
+ "memory 32-32768");
+module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size,
+ int, 0444);
+MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
+module_param_named(dev_nperio_tx_fifo_size,
+ dwc_otg_module_params.dev_nperio_tx_fifo_size,
+ int, 0444);
+MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic "
+ "Tx FIFO 16-32768");
+module_param_named(dev_perio_tx_fifo_size_1,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[0],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_2,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[1],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_3,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[2],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_4,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[3],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_5,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[4],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_6,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[5],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_7,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[6],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_8,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[7],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_9,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[8],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_10,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[9],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_11,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[10],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_12,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[11],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_13,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[12],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_14,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[13],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(dev_perio_tx_fifo_size_15,
+ dwc_otg_module_params.dev_perio_tx_fifo_size[14],
+ int, 0444);
+MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic "
+ "Tx FIFO 4-768");
+module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size,
+ int, 0444);
+MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
+module_param_named(host_nperio_tx_fifo_size,
+ dwc_otg_module_params.host_nperio_tx_fifo_size,
+ int, 0444);
+MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the "
+ "non-periodic Tx FIFO 16-32768");
+module_param_named(host_perio_tx_fifo_size,
+ dwc_otg_module_params.host_perio_tx_fifo_size,
+ int, 0444);
+MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host "
+ "periodic Tx FIFO 16-32768");
+module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size,
+ int, 0444);
+
+MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in "
+ "bytes 2047-65535");
+module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count,
+ int, 0444);
+MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a "
+ "transfer 15-511");
+module_param_named(host_channels, dwc_otg_module_params.host_channels,
+ int, 0444);
+MODULE_PARM_DESC(host_channels, "The number of host channel registers to "
+ "use 1-16");
+module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints,
+ int, 0444);
+MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 "
+ "available for device mode 1-15");
+module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
+MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
+module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width,
+ int, 0444);
+MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
+module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr,
+ int, 0444);
+MODULE_PARM_DESC(phy_ulpi_ddr, "0");
+module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus,
+ int, 0444);
+MODULE_PARM_DESC(phy_ulpi_ext_vbus,
+ "ULPI PHY using internal or external vbus 0=Internal");
+module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
+MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
+module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
+MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
+module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
+MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
+module_param_named(debug, g_dbg_lvl, int, 0444);
+MODULE_PARM_DESC(debug, "0");
+module_param_named(en_multiple_tx_fifo,
+ dwc_otg_module_params.en_multiple_tx_fifo, int, 0444);
+MODULE_PARM_DESC(en_multiple_tx_fifo, "Dedicated Non Periodic Tx FIFOs "
+ "0=disabled 1=enabled");
+module_param_named(dev_tx_fifo_size_1,
+ dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_2,
+ dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_3,
+ dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_4,
+ dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_5,
+ dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_6,
+ dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_7,
+ dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_8,
+ dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_9,
+ dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_10,
+ dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_11,
+ dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_12,
+ dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_13,
+ dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_14,
+ dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768");
+module_param_named(dev_tx_fifo_size_15,
+ dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444);
+MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768");
+module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444);
+MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit 0 - non ISO Tx thr., "
+ "1 - ISO Tx thr., 2 - Rx thr.- bit "
+ "0=disabled 1=enabled");
+module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length,
+ int, 0444);
+MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs");
+module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length,
+ int, 0444);
+MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs");
diff --git a/drivers/usb/dwc_otg/dwc_otg_regs.h b/drivers/usb/dwc_otg/dwc_otg_regs.h
new file mode 100644
index 0000000..ba2b1d8
--- /dev/null
+++ b/drivers/usb/dwc_otg/dwc_otg_regs.h
@@ -0,0 +1,3282 @@
+/*
+ * DesignWare HS OTG controller driver
+ *
+ * Author: Mark Miesfeld <mmiesfeld at apm.com>
+ *
+ * Based on versions provided by APM and Synopsis which are:
+ * Copyright (C) 2009-2010 AppliedMicro(www.apm.com)
+ *
+ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
+ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
+ * otherwise expressly agreed to in writing between Synopsys and you.
+ *
+ * The Software IS NOT an item of Licensed Software or Licensed Product under
+ * any End User Software License Agreement or Agreement for Licensed Product
+ * with Synopsys or any supplement thereto. You are permitted to use and
+ * redistribute this Software in source and binary forms, with or without
+ * modification, provided that redistributions of source code must retain this
+ * notice. You may not view, use, disclose, copy or distribute this file or
+ * any information contained herein except pursuant to this license grant from
+ * Synopsys. If you do not agree with this notice, including the disclaimer
+ * below, then you are not authorized to use the Software.
+ *
+ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#ifndef __DWC_OTG_REGS_H__
+#define __DWC_OTG_REGS_H__
+
+#include <linux/types.h>
+
+/*
+ * This file contains the data structures for accessing the DWC_otg core
+ * registers.
+ *
+ * The application interfaces with the HS OTG core by reading from and
+ * writing to the Control and Status Register (CSR) space through the
+ * AHB Slave interface. These registers are 32 bits wide, and the
+ * addresses are 32-bit-block aligned.
+ * CSRs are classified as follows:
+ * - Core Global Registers
+ * - Device Mode Registers
+ * - Device Global Registers
+ * - Device Endpoint Specific Registers
+ * - Host Mode Registers
+ * - Host Global Registers
+ * - Host Port CSRs
+ * - Host Channel Specific Registers
+ *
+ * Only the Core Global registers can be accessed in both Device and
+ * Host modes. When the HS OTG core is operating in one mode, either
+ * Device or Host, the application must not access registers from the
+ * other mode. When the core switches from one mode to another, the
+ * registers in the new mode of operation must be reprogrammed as they
+ * would be after a power-on reset.
+ */
+
+/*
+ * DWC_otg Core registers. The core_global_regs structure defines the
+ * size and relative field offsets for the Core Global registers.
+ */
+struct core_global_regs {
+ /* OTG Control and Status Register. Offset: 000h */
+ u32 gotgctl;
+ /* OTG Interrupt Register. Offset: 004h */
+ u32 gotgint;
+ /* Core AHB Configuration Register. Offset: 008h */
+ u32 gahbcfg;
+
+#define DWC_GLBINTRMASK 0x0001
+#define DWC_DMAENABLE 0x0020
+#define DWC_NPTXEMPTYLVL_EMPTY 0x0080
+#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000
+#define DWC_PTXEMPTYLVL_EMPTY 0x0100
+#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000
+
+ /* Core USB Configuration Register. Offset: 00Ch */
+ u32 gusbcfg;
+ /* Core Reset Register. Offset: 010h */
+ u32 grstctl;
+ /* Core Interrupt Register. Offset: 014h */
+ u32 gintsts;
+ /* Core Interrupt Mask Register. Offset: 018h */
+ u32 gintmsk;
+ /*
+ * Receive Status Queue Read Register
+ * (Read Only) Offset: 01Ch
+ */
+ u32 grxstsr;
+ /*
+ * Receive Status Queue Read & POP Register
+ * (Read Only) Offset: 020h
+ */
+ u32 grxstsp;
+ /* Receive FIFO Size Register. Offset: 024h */
+ u32 grxfsiz;
+ /* Non Periodic Transmit FIFO Size Register. Offset: 028h */
+ u32 gnptxfsiz;
+ /*
+ * Non Periodic Transmit FIFO/Queue Status Register
+ * (Read Only). Offset: 02Ch
+ */
+ u32 gnptxsts;
+ /* I2C Access Register. Offset: 030h */
+ u32 gi2cctl;
+ /* PHY Vendor Control Register. Offset: 034h */
+ u32 gpvndctl;
+ /* General Purpose Input/Output Register. Offset: 038h */
+ u32 ggpio;
+ /* User ID Register. Offset: 03Ch */
+ u32 guid;
+ /* Synopsys ID Register (Read Only). Offset: 040h */
+ u32 gsnpsid;
+ /* User HW Config1 Register (Read Only). Offset: 044h */
+ u32 ghwcfg1;
+ /* User HW Config2 Register (Read Only). Offset: 048h */
+ u32 ghwcfg2;
+#define DWC_SLAVE_ONLY_ARCH 0
+#define DWC_EXT_DMA_ARCH 1
+#define DWC_INT_DMA_ARCH 2
+
+#define DWC_MODE_HNP_SRP_CAPABLE 0
+#define DWC_MODE_SRP_ONLY_CAPABLE 1
+#define DWC_MODE_NO_HNP_SRP_CAPABLE 2
+#define DWC_MODE_SRP_CAPABLE_DEVICE 3
+#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4
+#define DWC_MODE_SRP_CAPABLE_HOST 5
+#define DWC_MODE_NO_SRP_CAPABLE_HOST 6
+
+ /* User HW Config3 Register (Read Only). Offset: 04Ch */
+ u32 ghwcfg3;
+ /* User HW Config4 Register (Read Only). Offset: 050h */
+ u32 ghwcfg4;
+ /* Reserved Offset: 054h-0FFh */
+ u32 reserved[43];
+ /* Host Periodic Transmit FIFO Size Register. Offset: 100h */
+ u32 hptxfsiz;
+
+ /*
+ * Device Periodic Transmit FIFO#n Register, if dedicated fifos are
+ * disabled. Otherwise Device Transmit FIFO#n Register.
+ *
+ * Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15)
+ */
+ u32 dptxfsiz_dieptxf[15];
+};
+
+
+#if defined(CONFIG_DWC_OTG_REG_LE)
+/*
+ * This union represents the bit fields of the Core OTG Controland Status
+ * Register (GOTGCTL). Set the bits using the bit fields then write the d32
+ * value to the register.
+ */
+union gotgctl_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved31_21:11;
+ unsigned currmod:1;
+ unsigned bsesvld:1;
+ unsigned asesvld:1;
+ unsigned reserved17:1;
+ unsigned conidsts:1;
+ unsigned reserved1_12:4;
+ unsigned devhnpen:1;
+ unsigned hstsethnpen:1;
+ unsigned hnpreq:1;
+ unsigned hstnegscs:1;
+ unsigned reserved07_02:6;
+ unsigned sesreq:1;
+ unsigned sesreqscs:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields of the Core OTG Interrupt Register
+ * (GOTGINT). Set/clear the bits using the bit fields then write the d32
+ * value to the register.
+ */
+union gotgint_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ /* Current Mode */
+ unsigned reserved31_20:12;
+ /* Debounce Done */
+ unsigned debdone:1;
+ /* A-Device Timeout Change */
+ unsigned adevtoutchng:1;
+ /* Host Negotiation Detected */
+ unsigned hstnegdet:1;
+ unsigned reserver16_10:7;
+ /* Host Negotiation Success Status Change */
+ unsigned hstnegsucstschng:1;
+ /* Session Request Success Status Change */
+ unsigned sesreqsucstschng:1;
+ unsigned reserved3_7:5;
+ /* Session End Detected */
+ unsigned sesenddet:1;
+ unsigned reserved01_00:2;
+ } b;
+};
+
+/*
+ * This union represents the bit fields of the Core AHB Configuration Register
+ * (GAHBCFG). Set/clear the bits using the bit fields then write the d32 value
+ * to the register.
+ */
+union gahbcfg_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved9_31:23;
+ unsigned ptxfemplvl:1;
+#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1
+#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0
+
+ unsigned nptxfemplvl_txfemplvl:1;
+ unsigned reserved:1;
+ unsigned dmaenable:1;
+#define DWC_GAHBCFG_DMAENABLE 1
+
+ unsigned hburstlen:4;
+#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7
+
+ unsigned glblintrmsk:1;
+#define DWC_GAHBCFG_GLBINT_ENABLE 1
+ } b;
+};
+
+/*
+ * This union represents the bit fields of the Core USB Configuration Register
+ * (GUSBCFG). Set the bits using the bit fields then write the d32 value to the
+ * register.
+ */
+union gusbcfg_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned corrupt_tx_packet:1;
+ unsigned force_device_mode:1;
+ unsigned force_host_mode:1;
+ unsigned reserved23_28:6;
+ unsigned term_sel_dl_pulse:1;
+ unsigned ulpi_int_vbus_indicator:1;
+ unsigned ulpi_ext_vbus_drv:1;
+ unsigned ulpi_clk_sus_m:1;
+ unsigned ulpi_auto_res:1;
+ unsigned ulpi_fsls:1;
+
+ unsigned otgutmifssel:1;
+ unsigned phylpwrclksel:1;
+ unsigned nptxfrwnden:1;
+ unsigned usbtrdtim:4;
+ unsigned hnpcap:1;
+ unsigned srpcap:1;
+ unsigned ddrsel:1;
+ unsigned physel:1;
+ unsigned fsintf:1;
+ unsigned ulpi_utmi_sel:1;
+ unsigned phyif:1;
+ unsigned toutcal:3;
+ } b;
+};
+
+/*
+ * This union represents the bit fields of the Core Reset Register (GRSTCTL).
+ * Set/clear the bits using the bit fields then write the d32 value to the
+ * register.
+ */
+union grstctl_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ /*
+ * AHB Master Idle. Indicates the AHB Master State Machine is
+ * in IDLE condition.
+ */
+ unsigned ahbidle:1;
+
+ /*
+ * DMA Request Signal. Indicated DMA request is in probress.
+ Used for debug purpose.
+ */
+ unsigned dmareq:1;
+
+ /* Reserved */
+ unsigned reserved29_11:19;
+
+ /*
+ * TxFIFO Number (TxFNum) (Device and Host).
+ *
+ * This is the FIFO number which needs to be flushed,
+ * using the TxFIFO Flush bit. This field should not
+ * be changed until the TxFIFO Flush bit is cleared by
+ * the core.
+ * - 0x0:Non Periodic TxFIFO Flush
+ * - 0x1 : Periodic TxFIFO #1 Flush in device mode
+ * or Periodic TxFIFO in host mode
+ * - 0x2 : Periodic TxFIFO #2 Flush in device mode.
+ * - ...
+ * - 0xF : Periodic TxFIFO #15 Flush in device mode
+ * - 0x10: Flush all the Transmit NonPeriodic and
+ * Transmit Periodic FIFOs in the core
+ */
+ unsigned txfnum:5;
+#define DWC_GRSTCTL_TXFNUM_ALL 0x10
+
+ /*
+ * TxFIFO Flush (TxFFlsh) (Device and Host).
+ *
+ * This bit is used to selectively flush a single or all
+ * transmit FIFOs. The application must first ensure that the
+ * core is not in the middle of a transaction.
+ *
+ * The application should write into this bit, only after
+ * making sure that neither the DMA engine is writing into the
+ * TxFIFO nor the MAC is reading the data out of the FIFO.
+ *
+ * The application should wait until the core clears this bit,
+ * before performing any operations. This bit will takes 8
+ * clocks (slowest of PHY or AHB clock) to clear.
+ */
+ unsigned txfflsh:1;
+
+ /*
+ * RxFIFO Flush (RxFFlsh) (Device and Host)
+ *
+ * The application can flush the entire Receive FIFO using this
+ * bit.
+ *
+ * The application must first ensure that the core is not in the
+ * middle of a transaction.
+ *
+ * The application should write into this bit, only after making
+ * sure that neither the DMA engine is reading from the RxFIFO
+ * nor the MAC is writing the data in to the FIFO.
+ *
+ * The application should wait until the bit is cleared before
+ * performing any other operations. This bit will takes 8 clocks
+ * (slowest of PHY or AHB clock) to clear.
+ */
+ unsigned rxfflsh:1;
+
+ /*
+ * In Token Sequence Learning Queue Flush
+ * (INTknQFlsh) (Device Only)
+ */
+ unsigned intknqflsh:1;
+
+ /*
+ * Host Frame Counter Reset (Host Only)<br>
+ *
+ * The application can reset the (micro)frame number
+ * counter inside the core, using this bit. When the
+ * (micro)frame counter is reset, the subsequent SOF
+ * sent out by the core, will have a (micro)frame
+ * number of 0.
+ */
+ unsigned hstfrm:1;
+
+ /*
+ * Hclk Soft Reset
+ *
+ * The application uses this bit to reset the control logic in
+ * the AHB clock domain. Only AHB clock domain pipelines are
+ * reset.
+ */
+ unsigned hsftrst:1;
+
+ /*
+ * Core Soft Reset (CSftRst) (Device and Host)
+ *
+ * The application can flush the control logic in the
+ * entire core using this bit. This bit resets the
+ * pipelines in the AHB Clock domain as well as the
+ * PHY Clock domain.
+ *
+ * The state machines are reset to an IDLE state, the
+ * control bits in the CSRs are cleared, all the
+ * transmit FIFOs and the receive FIFO are flushed.
+ *
+ * The status mask bits that control the generation of
+ * the interrupt, are cleared, to clear the
+ * interrupt. The interrupt status bits are not
+ * cleared, so the application can get the status of
+ * any events that occurred in the core after it has
+ * set this bit.
+ *
+ * Any transactions on the AHB are terminated as soon
+ * as possible following the protocol. Any
+ * transactions on the USB are terminated immediately.
+ *
+ * The configuration settings in the CSRs are
+ * unchanged, so the software doesn't have to
+ * reprogram these registers (Device
+ * Configuration/Host Configuration/Core System
+ * Configuration/Core PHY Configuration).
+ *
+ * The application can write to this bit, any time it
+ * wants to reset the core. This is a self clearing
+ * bit and the core clears this bit after all the
+ * necessary logic is reset in the core, which may
+ * take several clocks, depending on the current state
+ * of the core.
+ */
+ unsigned csftrst:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields of the Core Interrupt Mask Register
+ * (GINTMSK). Set/clear the bits using the bit fields then write the d32 value
+ * to the register.
+ */
+union gintmsk_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned wkupintr:1;
+ unsigned sessreqintr:1;
+ unsigned disconnect:1;
+ unsigned conidstschng:1;
+ unsigned reserved27:1;
+ unsigned ptxfempty:1;
+ unsigned hcintr:1;
+ unsigned portintr:1;
+ unsigned reserved23_22:2;
+ unsigned incomplisoout:1;
+ unsigned incomplisoin:1;
+ unsigned outepintr:1;
+ unsigned inepintr:1;
+ unsigned epmismatch:1;
+ unsigned reserved16:1;
+ unsigned eopframe:1;
+ unsigned isooutdrop:1;
+ unsigned enumdone:1;
+ unsigned usbreset:1;
+ unsigned usbsuspend:1;
+ unsigned erlysuspend:1;
+ unsigned i2cintr:1;
+ unsigned reserved08:1;
+ unsigned goutnakeff:1;
+ unsigned ginnakeff:1;
+ unsigned nptxfempty:1;
+ unsigned rxstsqlvl:1;
+ unsigned sofintr:1;
+ unsigned otgintr:1;
+ unsigned modemismatch:1;
+ unsigned reserved00:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields of the Core Interrupt Register
+ * (GINTSTS). Set/clear the bits using the bit fields then write the d32 value
+ * to the register.
+ */
+union gintsts_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+#define DWC_SOF_INTR_MASK 0x0008
+ struct {
+#define DWC_HOST_MODE 1
+ unsigned wkupintr:1;
+ unsigned sessreqintr:1;
+ unsigned disconnect:1;
+ unsigned conidstschng:1;
+ unsigned reserved27:1;
+ unsigned ptxfempty:1;
+ unsigned hcintr:1;
+ unsigned portintr:1;
+ unsigned reserved22_23:2;
+ unsigned incomplisoout:1;
+ unsigned incomplisoin:1;
+ unsigned outepintr:1;
+ unsigned inepint:1;
+ unsigned epmismatch:1;
+ unsigned intokenrx:1;
+ unsigned eopframe:1;
+ unsigned isooutdrop:1;
+ unsigned enumdone:1;
+ unsigned usbreset:1;
+ unsigned usbsuspend:1;
+ unsigned erlysuspend:1;
+ unsigned i2cintr:1;
+ unsigned reserved8:1;
+ unsigned goutnakeff:1;
+ unsigned ginnakeff:1;
+ unsigned nptxfempty:1;
+ unsigned rxstsqlvl:1;
+ unsigned sofintr:1;
+ unsigned otgintr:1;
+ unsigned modemismatch:1;
+ unsigned curmode:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device Receive Status Read and
+ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32
+ * element then read out the bits using the bit elements.
+ */
+union device_grxsts_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved:7;
+ unsigned fn:4;
+ unsigned pktsts:4;
+#define DWC_STS_DATA_UPDT 0x2 /* OUT Data Packet */
+#define DWC_STS_XFER_COMP 0x3 /* OUT Data Transfer Complete */
+#define DWC_DSTS_GOUT_NAK 0x1 /* Global OUT NAK */
+#define DWC_DSTS_SETUP_COMP 0x4 /* Setup Phase Complete */
+#define DWC_DSTS_SETUP_UPDT 0x6 /* SETUP Packet */
+
+ unsigned dpid:2;
+ unsigned bcnt:11;
+ unsigned epnum:4;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host Receive Status Read and
+ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32
+ * element then read out the bits using the bit elements.
+ */
+union host_grxsts_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved31_21:11;
+ unsigned pktsts:4;
+#define DWC_GRXSTS_PKTSTS_IN 0x2
+#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3
+#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
+#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7
+
+ unsigned dpid:2;
+ unsigned bcnt:11;
+ unsigned chnum:4;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
+ * GNPTXFSIZ, DPTXFSIZn). Read the register into the d32 element then
+ * read out the bits using the bit elements.
+ */
+union fifosize_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned depth:16;
+ unsigned startaddr:16;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Non-Periodic Transmit FIFO/Queue
+ * Status Register (GNPTXSTS). Read the register into the d32 element then read
+ * out the bits using the bit elements.
+ */
+union gnptxsts_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved:1;
+ /* Top of the Non-Periodic Transmit Request Queue
+ * - bits 30:27 - Channel/EP Number
+ * - bits 26:25 - Token Type
+ * - 2'b00 - IN/OUT
+ * - 2'b01 - Zero Length OUT
+ * - 2'b10 - PING/Complete Split
+ * - 2'b11 - Channel Halt
+ * - bit 24 - Terminate (Last entry for the selected
+ * channel/EP)
+ */
+ unsigned nptxqtop_chnep:4;
+ unsigned nptxqtop_token:2;
+ unsigned nptxqtop_terminate:1;
+ unsigned nptxqspcavail:8;
+ unsigned nptxfspcavail:16;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Transmit FIFO Status Register
+ * (DTXFSTS). Read the register into the d32 element then read out the bits
+ * using the bit elements.
+ */
+union dtxfsts_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved:16;
+ unsigned txfspcavail:16;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the I2C Control Register (I2CCTL).
+ * Read the register into the d32 element then read out the bits using the bit
+ * elements.
+ */
+union gi2cctl_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned bsydne:1;
+ unsigned rw:1;
+ unsigned reserved:2;
+ unsigned i2cdevaddr:2;
+ unsigned i2csuspctl:1;
+ unsigned ack:1;
+ unsigned i2cen:1;
+ unsigned addr:7;
+ unsigned regaddr:8;
+ unsigned rwdata:8;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the User HW Config1 Register. Read
+ * the register into the d32 element then read out the bits using the bit
+ * elements.
+ */
+union hwcfg1_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned ep_dir15:2;
+ unsigned ep_dir14:2;
+ unsigned ep_dir13:2;
+ unsigned ep_dir12:2;
+ unsigned ep_dir11:2;
+ unsigned ep_dir10:2;
+ unsigned ep_dir9:2;
+ unsigned ep_dir8:2;
+ unsigned ep_dir7:2;
+ unsigned ep_dir6:2;
+ unsigned ep_dir5:2;
+ unsigned ep_dir4:2;
+ unsigned ep_dir3:2;
+ unsigned ep_dir2:2;
+ unsigned ep_dir1:2;
+ unsigned ep_dir0:2;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the User HW Config2 Register. Read
+ * the register into the d32 element then read out the bits using the bit
+ * elements.
+ */
+union hwcfg2_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ /* GHWCFG2 */
+ unsigned reserved31:1;
+ unsigned dev_token_q_depth:5;
+ unsigned host_perio_tx_q_depth:2;
+ unsigned nonperio_tx_q_depth:2;
+ unsigned rx_status_q_depth:2;
+ unsigned dynamic_fifo:1;
+ unsigned perio_ep_supported:1;
+ unsigned num_host_chan:4;
+ unsigned num_dev_ep:4;
+ unsigned fs_phy_type:2;
+ unsigned hs_phy_type:2;
+#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
+#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
+#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
+#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
+
+ unsigned point2point:1;
+ unsigned architecture:2;
+ unsigned op_mode:3;
+#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
+#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
+#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
+#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
+#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
+#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
+#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the User HW Config3 Register. Read
+ * the register into the d32 element then read out the bits using the bit
+ * elements.
+ */
+union hwcfg3_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ /* GHWCFG3 */
+ unsigned dfifo_depth:16;
+ unsigned reserved15_13:3;
+ unsigned ahb_phy_clock_synch:1;
+ unsigned synch_reset_type:1;
+ unsigned optional_features:1;
+ unsigned vendor_ctrl_if:1;
+ unsigned i2c:1;
+ unsigned otg_func:1;
+ unsigned packet_size_cntr_width:3;
+ unsigned xfer_size_cntr_width:4;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the User HW Config4 Register. Read
+ * the register into the d32 element then read out the bits using the bit
+ * elements.
+ */
+union hwcfg4_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved31_30:2;
+ unsigned num_in_eps:4;
+ unsigned ded_fifo_en:1;
+
+ unsigned session_end_filt_en:1;
+ unsigned b_valid_filt_en:1;
+ unsigned a_valid_filt_en:1;
+ unsigned vbus_valid_filt_en:1;
+ unsigned iddig_filt_en:1;
+ unsigned num_dev_mode_ctrl_ep:4;
+ unsigned utmi_phy_data_width:2;
+ unsigned min_ahb_freq:9;
+ unsigned power_optimiz:1;
+ unsigned num_dev_perio_in_ep:4;
+ } b;
+};
+
+/*
+ * Device Global Registers. Offsets 800h-BFFh
+ *
+ * The following structures define the size and relative field offsets for the
+ * Device Mode Registers.
+ *
+ * These registers are visible only in Device mode and must not be accessed in
+ * Host mode, as the results are unknown.
+ */
+struct device_global_regs { /* CONFIG_DWC_OTG_REG_LE */
+ /* Device Configuration Register. Offset: 800h */
+ u32 dcfg;
+ /* Device Control Register. Offset: 804h */
+ u32 dctl;
+ /* Device Status Register (Read Only). Offset: 808h */
+ u32 dsts;
+ /* Reserved. Offset: 80Ch */
+ u32 unused;
+ /* Device IN Endpoint Common Interrupt Mask Register. Offset: 810h */
+ u32 diepmsk;
+ /* Device OUT Endpoint Common Interrupt Mask Register. Offset: 814h */
+ u32 doepmsk;
+ /* Device All Endpoints Interrupt Register. Offset: 818h */
+ u32 daint;
+ /* Device All Endpoints Interrupt Mask Register. Offset: 81Ch */
+ u32 daintmsk;
+ /* Device IN Token Queue Read Register-1 (Read Only). Offset: 820h */
+ u32 dtknqr1;
+ /* Device IN Token Queue Read Register-2 (Read Only). Offset: 824h */
+ u32 dtknqr2;
+ /* Device VBUS discharge Register. Offset: 828h */
+ u32 dvbusdis;
+ /* Device VBUS Pulse Register. Offset: 82Ch */
+ u32 dvbuspulse;
+ /* Device IN Token Queue Read Register-3 (Read Only). Offset: 830h */
+ u32 dtknqr3_dthrctl;
+ /* Device IN Token Queue Read Register-4 (Read Only). Offset: 834h */
+ u32 dtknqr4_fifoemptymsk;
+};
+
+/*
+ * This union represents the bit fields in the Device Configuration
+ * Register. Read the register into the d32 member then
+ * set/clear the bits using the bit elements. Write the
+ * d32 member to the dcfg register.
+ */
+union dcfg_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved0_8:9;
+ unsigned epmscnt:5;
+ /* In Endpoint Mis-match count */
+ unsigned reserved17_13:5;
+ /* Periodic Frame Interval */
+ unsigned perfrint:2;
+#define DWC_DCFG_FRAME_INTERVAL_80 0
+#define DWC_DCFG_FRAME_INTERVAL_85 1
+#define DWC_DCFG_FRAME_INTERVAL_90 2
+#define DWC_DCFG_FRAME_INTERVAL_95 3
+
+ /* Device Addresses */
+ unsigned devaddr:7;
+ unsigned reserved3:1;
+ /* Non Zero Length Status OUT Handshake */
+ unsigned nzstsouthshk:1;
+#define DWC_DCFG_SEND_STALL 1
+
+ /* Device Speed */
+ unsigned devspd:2;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device Control Register. Read
+ * the register into the d32 member then set/clear the bits using the bit
+ * elements.
+ */
+union dctl_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved31_12:21;
+ /* Clear Global OUT NAK */
+ unsigned cgoutnak:1;
+ /* Set Global OUT NAK */
+ unsigned sgoutnak:1;
+ /* Clear Global Non-Periodic IN NAK */
+ unsigned cgnpinnak:1;
+ /* Set Global Non-Periodic IN NAK */
+ unsigned sgnpinnak:1;
+ /* Test Control */
+ unsigned tstctl:3;
+ /* Global OUT NAK Status */
+ unsigned goutnaksts:1;
+ /* Global Non-Periodic IN NAK Status */
+ unsigned gnpinnaksts:1;
+ /* Soft Disconnect */
+ unsigned sftdiscon:1;
+ /* Remote Wakeup */
+ unsigned rmtwkupsig:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device Status Register. Read the
+ * register into the d32 member then set/clear the bits using the bit elements.
+ */
+union dsts_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved31_22:10;
+ /* Frame or Microframe Number of the received SOF */
+ unsigned soffn:14;
+ unsigned reserved07_04:4;
+ /* Erratic Error */
+ unsigned errticerr:1;
+ /* Enumerated Speed */
+ unsigned enumspd:2;
+#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
+#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
+#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2
+#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3
+ /* Suspend Status */
+ unsigned suspsts:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device IN EP Interrupt Register
+ * and the Device IN EP Common Mask Register.
+ *
+ * Read the register into the d32 member then set/clear the bits using the bit
+ * elements.
+ */
+union diepint_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved31_08:23;
+ unsigned txfifoundrn:1;
+ /* IN Endpoint HAK Effective mask */
+ unsigned emptyintr:1;
+ /* IN Endpoint NAK Effective mask */
+ unsigned inepnakeff:1;
+ /* IN Token Received with EP mismatch mask */
+ unsigned intknepmis:1;
+ /* IN Token received with TxF Empty mask */
+ unsigned intktxfemp:1;
+ /* TimeOUT Handshake mask (non-ISOC EPs) */
+ unsigned timeout:1;
+ /* AHB Error mask */
+ unsigned ahberr:1;
+ /* Endpoint disable mask */
+ unsigned epdisabled:1;
+ /* Transfer complete mask */
+ unsigned xfercompl:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device OUT EP Interrupt Register
+ * and Device OUT EP Common Interrupt Mask Register.
+ *
+ * Read the register into the d32 member then set/clear the bits using the bit
+ * elements.
+ */
+union doepint_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved31_04:28; /* Docs say reserved is 27 bits */
+
+ /* There is 1 bit missing here, not used? */
+
+ /* Setup Phase Done (control EPs) */
+ unsigned setup:1;
+ /* AHB Error */
+ unsigned ahberr:1;
+ /* Endpoint disable */
+ unsigned epdisabled:1;
+ /* Transfer complete */
+ unsigned xfercompl:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device All EP Interrupt and Mask
+ * Registers. Read the register into the d32 member then set/clear the bits
+ * using the bit elements.
+ */
+union daint_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ /* OUT Endpoint bits */
+ unsigned out:16;
+ /* IN Endpoint bits */
+ unsigned in:16;
+ } ep;
+ struct {
+ /* OUT Endpoint bits */
+ unsigned outep15:1;
+ unsigned outep14:1;
+ unsigned outep13:1;
+ unsigned outep12:1;
+ unsigned outep11:1;
+ unsigned outep10:1;
+ unsigned outep9:1;
+ unsigned outep8:1;
+ unsigned outep7:1;
+ unsigned outep6:1;
+ unsigned outep5:1;
+ unsigned outep4:1;
+ unsigned outep3:1;
+ unsigned outep2:1;
+ unsigned outep1:1;
+ unsigned outep0:1;
+ /* IN Endpoint bits */
+ unsigned inep15:1;
+ unsigned inep14:1;
+ unsigned inep13:1;
+ unsigned inep12:1;
+ unsigned inep11:1;
+ unsigned inep10:1;
+ unsigned inep9:1;
+ unsigned inep8:1;
+ unsigned inep7:1;
+ unsigned inep6:1;
+ unsigned inep5:1;
+ unsigned inep4:1;
+ unsigned inep3:1;
+ unsigned inep2:1;
+ unsigned inep1:1;
+ unsigned inep0:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device IN Token Queue Read
+ * Registers. Read the register into the d32 member. READ-ONLY Register
+ */
+union dtknq1_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ /* EP Numbers of IN Tokens 0 ... 4 */
+ unsigned epnums0_5:24;
+ /* write pointer has wrapped. */
+ unsigned wrap_bit:1;
+ /* Reserved */
+ unsigned reserved05_06:2;
+ /* In Token Queue Write Pointer */
+ unsigned intknwptr:5;
+ } b;
+};
+
+/*
+ * This union represents Threshold control Register. Read and write the register
+ * into the d32 member. READ-WRITABLE Register
+ */
+union dthrctl_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ /* Reserved */
+ unsigned reserved26_31:6;
+ /* Rx Thr. Length */
+ unsigned rx_thr_len:9;
+ /* Rx Thr. Enable */
+ unsigned rx_thr_en:1;
+ /* Reserved */
+ unsigned reserved11_15:5;
+ /* Tx Thr. Length */
+ unsigned tx_thr_len:9;
+ /* ISO Tx Thr. Enable */
+ unsigned iso_thr_en:1;
+ /* non ISO Tx Thr. Enable */
+ unsigned non_iso_thr_en:1;
+ } b;
+};
+
+/*
+ * Device Logical IN Endpoint-Specific Registers. Offsets 900h-AFCh
+ *
+ * There will be one set of endpoint registers per logical endpoint implemented.
+ *
+ * These registers are visible only in Device mode and must not be accessed in
+ * Host mode, as the results are unknown.
+ */
+ struct device_in_ep_regs {
+ /*
+ * Device IN Endpoint Control Register.
+ * Offset:900h + (ep_num * 20h) + 00h
+ */
+ u32 diepctl;
+ /* Reserved. Offset:900h + (ep_num * 20h) + 04h */
+ u32 reserved04;
+ /*
+ * Device IN Endpoint Interrupt Register.
+ * Offset:900h + (ep_num * 20h) + 08h
+ */
+ u32 diepint;
+ /* Reserved. Offset:900h + (ep_num * 20h) + 0Ch */
+ u32 reserved0C;
+ /* Device IN Endpoint Transfer Size Register.
+ * Offset:900h + (ep_num * 20h) + 10h
+ */
+ u32 dieptsiz;
+ /*
+ * Device IN Endpoint DMA Address Register.
+ * Offset:900h + (ep_num * 20h) + 14h
+ */
+ u32 diepdma;
+ /* Reserved.
+ * Offset:900h + (ep_num * 20h) + 18h - 900h + (ep_num * 20h) + 1Ch
+ */
+ u32 dtxfsts;
+ /*
+ * Reserved.
+ * Offset:900h + (ep_num * 20h) + 1Ch - 900h + (ep_num * 20h) + 1Ch
+ */
+ u32 reserved18;
+};
+
+/*
+ * Device Logical OUT Endpoint-Specific Registers. Offsets: B00h-CFCh
+ *
+ * There will be one set of endpoint registers per logical endpoint implemented.
+ *
+ * These registers are visible only in Device mode and must not be accessed in
+ * Host mode, as the results are unknown.
+ */
+struct device_out_ep_regs {
+ /*
+ * Device OUT Endpoint Control Register.
+ * Offset:B00h + (ep_num * 20h) + 00h
+ */
+ u32 doepctl;
+ /*
+ * Device OUT Endpoint Frame number Register.
+ * Offset: B00h + (ep_num * 20h) + 04h
+ */
+ u32 doepfn;
+ /*
+ * Device OUT Endpoint Interrupt Register.
+ * Offset:B00h + (ep_num * 20h) + 08h
+ */
+ u32 doepint;
+ /* Reserved. Offset:B00h + (ep_num * 20h) + 0Ch */
+ u32 reserved0C;
+ /*
+ * Device OUT Endpoint Transfer Size Register.
+ * Offset: B00h + (ep_num * 20h) + 10h
+ */
+ u32 doeptsiz;
+ /*
+ * Device OUT Endpoint DMA Address Register.
+ * Offset:B00h + (ep_num * 20h) + 14h
+ */
+ u32 doepdma;
+ /*
+ * Reserved.
+ * Offset:B00h + (ep_num * 20h) + 18h - B00h + (ep_num * 20h) + 1Ch
+ */
+ u32 unused[2];
+};
+
+/*
+ * This union represents the bit fields in the Device EP Control Register. Read
+ * the register into the d32 member then set/clear the bits using the bit
+ * elements.
+ */
+union depctl_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ /* Endpoint Enable */
+ unsigned epena:1;
+ /* Endpoint Disable */
+ unsigned epdis:1;
+
+ /*
+ * Set DATA1 PID (INTR/Bulk IN and OUT endpoints) Writing to
+ * this field sets the Endpoint DPID (DPID) field in this
+ * register to DATA1 Set Odd (micro)frame (SetOddFr) (ISO IN and
+ * OUT Endpoints) Writing to this field sets the Even/Odd
+ * (micro)frame (EO_FrNum) field to odd (micro) frame.
+ */
+ unsigned setd1pid:1;
+ /*
+ * Set DATA0 PID (INTR/Bulk IN and OUT endpoints) Writing to
+ * this field sets the Endpoint DPID (DPID) field in this
+ * register to DATA0. Set Even (micro)frame (SetEvenFr) (ISO IN
+ * and OUT Endpoints) Writing to this field sets the Even/Odd
+ * (micro)frame (EO_FrNum) field to even (micro) frame.
+ */
+ unsigned setd0pid:1;
+
+ /* Set NAK */
+ unsigned snak:1;
+ /* Clear NAK */
+ unsigned cnak:1;
+
+ /*
+ * Tx Fifo Number
+ * IN EPn/IN EP0
+ * OUT EPn/OUT EP0 - reserved
+ */
+ unsigned txfnum:4;
+
+ /* Stall Handshake */
+ unsigned stall:1;
+
+ /* Snoop Mode
+ * OUT EPn/OUT EP0
+ * IN EPn/IN EP0 - reserved
+ */
+ unsigned snp:1;
+
+ /* Endpoint Type
+ * 2'b00: Control
+ * 2'b01: Isochronous
+ * 2'b10: Bulk
+ * 2'b11: Interrupt
+ */
+ unsigned eptype:2;
+
+ /* NAK Status */
+ unsigned naksts:1;
+
+ /*
+ * Endpoint DPID (INTR/Bulk IN and OUT endpoints) This field
+ * contains the PID of the packet going to be received or
+ * transmitted on this endpoint. The application should program
+ * the PID of the first packet going to be received or
+ * transmitted on this endpoint, after the endpoint is
+ * activated. Applications use the SetD1PID and SetD0PID fields
+ * of this register to program either D0 or D1 PID.
+ *
+ * The encoding for this field is
+ * - 0: D0
+ * - 1: D1
+ */
+ unsigned dpid:1;
+
+ /* USB Active Endpoint */
+ unsigned usbactep:1;
+
+ /*
+ * Next Endpoint
+ * IN EPn/IN EP0
+ * OUT EPn/OUT EP0 - reserved
+ */
+ unsigned nextep:4;
+
+ /*
+ * Maximum Packet Size
+ * IN/OUT EPn
+ * IN/OUT EP0 - 2 bits
+ * 2'b00: 64 Bytes
+ * 2'b01: 32
+ * 2'b10: 16
+ * 2'b11: 8
+ */
+ unsigned mps:11;
+#define DWC_DEP0CTL_MPS_64 0
+#define DWC_DEP0CTL_MPS_32 1
+#define DWC_DEP0CTL_MPS_16 2
+#define DWC_DEP0CTL_MPS_8 3
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device EP Transfer Size Register.
+ * Read the register into the d32 member then set/clear the bits using the bit
+ * elements.
+ */
+union deptsiz_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+
+ /*
+ * Added-sr: 2007-07-26
+ *
+ * Correct ther register layout for the 405EZ Ultra
+ * USB device implementation.
+ */
+#ifdef CONFIG_DWC_LIMITED_XFER_SIZE
+ struct {
+ unsigned reserved:1;
+ /* Multi Count - Periodic IN endpoints */
+ unsigned mc:2;
+ unsigned reserved1:5;
+ /* Packet Count */
+ unsigned pktcnt:5;
+ unsigned reserved2:8;
+ /* Transfer size */
+ unsigned xfersize:11;
+ } b;
+#else
+ struct {
+ unsigned reserved:1;
+ /* Multi Count - Periodic IN endpoints */
+ unsigned mc:2;
+ /* Packet Count */
+ unsigned pktcnt:10;
+ /* Transfer size */
+ unsigned xfersize:19;
+ } b;
+#endif
+};
+
+/*
+ * This union represents the bit fields in the Device EP 0 Transfer Size
+ * Register. Read the register into the d32 member then set/clear the bits
+ * using the bit elements.
+ */
+union deptsiz0_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved31:1; /* device*/
+ /*Setup Packet Count (DOEPTSIZ0 Only) */
+ unsigned supcnt:2;
+ /* Reserved */
+ unsigned reserved28_20:9;
+ /* Packet Count */
+ unsigned pktcnt:1;
+ /* Reserved */
+ unsigned reserved18_7:12;
+ /* Transfer size */
+ unsigned xfersize:7;
+ } b;
+};
+
+#define MAX_PERIO_FIFOS 15 /* Max periodic FIFOs */
+#define MAX_TX_FIFOS 15 /* Max non-periodic FIFOs */
+
+/* Maximum number of Endpoints/HostChannels */
+#if defined(CONFIG_460EX)
+#define MAX_EPS_CHANNELS 12
+#else
+#define MAX_EPS_CHANNELS 4
+#endif
+
+/*
+ * The device_if structure contains information needed to manage the DWC_otg
+ * controller acting in device mode. It represents the programming view of the
+ * device-specific aspects of the controller.
+ */
+struct device_if {
+ /* Device Global Registers starting at offset 800h */
+ struct device_global_regs *dev_global_regs;
+#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
+
+ /* Device Logical IN Endpoint-Specific Registers 900h-AFCh */
+ struct device_in_ep_regs *in_ep_regs[MAX_EPS_CHANNELS];
+#define DWC_DEV_IN_EP_REG_OFFSET 0x900
+#define DWC_EP_REG_OFFSET 0x20
+
+ /* Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
+ struct device_out_ep_regs *out_ep_regs[MAX_EPS_CHANNELS];
+#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
+
+ /* Device configuration information */
+ /* Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
+ u8 speed;
+ /* Number # of Tx EP range: 0-15 exept ep0 */
+ u8 num_in_eps;
+ /* Number # of Rx EP range: 0-15 exept ep 0*/
+ u8 num_out_eps;
+
+ /* Size of periodic FIFOs (Bytes) */
+ u16 perio_tx_fifo_size[MAX_PERIO_FIFOS];
+
+ /* Size of Tx FIFOs (Bytes) */
+ u16 tx_fifo_size[MAX_TX_FIFOS];
+
+ /* Thresholding enable flags and length varaiables */
+ u16 rx_thr_en;
+ u16 iso_tx_thr_en;
+ u16 non_iso_tx_thr_en;
+ u16 rx_thr_length;
+ u16 tx_thr_length;
+};
+
+/*
+ * This union represents the bit fields in the Power and Clock Gating Control
+ * Register. Read the register into the d32 member then set/clear the
+ * bits using the bit elements.
+ */
+union pcgcctl_data {
+ u32 d32;
+ struct {
+ unsigned reserved31_05:27;
+ /* PHY Suspended */
+ unsigned physuspended:1;
+ /* Reset Power Down Modules */
+ unsigned rstpdwnmodule:1;
+ /* Power Clamp */
+ unsigned pwrclmp:1;
+ /* Gate Hclk */
+ unsigned gatehclk:1;
+ /* Stop Pclk */
+ unsigned stoppclk:1;
+ } b;
+};
+
+/*
+ * Host Mode Register Structures
+ */
+
+/*
+ * The Host Global Registers structure defines the size and relative field
+ * offsets for the Host Mode Global Registers. Host Global Registers offsets
+ * 400h-7FFh.
+*/
+struct host_global_regs {
+ /* Host Configuration Register. Offset: 400h */
+ u32 hcfg;
+ /* Host Frame Interval Register. Offset: 404h */
+ u32 hfir;
+ /* Host Frame Number / Frame Remaining Register. Offset: 408h */
+ u32 hfnum;
+ /* Reserved. Offset: 40Ch */
+ u32 reserved40C;
+ /* Host Periodic Transmit FIFO/ Queue Status Register. Offset: 410h */
+ u32 hptxsts;
+ /* Host All Channels Interrupt Register. Offset: 414h */
+ u32 haint;
+ /* Host All Channels Interrupt Mask Register. Offset: 418h */
+ u32 haintmsk;
+};
+
+/*
+ * This union represents the bit fields in the Host Configuration Register. Read
+ * the register into the d32 member then set/clear the bits using the bit
+ * elements. Write the d32 member to the hcfg register.
+ */
+union hcfg_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+#define DWC_HCFG_30_60_MHZ 0
+#define DWC_HCFG_48_MHZ 1
+#define DWC_HCFG_6_MHZ 2
+ /* FS/LS Only Support */
+ unsigned fslssupp:1;
+ /* FS/LS Phy Clock Select */
+ unsigned fslspclksel:2;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host Frame Remaing/Number
+ * Register.
+ */
+union hfir_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved:16;
+ unsigned frint:16;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host Frame Remaing/Number
+ * Register.
+ */
+union hfnum_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+#define DWC_HFNUM_MAX_FRNUM 0x3FFF
+ unsigned frrem:16;
+ unsigned frnum:16;
+ } b;
+};
+
+union hptxsts_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned ptxqtop_odd:1;
+ unsigned ptxqtop_chnum:4;
+ unsigned ptxqtop_token:2;
+ unsigned ptxqtop_terminate:1;
+ unsigned ptxqspcavail:8;
+ unsigned ptxfspcavail:16;
+ /*
+ * Top of the Periodic Transmit Request Queue
+ * - bit 24 - Terminate (last entry for the selected channel)
+ * - bits 26:25 - Token Type
+ * - 2'b00 - Zero length
+ * - 2'b01 - Ping
+ * - 2'b10 - Disable
+ * - bits 30:27 - Channel Number
+ * - bit 31 - Odd/even microframe
+ */
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host Port Control and Status
+ * Register. Read the register into the d32 member then set/clear the bits using
+ * the bit elements. Write the d32 member to the hprt0 register.
+ */
+union hprt0_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
+#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
+#define DWC_HPRT0_PRTSPD_LOW_SPEED 2
+ unsigned reserved19_31:13;
+ unsigned prtspd:2;
+ unsigned prttstctl:4;
+ unsigned prtpwr:1;
+ unsigned prtlnsts:2;
+ unsigned reserved9:1;
+ unsigned prtrst:1;
+ unsigned prtsusp:1;
+ unsigned prtres:1;
+ unsigned prtovrcurrchng:1;
+ unsigned prtovrcurract:1;
+ unsigned prtenchng:1;
+ unsigned prtena:1;
+ unsigned prtconndet:1;
+ unsigned prtconnsts:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host All Interrupt Register.
+ */
+union haint_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved:16;
+ unsigned ch15:1;
+ unsigned ch14:1;
+ unsigned ch13:1;
+ unsigned ch12:1;
+ unsigned ch11:1;
+ unsigned ch10:1;
+ unsigned ch9:1;
+ unsigned ch8:1;
+ unsigned ch7:1;
+ unsigned ch6:1;
+ unsigned ch5:1;
+ unsigned ch4:1;
+ unsigned ch3:1;
+ unsigned ch2:1;
+ unsigned ch1:1;
+ unsigned ch0:1;
+ } b;
+ struct {
+ unsigned reserved:16;
+ unsigned chint:16;
+ } b2;
+};
+
+/*
+ * This union represents the bit fields in the Host All Interrupt Register.
+ */
+union haintmsk_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved:16;
+ unsigned ch15:1;
+ unsigned ch14:1;
+ unsigned ch13:1;
+ unsigned ch12:1;
+ unsigned ch11:1;
+ unsigned ch10:1;
+ unsigned ch9:1;
+ unsigned ch8:1;
+ unsigned ch7:1;
+ unsigned ch6:1;
+ unsigned ch5:1;
+ unsigned ch4:1;
+ unsigned ch3:1;
+ unsigned ch2:1;
+ unsigned ch1:1;
+ unsigned ch0:1;
+ } b;
+ struct {
+ unsigned reserved:16;
+ unsigned chint:16;
+ } b2;
+};
+
+/*
+ * Host Channel Specific Registers. 500h-5FCh
+ */
+struct dwc_hc_regs { /* CONFIG_DWC_OTG_REG_LE */
+ /*
+ * Host Channel 0 Characteristic Register.
+ * Offset: 500h + (chan_num * 20h) + 00h
+ */
+ u32 hcchar;
+ /*
+ * Host Channel 0 Split Control Register.
+ * Offset: 500h + (chan_num * 20h) + 04h
+ */
+ u32 hcsplt;
+ /*
+ * Host Channel 0 Interrupt Register.
+ * Offset: 500h + (chan_num * 20h) + 08h
+ */
+ u32 hcint;
+ /*
+ * Host Channel 0 Interrupt Mask Register.
+ * Offset: 500h + (chan_num * 20h) + 0Ch
+ */
+ u32 hcintmsk;
+ /*
+ * Host Channel 0 Transfer Size Register.
+ * Offset: 500h + (chan_num * 20h) + 10h
+ */
+ u32 hctsiz;
+ /*
+ * Host Channel 0 DMA Address Register.
+ * Offset: 500h + (chan_num * 20h) + 14h
+ */
+ u32 hcdma;
+ /*
+ * Reserved.
+ * Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch
+ */
+ u32 reserved[2];
+};
+
+/*
+ * This union represents the bit fields in the Host Channel Characteristics
+ * Register. Read the register into the d32 member then set/clear the bits using
+ * the bit elements. Write the d32 member to the hcchar register.
+ */
+union hcchar_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ /* Channel enable */
+ unsigned chen:1;
+ /* Channel disable */
+ unsigned chdis:1;
+ /*
+ * Frame to transmit periodic transaction.
+ * 0: even, 1: odd
+ */
+ unsigned oddfrm:1;
+ /* Device address */
+ unsigned devaddr:7;
+ /* Packets per frame for periodic transfers. 0 is reserved. */
+ unsigned multicnt:2;
+ /* 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
+ unsigned eptype:2;
+ /* 0: Full/high speed device, 1: Low speed device */
+ unsigned lspddev:1;
+ unsigned reserved:1;
+ /* 0: OUT, 1: IN */
+ unsigned epdir:1;
+ /* Endpoint number */
+ unsigned epnum:4;
+ /* Maximum packet size in bytes */
+ unsigned mps:11;
+ } b;
+};
+
+union hcsplt_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ /* Split Enble */
+ unsigned spltena:1;
+ /* Reserved */
+ unsigned reserved:14;
+ /* Do Complete Split */
+ unsigned compsplt:1;
+ /* Transaction Position */
+ unsigned xactpos:2;
+#define DWC_HCSPLIT_XACTPOS_MID 0
+#define DWC_HCSPLIT_XACTPOS_END 1
+#define DWC_HCSPLIT_XACTPOS_BEGIN 2
+#define DWC_HCSPLIT_XACTPOS_ALL 3
+
+ /* Hub Address */
+ unsigned hubaddr:7;
+ /* Port Address */
+ unsigned prtaddr:7;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host All Interrupt
+ * Register.
+ */
+union hcint_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ /* Reserved */
+ unsigned reserved:21;
+ /* Data Toggle Error */
+ unsigned datatglerr:1;
+ /* Frame Overrun */
+ unsigned frmovrun:1;
+ /* Babble Error */
+ unsigned bblerr:1;
+ /* Transaction Err */
+ unsigned xacterr:1;
+ /* NYET Response Received */
+ unsigned nyet:1;
+ /* ACK Response Received */
+ unsigned ack:1;
+ /* NAK Response Received */
+ unsigned nak:1;
+ /* STALL Response Received */
+ unsigned stall:1;
+ /* AHB Error */
+ unsigned ahberr:1;
+ /* Channel Halted */
+ unsigned chhltd:1;
+ /* Transfer Complete */
+ unsigned xfercomp:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host Channel Transfer Size
+ * Register. Read the register into the d32 member then set/clear the bits
+ * using the bit elements. Write the d32 member to the hcchar register.
+ */
+union hctsiz_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+#define DWC_HCTSIZ_DATA0 0
+#define DWC_HCTSIZ_DATA1 2
+#define DWC_HCTSIZ_DATA2 1
+#define DWC_HCTSIZ_MDATA 3
+#define DWC_HCTSIZ_SETUP 3
+
+ /* Do PING protocol when 1 */
+ unsigned dopng:1;
+ /*
+ * Packet ID for next data packet
+ * 0: DATA0
+ * 1: DATA2
+ * 2: DATA1
+ * 3: MDATA (non-Control), SETUP (Control)
+ */
+ unsigned pid:2;
+ /* Data packets to transfer */
+ unsigned pktcnt:10;
+ /* Total transfer size in bytes */
+ unsigned xfersize:19;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host Channel Interrupt Mask
+ * Register. Read the register into the d32 member then set/clear the bits using
+ * the bit elements. Write the d32 member to the hcintmsk register.
+ */
+union hcintmsk_data { /* CONFIG_DWC_OTG_REG_LE */
+ u32 d32;
+ struct {
+ unsigned reserved:21;
+ unsigned datatglerr:1;
+ unsigned frmovrun:1;
+ unsigned bblerr:1;
+ unsigned xacterr:1;
+ unsigned nyet:1;
+ unsigned ack:1;
+ unsigned nak:1;
+ unsigned stall:1;
+ unsigned ahberr:1;
+ unsigned chhltd:1;
+ unsigned xfercompl:1;
+ } b;
+};
+
+/*
+ * OTG Host Interface Structure.
+ *
+ * The OTG Host Interface Structure structure contains information needed to
+ * manage the DWC_otg controller acting in host mode. It represents the
+ * programming view of the host-specific aspects of the controller.
+ */
+struct dwc_host_if { /* CONFIG_DWC_OTG_REG_LE */
+ /* Host Global Registers starting at offset 400h.*/
+ struct host_global_regs *host_global_regs;
+#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
+
+ /* Host Port 0 Control and Status Register */
+ u32 *hprt0;
+#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
+
+ /* Host Channel Specific Registers at offsets 500h-5FCh. */
+ struct dwc_hc_regs *hc_regs[MAX_EPS_CHANNELS];
+#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
+#define DWC_OTG_CHAN_REGS_OFFSET 0x20
+
+ /* Host configuration information */
+ /* Number of Host Channels (range: 1-16) */
+ u8 num_host_channels;
+ /* Periodic EPs supported (0: no, 1: yes) */
+ u8 perio_eps_supported;
+ /* Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
+ u16 perio_tx_fifo_size;
+};
+
+#else /* CONFIG_DWC_OTG_REG_LE not defined */
+
+/*
+ * This union represents the bit fields of the Core OTG Control
+ * and Status Register (GOTGCTL). Set the bits using the bit
+ * fields then write the d32 value to the register.
+ */
+union gotgctl_data {
+ u32 d32;
+ struct {
+ unsigned sesreqscs:1;
+ unsigned sesreq:1;
+ unsigned reserved2_7:6;
+ unsigned hstnegscs:1;
+ unsigned hnpreq:1;
+ unsigned hstsethnpen:1;
+ unsigned devhnpen:1;
+ unsigned reserved12_15:4;
+ unsigned conidsts:1;
+ unsigned reserved17:1;
+ unsigned asesvld:1;
+ unsigned bsesvld:1;
+ unsigned currmod:1;
+ unsigned reserved21_31:11;
+ } b;
+};
+
+/*
+ * This union represents the bit fields of the Core OTG Interrupt Register
+ * (GOTGINT). Set/clear the bits using the bit fields then write the d32
+ * value to the register.
+ */
+union gotgint_data {
+ u32 d32;
+ struct {
+ /* Current Mode */
+ unsigned reserved0_1:2;
+
+ /* Session End Detected */
+ unsigned sesenddet:1;
+
+ unsigned reserved3_7:5;
+
+ /* Session Request Success Status Change */
+ unsigned sesreqsucstschng:1;
+ /* Host Negotiation Success Status Change */
+ unsigned hstnegsucstschng:1;
+
+ unsigned reserver10_16:7;
+
+ /* Host Negotiation Detected */
+ unsigned hstnegdet:1;
+ /* A-Device Timeout Change */
+ unsigned adevtoutchng:1;
+ /* Debounce Done */
+ unsigned debdone:1;
+
+ unsigned reserved31_20:12;
+
+ } b;
+};
+
+/*
+ * This union represents the bit fields of the Core AHB Configuration Register
+ * (GAHBCFG). Set/clear the bits using the bit fields then write the d32 value
+ * to the register.
+ */
+union gahbcfg_data {
+ u32 d32;
+ struct {
+ unsigned glblintrmsk:1;
+#define DWC_GAHBCFG_GLBINT_ENABLE 1
+
+ unsigned hburstlen:4;
+#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5
+#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7
+
+ unsigned dmaenable:1;
+#define DWC_GAHBCFG_DMAENABLE 1
+ unsigned reserved:1;
+ unsigned nptxfemplvl_txfemplvl:1;
+ unsigned ptxfemplvl:1;
+#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1
+#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0
+ unsigned reserved9_31:23;
+ } b;
+};
+
+/*
+ * This union represents the bit fields of the Core USB Configuration Register
+ * (GUSBCFG). Set the bits using the bit fields then write the d32 value to
+ * the register.
+ */
+union gusbcfg_data {
+ u32 d32;
+ struct {
+ unsigned toutcal:3;
+ unsigned phyif:1;
+ unsigned ulpi_utmi_sel:1;
+ unsigned fsintf:1;
+ unsigned physel:1;
+ unsigned ddrsel:1;
+ unsigned srpcap:1;
+ unsigned hnpcap:1;
+ unsigned usbtrdtim:4;
+ unsigned nptxfrwnden:1;
+ unsigned phylpwrclksel:1;
+ unsigned otgutmifssel:1;
+ unsigned ulpi_fsls:1;
+ unsigned ulpi_auto_res:1;
+ unsigned ulpi_clk_sus_m:1;
+ unsigned ulpi_ext_vbus_drv:1;
+ unsigned ulpi_int_vbus_indicator:1;
+ unsigned term_sel_dl_pulse:1;
+ unsigned reserved23_28:6;
+ unsigned force_host_mode:1;
+ unsigned force_device_mode:1;
+ unsigned corrupt_tx_packet:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields of the Core Reset Register (GRSTCTL).
+ * Set/clear the bits using the bit fields then write the d32 value to the
+ * register.
+ */
+union grstctl_data {
+ u32 d32;
+ struct {
+ /*
+ * Core Soft Reset (CSftRst) (Device and Host)
+ *
+ * The application can flush the control logic in the entire
+ * core using this bit. This bit resets the pipelines in the AHB
+ * Clock domain as well as the PHY Clock domain.
+ *
+ * The state machines are reset to an IDLE state, the control
+ * bits in the CSRs are cleared, all the transmit FIFOs and the
+ * receive FIFO are flushed.
+ *
+ * The status mask bits that control the generation of the
+ * interrupt, are cleared, to clear the interrupt. The interrupt
+ * status bits are not cleared, so the application can get the
+ * status of any events that occurred in the core after it has
+ * set this bit.
+ *
+ * Any transactions on the AHB are terminated as soon as
+ * possible following the protocol. Any transactions on the USB
+ * are terminated immediately.
+ *
+ * The configuration settings in the CSRs are unchanged, so the
+ * software doesn't have to reprogram these registers (Device
+ * Configuration/Host Configuration/Core System
+ * Configuration/Core PHY Configuration).
+ *
+ * The application can write to this bit, any time it wants to
+ * reset the core. This is a self clearing bit and the core
+ * clears this bit after all the necessary logic is reset in the
+ * core, which may take several clocks, depending on the current
+ * state of the core.
+ */
+ unsigned csftrst:1;
+ /*
+ * Hclk Soft Reset
+ *
+ * The application uses this bit to reset the control logic in
+ * the AHB clock domain. Only AHB clock domain pipelines are
+ * reset.
+ */
+ unsigned hsftrst:1;
+ /*
+ * Host Frame Counter Reset (Host Only)<br>
+ *
+ * The application can reset the (micro)frame number counter
+ * inside the core, using this bit. When the (micro)frame
+ * counter is reset, the subsequent SOF sent out by the core,
+ * will have a (micro)frame number of 0.
+ */
+ unsigned hstfrm:1;
+ /*
+ * In Token Sequence Learning Queue Flush (INTknQFlsh) (Device
+ * Only)
+ */
+ unsigned intknqflsh:1;
+ /*
+ * RxFIFO Flush (RxFFlsh) (Device and Host)
+ *
+ * The application can flush the entire Receive FIFO using this
+ * bit.
+ *
+ * The application must first ensure that the core is not in the
+ * middle of a transaction.
+ *
+ * The application should write into this bit, only after making
+ * sure that neither the DMA engine is reading from the RxFIFO
+ * nor the MAC is writing the data in to the FIFO.
+ *
+ * The application should wait until the bit is cleared before
+ * performing any other operations. This bit will takes 8 clocks
+ * (slowest of PHY or AHB clock) to clear.
+ */
+ unsigned rxfflsh:1;
+ /*
+ * TxFIFO Flush (TxFFlsh) (Device and Host).
+ *
+ * This bit is used to selectively flush a single or all
+ * transmit FIFOs. The application must first ensure that the
+ * core is not in the middle of a transaction.
+ *
+ * The application should write into this bit, only after making
+ * sure that neither the DMA engine is writing into the TxFIFO
+ * nor the MAC is reading the data out of the FIFO.
+ *
+ * The application should wait until the core clears this bit,
+ * before performing any operations. This bit will takes 8
+ * clocks (slowest of PHY or AHB clock) to clear.
+ */
+ unsigned txfflsh:1;
+
+ /*
+ * TxFIFO Number (TxFNum) (Device and Host).
+ *
+ * This is the FIFO number which needs to be flushed, using the
+ * TxFIFO Flush bit. This field should not be changed until the
+ * TxFIFO Flush bit is cleared by the core.
+ * - 0x0 : Non Periodic TxFIFO Flush
+ * - 0x1 : Periodic TxFIFO #1 Flush in device mode
+ * or Periodic TxFIFO in host mode
+ * - 0x2 : Periodic TxFIFO #2 Flush in device mode.
+ * - ...
+ * - 0xF : Periodic TxFIFO #15 Flush in device mode
+ * - 0x10: Flush all the Transmit NonPeriodic and
+ * Transmit Periodic FIFOs in the core
+ */
+ unsigned txfnum:5;
+#define DWC_GRSTCTL_TXFNUM_ALL 0x10
+
+ /* Reserved */
+ unsigned reserved11_29:19;
+ /*
+ * DMA Request Signal. Indicated DMA request is in progress.
+ * Used for debug purpose.
+ */
+ unsigned dmareq:1;
+ /*
+ * AHB Master Idle. Indicates the AHB Master State Machine is
+ * in IDLE condition.
+ */
+ unsigned ahbidle:1;
+ } b;
+};
+
+
+/*
+ * This union represents the bit fields of the Core Interrupt Mask Register
+ * (GINTMSK). Set/clear the bits using the bit fields then write the d32 value
+ * to the register.
+ */
+union gintmsk_data {
+ u32 d32;
+ struct {
+ unsigned reserved0:1;
+ unsigned modemismatch:1;
+ unsigned otgintr:1;
+ unsigned sofintr:1;
+ unsigned rxstsqlvl:1;
+ unsigned nptxfempty:1;
+ unsigned ginnakeff:1;
+ unsigned goutnakeff:1;
+ unsigned reserved8:1;
+ unsigned i2cintr:1;
+ unsigned erlysuspend:1;
+ unsigned usbsuspend:1;
+ unsigned usbreset:1;
+ unsigned enumdone:1;
+ unsigned isooutdrop:1;
+ unsigned eopframe:1;
+ unsigned reserved16:1;
+ unsigned epmismatch:1;
+ unsigned inepintr:1;
+ unsigned outepintr:1;
+ unsigned incomplisoin:1;
+ unsigned incomplisoout:1;
+ unsigned reserved22_23:2;
+ unsigned portintr:1;
+ unsigned hcintr:1;
+ unsigned ptxfempty:1;
+ unsigned reserved27:1;
+ unsigned conidstschng:1;
+ unsigned disconnect:1;
+ unsigned sessreqintr:1;
+ unsigned wkupintr:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields of the Core Interrupt Register
+ * (GINTSTS). Set/clear the bits using the bit fields then write the d32 value
+ * to the register.
+ */
+union gintsts_data {
+ u32 d32;
+#define DWC_SOF_INTR_MASK 0x0008
+
+ struct {
+#define DWC_HOST_MODE 1
+ unsigned curmode:1;
+ unsigned modemismatch:1;
+ unsigned otgintr:1;
+ unsigned sofintr:1;
+ unsigned rxstsqlvl:1;
+ unsigned nptxfempty:1;
+ unsigned ginnakeff:1;
+ unsigned goutnakeff:1;
+ unsigned reserved8:1;
+ unsigned i2cintr:1;
+ unsigned erlysuspend:1;
+ unsigned usbsuspend:1;
+ unsigned usbreset:1;
+ unsigned enumdone:1;
+ unsigned isooutdrop:1;
+ unsigned eopframe:1;
+ unsigned intokenrx:1;
+ unsigned epmismatch:1;
+ unsigned inepint:1;
+ unsigned outepintr:1;
+ unsigned incomplisoin:1;
+ unsigned incomplisoout:1;
+ unsigned reserved22_23:2;
+ unsigned portintr:1;
+ unsigned hcintr:1;
+ unsigned ptxfempty:1;
+ unsigned reserved27:1;
+ unsigned conidstschng:1;
+ unsigned disconnect:1;
+ unsigned sessreqintr:1;
+ unsigned wkupintr:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device Receive Status Read and
+ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32 element then
+ * read out the bits using the bit elements.
+ */
+union device_grxsts_data {
+ u32 d32;
+ struct {
+ unsigned epnum:4;
+ unsigned bcnt:11;
+ unsigned dpid:2;
+
+#define DWC_STS_DATA_UPDT 0x2 /* OUT Data Packet */
+#define DWC_STS_XFER_COMP 0x3 /* OUT Data Transfer Complete */
+#define DWC_DSTS_GOUT_NAK 0x1 /* Global OUT NAK */
+#define DWC_DSTS_SETUP_COMP 0x4 /* Setup Phase Complete */
+#define DWC_DSTS_SETUP_UPDT 0x6 /* SETUP Packet */
+ unsigned pktsts:4;
+ unsigned fn:4;
+ unsigned reserved:7;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host Receive Status Read and
+ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32 element then
+ * read out the bits using the bit elements.
+ */
+union host_grxsts_data {
+ u32 d32;
+ struct {
+ unsigned chnum:4;
+ unsigned bcnt:11;
+ unsigned dpid:2;
+
+ unsigned pktsts:4;
+#define DWC_GRXSTS_PKTSTS_IN 0x2
+#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3
+#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
+#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7
+
+ unsigned reserved:11;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
+ * GNPTXFSIZ, DPTXFSIZn, DIEPTXFn). Read the register into the d32 element then
+ * read out the bits using the bit elements.
+ */
+union fifosize_data {
+ u32 d32;
+ struct {
+ unsigned startaddr:16;
+ unsigned depth:16;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Non-Periodic Transmit FIFO/Queue
+ * Status Register (GNPTXSTS). Read the register into the d32 element then read
+ * out the bits using the bit elements.
+ */
+union gnptxsts_data {
+ u32 d32;
+ struct {
+ unsigned nptxfspcavail:16;
+ unsigned nptxqspcavail:8;
+ /*
+ * Top of the Non-Periodic Transmit Request Queue
+ * - bit 24 - Terminate (Last entry for the selected
+ * channel/EP)
+ * - bits 26:25 - Token Type
+ * - 2'b00 - IN/OUT
+ * - 2'b01 - Zero Length OUT
+ * - 2'b10 - PING/Complete Split
+ * - 2'b11 - Channel Halt
+ * - bits 30:27 - Channel/EP Number
+ */
+ unsigned nptxqtop_terminate:1;
+ unsigned nptxqtop_token:2;
+ unsigned nptxqtop_chnep:4;
+ unsigned reserved:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Transmit FIFO Status Register
+ * (DTXFSTS). Read the register into the d32 element then read out the bits
+ * using the bit elements.
+ */
+union dtxfsts_data {
+ u32 d32;
+ struct {
+ unsigned txfspcavail:16;
+ unsigned reserved:16;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the I2C Control Register (I2CCTL).
+ * Read the register into the d32 element then read out the bits using the bit
+ * elements.
+ */
+union gi2cctl_data {
+ u32 d32;
+ struct {
+ unsigned rwdata:8;
+ unsigned regaddr:8;
+ unsigned addr:7;
+ unsigned i2cen:1;
+ unsigned ack:1;
+ unsigned i2csuspctl:1;
+ unsigned i2cdevaddr:2;
+ unsigned reserved:2;
+ unsigned rw:1;
+ unsigned bsydne:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the User HW Config1 Register. Read
+ * the register into the d32 element then read out the bits using the bit
+ * elements.
+ */
+union hwcfg1_data {
+ u32 d32;
+ struct {
+ unsigned ep_dir0:2;
+ unsigned ep_dir1:2;
+ unsigned ep_dir2:2;
+ unsigned ep_dir3:2;
+ unsigned ep_dir4:2;
+ unsigned ep_dir5:2;
+ unsigned ep_dir6:2;
+ unsigned ep_dir7:2;
+ unsigned ep_dir8:2;
+ unsigned ep_dir9:2;
+ unsigned ep_dir10:2;
+ unsigned ep_dir11:2;
+ unsigned ep_dir12:2;
+ unsigned ep_dir13:2;
+ unsigned ep_dir14:2;
+ unsigned ep_dir15:2;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the User HW Config2 Register. Read
+ * the register into the d32 element then read out the bits using the bit
+ * elements.
+ */
+union hwcfg2_data {
+ u32 d32;
+ struct {
+ /* GHWCFG2 */
+ unsigned op_mode:3;
+#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
+#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
+#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
+#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
+#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
+#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
+#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
+
+ unsigned architecture:2;
+ unsigned point2point:1;
+ unsigned hs_phy_type:2;
+#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
+#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
+#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
+#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
+
+ unsigned fs_phy_type:2;
+ unsigned num_dev_ep:4;
+ unsigned num_host_chan:4;
+ unsigned perio_ep_supported:1;
+ unsigned dynamic_fifo:1;
+ unsigned rx_status_q_depth:2;
+ unsigned nonperio_tx_q_depth:2;
+ unsigned host_perio_tx_q_depth:2;
+ unsigned dev_token_q_depth:5;
+ unsigned reserved31:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the User HW Config3 Register. Read
+ * the register into the d32 element then read out the bits using the bit
+ * elements.
+ */
+union hwcfg3_data {
+ u32 d32;
+ struct {
+ /* GHWCFG3 */
+ unsigned xfer_size_cntr_width:4;
+ unsigned packet_size_cntr_width:3;
+ unsigned otg_func:1;
+ unsigned i2c:1;
+ unsigned vendor_ctrl_if:1;
+ unsigned optional_features:1;
+ unsigned synch_reset_type:1;
+ unsigned reserved15_12:4;
+ unsigned dfifo_depth:16;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the User HW Config4 Register. Read
+ * the register into the d32 element then read out the bits using the bit
+ * elements.
+ */
+union hwcfg4_data {
+ u32 d32;
+ struct {
+ unsigned num_dev_perio_in_ep:4;
+ unsigned power_optimiz:1;
+ unsigned min_ahb_freq:9;
+ unsigned utmi_phy_data_width:2;
+ unsigned num_dev_mode_ctrl_ep:4;
+ unsigned iddig_filt_en:1;
+ unsigned vbus_valid_filt_en:1;
+ unsigned a_valid_filt_en:1;
+ unsigned b_valid_filt_en:1;
+ unsigned session_end_filt_en:1;
+ unsigned ded_fifo_en:1;
+ unsigned num_in_eps:4;
+ unsigned reserved31_30:2;
+ } b;
+};
+
+/*
+ * Device Global Registers. Offsets 800h-BFFh
+ *
+ * The following structures define the size and relative field offsets for the
+ * Device Mode Registers.
+ *
+ * These registers are visible only in Device mode and must not be accessed in
+ * Host mode, as the results are unknown.
+ */
+struct device_global_regs {
+ /* Device Configuration Register. Offset 800h */
+ u32 dcfg;
+ /* Device Control Register. Offset: 804h */
+ u32 dctl;
+ /* Device Status Register (Read Only). Offset: 808h */
+ u32 dsts;
+ /* Reserved. Offset: 80Ch */
+ u32 unused;
+ /* Device IN Endpoint Common Interrupt Mask Register. Offset: 810h */
+ u32 diepmsk;
+ /* Device OUT Endpoint Common Interrupt MaskRegister. Offset: 814h */
+ u32 doepmsk;
+ /* Device All Endpoints Interrupt Register. Offset: 818h */
+ u32 daint;
+ /* Device All Endpoints Interrupt Mask Register. Offset: 81Ch */
+ u32 daintmsk;
+ /* Device IN Token Queue Read Register-1 (Read Only). Offset: 820h */
+ u32 dtknqr1;
+ /* Device IN Token Queue Read Register-2 (Read Only). Offset: 824h */
+ u32 dtknqr2;
+ /* Device VBUS discharge Register. Offset: 828h */
+ u32 dvbusdis;
+ /* Device VBUS Pulse Register. Offset: 82Ch */
+ u32 dvbuspulse;
+ /*
+ * Device IN Token Queue Read Register-3 (Read Only).
+ * Device Thresholding control register (Read/Write)
+ * Offset: 830h
+ */
+ u32 dtknqr3_dthrctl;
+ /*
+ * Device IN Token Queue Read Register-4 (Read Only).
+ * Device IN EPs empty Inr. Mask Register (Read/Write)
+ * Offset: 834h
+ */
+ u32 dtknqr4_fifoemptymsk;
+};
+
+/*
+ * This union represents the bit fields in the Device Configuration Register.
+ * Read the register into the d32 member then set/clear the bits using the bit
+ * elements. Write the d32 member to the dcfg register.
+ */
+union dcfg_data {
+ u32 d32;
+ struct {
+ /* Device Speed */
+ unsigned devspd:2;
+ /* Non Zero Length Status OUT Handshake */
+ unsigned nzstsouthshk:1;
+#define DWC_DCFG_SEND_STALL 1
+
+ unsigned reserved3:1;
+ /* Device Addresses */
+ unsigned devaddr:7;
+ /* Periodic Frame Interval */
+ unsigned perfrint:2;
+#define DWC_DCFG_FRAME_INTERVAL_80 0
+#define DWC_DCFG_FRAME_INTERVAL_85 1
+#define DWC_DCFG_FRAME_INTERVAL_90 2
+#define DWC_DCFG_FRAME_INTERVAL_95 3
+
+ unsigned reserved13_17:5;
+ /* In Endpoint Mis-match count */
+ unsigned epmscnt:4;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device Control Register. Read
+ * the register into the d32 member then set/clear the bits using the bit
+ * elements.
+ */
+union dctl_data {
+ u32 d32;
+ struct {
+ /* Remote Wakeup */
+ unsigned rmtwkupsig:1;
+ /* Soft Disconnect */
+ unsigned sftdiscon:1;
+ /* Global Non-Periodic IN NAK Status */
+ unsigned gnpinnaksts:1;
+ /* Global OUT NAK Status */
+ unsigned goutnaksts:1;
+ /* Test Control */
+ unsigned tstctl:3;
+ /* Set Global Non-Periodic IN NAK */
+ unsigned sgnpinnak:1;
+ /* Clear Global Non-Periodic IN NAK */
+ unsigned cgnpinnak:1;
+ /* Set Global OUT NAK */
+ unsigned sgoutnak:1;
+ /* Clear Global OUT NAK */
+ unsigned cgoutnak:1;
+ unsigned reserved:21;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device Status Register. Read the
+ * register into the d32 member then set/clear the bits using the bit elements.
+ */
+union dsts_data {
+ u32 d32;
+ struct {
+ /* Suspend Status */
+ unsigned suspsts:1;
+ /* Enumerated Speed */
+ unsigned enumspd:2;
+#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
+#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
+#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2
+#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3
+
+ /* Erratic Error */
+ unsigned errticerr:1;
+ unsigned reserved4_7:4;
+ /* Frame or Microframe Number of the received SOF */
+ unsigned soffn:14;
+ unsigned reserved22_31:10;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device IN EP Interrupt Register
+ * and the Device IN EP Common Mask Register. Read the register into the d32
+ * member then set/clear the bits using the bit elements.
+ */
+union diepint_data {
+ u32 d32;
+ struct {
+ /* Transfer complete mask */
+ unsigned xfercompl:1;
+ /* Endpoint disable mask */
+ unsigned epdisabled:1;
+ /* AHB Error mask */
+ unsigned ahberr:1;
+ /* TimeOUT Handshake mask (non-ISOC EPs) */
+ unsigned timeout:1;
+ /* IN Token received with TxF Empty mask */
+ unsigned intktxfemp:1;
+ /* IN Token Received with EP mismatch mask */
+ unsigned intknepmis:1;
+ /* IN Endpoint HAK Effective mask */
+ unsigned inepnakeff:1;
+ /* IN Endpoint HAK Effective mask */
+ unsigned emptyintr:1;
+ unsigned txfifoundrn:1;
+ unsigned reserved08_31:23;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device OUT EP Interrupt
+ * Registerand Device OUT EP Common Interrupt Mask Register. Read the register
+ * into the d32 member then set/clear the bits using the bit elements.
+ */
+union doepint_data {
+ u32 d32;
+ struct {
+ /* Transfer complete */
+ unsigned xfercompl:1;
+ /* Endpoint disable */
+ unsigned epdisabled:1;
+ /* AHB Error */
+ unsigned ahberr:1;
+ /* Setup Phase Done (contorl EPs) */
+ unsigned setup:1;
+ unsigned reserved04_31:28;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device All EP Interrupt and Mask
+ * Registers. Read the register into the d32 member then set/clear the bits
+ * using the bit elements.
+ */
+union daint_data {
+ u32 d32;
+ struct {
+ /* IN Endpoint bits */
+ unsigned in:16;
+ /* OUT Endpoint bits */
+ unsigned out:16;
+ } ep;
+ struct {
+ /* IN Endpoint bits */
+ unsigned inep0:1;
+ unsigned inep1:1;
+ unsigned inep2:1;
+ unsigned inep3:1;
+ unsigned inep4:1;
+ unsigned inep5:1;
+ unsigned inep6:1;
+ unsigned inep7:1;
+ unsigned inep8:1;
+ unsigned inep9:1;
+ unsigned inep10:1;
+ unsigned inep11:1;
+ unsigned inep12:1;
+ unsigned inep13:1;
+ unsigned inep14:1;
+ unsigned inep15:1;
+ /* OUT Endpoint bits */
+ unsigned outep0:1;
+ unsigned outep1:1;
+ unsigned outep2:1;
+ unsigned outep3:1;
+ unsigned outep4:1;
+ unsigned outep5:1;
+ unsigned outep6:1;
+ unsigned outep7:1;
+ unsigned outep8:1;
+ unsigned outep9:1;
+ unsigned outep10:1;
+ unsigned outep11:1;
+ unsigned outep12:1;
+ unsigned outep13:1;
+ unsigned outep14:1;
+ unsigned outep15:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device IN Token Queue Read
+ * Registers. Read the register into the d32 member. READ-ONLY Register
+ */
+union dtknq1_data {
+ u32 d32;
+ struct {
+ /* In Token Queue Write Pointer */
+ unsigned intknwptr:5;
+ /* Reserved */
+ unsigned reserved05_06:2;
+ /* write pointer has wrapped. */
+ unsigned wrap_bit:1;
+ /* EP Numbers of IN Tokens 0 ... 4 */
+ unsigned epnums0_5:24;
+ } b;
+};
+
+/*
+ * This union represents Threshold control Register Read and write the register
+ * into the d32 member. READ-WRITABLE Register
+ */
+union dthrctl_data {
+ u32 d32;
+ struct {
+ /* non ISO Tx Thr. Enable */
+ unsigned non_iso_thr_en:1;
+ /* ISO Tx Thr. Enable */
+ unsigned iso_thr_en:1;
+ /* Tx Thr. Length */
+ unsigned tx_thr_len:9;
+ /* Reserved */
+ unsigned reserved11_15:5;
+ /* Rx Thr. Enable */
+ unsigned rx_thr_en:1;
+ /* Rx Thr. Length */
+ unsigned rx_thr_len:9;
+ /* Reserved */
+ unsigned reserved26_31:6;
+ } b;
+};
+
+/*
+ * Device Logical IN Endpoint-Specific Registers. Offsets 900h-AFCh
+ *
+ * There will be one set of endpoint registers per logical endpoint implemented.
+ *
+ * These registers are visible only in Device mode and must not be accessed in
+ * Host mode, as the results are unknown.
+ */
+struct device_in_ep_regs {
+ /*
+ * Device IN Endpoint Control Register.
+ * Offset: 900h + (ep_num * 20h) + 00h
+ */
+ u32 diepctl;
+ /* Reserved. Offset:900h + (ep_num * 20h) + 04h */
+ u32 reserved04;
+ /*
+ * Device IN Endpoint Interrupt Register.
+ * Offset: 900h + (ep_num * 20h) + 08h
+ */
+ u32 diepint;
+ /* Reserved. Offset:900h + (ep_num * 20h) + 0Ch */
+ u32 reserved0C;
+ /*
+ * Device IN Endpoint Transfer Size Register.
+ * Offset: 900h + (ep_num * 20h) + 10h
+ */
+ u32 dieptsiz;
+ /*
+ * Device IN Endpoint DMA Address Register.
+ * Offset: 900h + (ep_num * 20h) + 14h
+ */
+ u32 diepdma;
+ /*
+ * Device IN Endpoint Transmit FIFO Status Register.
+ * Offset: 900h + (ep_num * 20h) + 18h
+ */
+ u32 dtxfsts;
+ /*
+ * Reserved.
+ * Offset: 900h + (ep_num * 20h) + 1Ch - 900h + (ep_num * 20h) + 1Ch
+ */
+ u32 reserved18;
+};
+
+/*
+ * Device Logical OUT Endpoint-Specific Registers. Offsets: B00h-CFCh
+ *
+ * There will be one set of endpoint registers per logical endpoint implemented.
+ *
+ * These registers are visible only in Device mode and must not be accessed in
+ * Host mode, as the results are unknown.
+ */
+struct device_out_ep_regs {
+ /*
+ * Device OUT Endpoint Control Register.
+ * Offset: B00h + (ep_num * 20h) + 00h
+ */
+ u32 doepctl;
+ /*
+ * Device OUT Endpoint Frame number Register.
+ * Offset: B00h + (ep_num * 20h) + 04h
+ */
+ u32 doepfn;
+ /*
+ * Device OUT Endpoint Interrupt Register.
+ * Offset: B00h + (ep_num * 20h) + 08h
+ */
+ u32 doepint;
+ /* Reserved. Offset:B00h + (ep_num * 20h) + 0Ch */
+ u32 reserved0C;
+ /*
+ * Device OUT Endpoint Transfer Size Register.
+ * Offset: B00h + (ep_num * 20h) + 10h
+ */
+ u32 doeptsiz;
+ /*
+ * Device OUT Endpoint DMA Address Register.
+ * Offset: B00h + (ep_num * 20h) + 14h
+ */
+ u32 doepdma;
+ /*
+ * Reserved.
+ * Offset:B00h + (ep_num * 20h) + 18h - B00h + (ep_num * 20h) + 1Ch
+ */
+ u32 unused[2];
+};
+
+/*
+ * This union represents the bit fields in the Device EP Control Register. Read
+ * the register into the d32 member then set/clear the bits using the bit
+ * elements.
+ */
+union depctl_data {
+ u32 d32;
+ struct {
+ /* Maximum Packet Size
+ * IN/OUT EPn
+ * IN/OUT EP0 - 2 bits
+ * 2'b00: 64 Bytes
+ * 2'b01: 32
+ * 2'b10: 16
+ * 2'b11: 8
+ */
+ unsigned mps:11;
+#define DWC_DEP0CTL_MPS_64 0
+#define DWC_DEP0CTL_MPS_32 1
+#define DWC_DEP0CTL_MPS_16 2
+#define DWC_DEP0CTL_MPS_8 3
+
+ /*
+ * Next Endpoint
+ * IN EPn/IN EP0
+ * OUT EPn/OUT EP0 - reserved
+ */
+ unsigned nextep:4;
+ /* USB Active Endpoint */
+ unsigned usbactep:1;
+ /*
+ * Endpoint DPID (INTR/Bulk IN and OUT endpoints) This field
+ * contains the PID of the packet going to be received or
+ * transmitted on this endpoint. The application should program
+ * the PID of the first packet going to be received or
+ * transmitted on this endpoint , after the endpoint is
+ * activated. Application use the SetD1PID and SetD0PID fields
+ * of this register to program either D0 or D1 PID.
+ *
+ * The encoding for this field is
+ * - 0: D0
+ * - 1: D1
+ */
+ unsigned dpid:1;
+ /* NAK Status */
+ unsigned naksts:1;
+ /* Endpoint Type
+ * 2'b00: Control
+ * 2'b01: Isochronous
+ * 2'b10: Bulk
+ * 2'b11: Interrupt
+ */
+ unsigned eptype:2;
+ /*
+ * Snoop Mode
+ * OUT EPn/OUT EP0
+ * IN EPn/IN EP0 - reserved
+ */
+ unsigned snp:1;
+ /* Stall Handshake */
+ unsigned stall:1;
+ /*
+ * Tx Fifo Number
+ * IN EPn/IN EP0
+ * OUT EPn/OUT EP0 - reserved
+ */
+ unsigned txfnum:4;
+ /* Clear NAK */
+ unsigned cnak:1;
+ /* Set NAK */
+ unsigned snak:1;
+ /*
+ * Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
+ *
+ * Writing to this field sets the Endpoint DPID (DPID) field in
+ * this register to DATA0. Set Even (micro)frame (SetEvenFr)
+ * (ISO IN and OUT Endpoints)
+ *
+ * Writing to this field sets the Even/Odd (micro)frame
+ * (EO_FrNum) field to even (micro) frame.
+ */
+ unsigned setd0pid:1;
+ /*
+ * Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
+ *
+ * Writing to this field sets the Endpoint DPID (DPID) field in
+ * this register to DATA1 Set Odd (micro)frame (SetOddFr) (ISO
+ * IN and OUT Endpoints)
+ *
+ * Writing to this field sets the Even/Odd (micro)frame
+ * (EO_FrNum) field to odd (micro) frame.
+ */
+ unsigned setd1pid:1;
+ /* Endpoint Disable */
+ unsigned epdis:1;
+ /* Endpoint Enable */
+ unsigned epena:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device EP Transfer Size Register.
+ * Read the register into the d32 member then set/clear the bits using the bit
+ * elements.
+ */
+union deptsiz_data {
+ u32 d32;
+ struct {
+ /* Transfer size */
+ unsigned xfersize:19;
+ /* Packet Count */
+ unsigned pktcnt:10;
+ /* Multi Count - Periodic IN endpoints */
+ unsigned mc:2;
+ unsigned reserved:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Device EP 0 Transfer Size
+ * Register. Read the register into the d32 member then set/clear the bits
+ * using the bit elements.
+ */
+union deptsiz0_data {
+ u32 d32;
+ struct {
+ /* Transfer size */
+ unsigned xfersize:7;
+ /* Reserved */
+ unsigned reserved7_18:12;
+ /* Packet Count */
+ unsigned pktcnt:2;
+ /* Reserved */
+ unsigned reserved21_28:9;
+ /* Setup Packet Count (DOEPTSIZ0 Only) */
+ unsigned supcnt:2;
+ unsigned reserved31;
+ } b;
+};
+
+#define MAX_PERIO_FIFOS 15 /* Max periodic FIFOs */
+#define MAX_TX_FIFOS 15 /* Max non-periodic FIFOs */
+#define MAX_EPS_CHANNELS 4 /* Max Endpoints/HostChannels */
+
+/*
+ * The device_if structure contains information needed to manage the
+ * DWC_otg controller acting in device mode. It represents the programming view
+ * of the device-specific aspects of the controller.
+ */
+struct device_if {
+ /* Device Global Registers starting at offset 800h */
+ struct device_global_regs *dev_global_regs;
+#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
+
+ /* Device Logical IN Endpoint-Specific Registers 900h-AFCh */
+ struct device_in_ep_regs *in_ep_regs[MAX_EPS_CHANNELS/2];
+#define DWC_DEV_IN_EP_REG_OFFSET 0x900
+#define DWC_EP_REG_OFFSET 0x20
+
+ /* Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
+ struct device_out_ep_regs *out_ep_regs[MAX_EPS_CHANNELS/2];
+#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
+
+ /* Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
+ u8 speed;
+ /* Number # of Tx EP range: 0-15 exept ep0 */
+ u8 num_in_eps;
+ /* Number # of Rx EP range: 0-15 exept ep0 */
+ u8 num_out_eps;
+
+ /* Size of periodic FIFOs (Bytes) */
+ u16 perio_tx_fifo_size[MAX_PERIO_FIFOS];
+
+ /* Size of Tx FIFOs (Bytes) */
+ u16 tx_fifo_size[MAX_TX_FIFOS];
+
+ /* Thresholding enable flags and length varaiables */
+ u16 rx_thr_en;
+ u16 iso_tx_thr_en;
+ u16 non_iso_tx_thr_en;
+ u16 rx_thr_length;
+ u16 tx_thr_length;
+};
+
+/*
+ * The Host Global Registers structure defines the size and relative
+ * field offsets for the Host Mode Global Registers. Host Global
+ * Registers offsets 400h-7FFh.
+*/
+struct host_global_regs {
+ /* Host Configuration Register. Offset: 400h */
+ u32 hcfg;
+ /* Host Frame Interval Register. Offset: 404h */
+ u32 hfir;
+ /* Host Frame Number / Frame Remaining Register. Offset: 408h */
+ u32 hfnum;
+ /* Reserved. Offset: 40Ch */
+ u32 reserved40C;
+ /* Host Periodic Transmit FIFO/ Queue Status Register. Offset: 410h */
+ u32 hptxsts;
+ /* Host All Channels Interrupt Register. Offset: 414h */
+ u32 haint;
+ /* Host All Channels Interrupt Mask Register. Offset: 418h */
+ u32 haintmsk;
+};
+
+/*
+ * This union represents the bit fields in the Host Configuration Register.
+ * Read the register into the d32 member then set/clear the bits using
+ * the bit elements. Write the d32 member to the hcfg register.
+ */
+union hcfg_data {
+ u32 d32;
+ struct {
+ /* FS/LS Phy Clock Select */
+ unsigned fslspclksel:2;
+#define DWC_HCFG_30_60_MHZ 0
+#define DWC_HCFG_48_MHZ 1
+#define DWC_HCFG_6_MHZ 2
+
+ /* FS/LS Only Support */
+ unsigned fslssupp:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host Frame Remaing/Number
+ * Register.
+ */
+union hfir_data {
+ u32 d32;
+ struct {
+ unsigned frint:16;
+ unsigned reserved:16;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host Frame Remaing/Number
+ * Register.
+ */
+union hfnum_data {
+ u32 d32;
+ struct {
+ unsigned frnum:16;
+#define DWC_HFNUM_MAX_FRNUM 0x3FFF
+ unsigned frrem:16;
+ } b;
+};
+
+union hptxsts_data {
+ u32 d32;
+ struct {
+ unsigned ptxfspcavail:16;
+ unsigned ptxqspcavail:8;
+ /*
+ * Top of the Periodic Transmit Request Queue
+ * - bit 24 - Terminate (last entry of selected channel)
+ * - bits 26:25 - Token Type
+ * - 2'b00 - Zero length
+ * - 2'b01 - Ping
+ * - 2'b10 - Disable
+ * - bits 30:27 - Channel Number
+ * - bit 31 - Odd/even microframe
+ */
+ unsigned ptxqtop_terminate:1;
+ unsigned ptxqtop_token:2;
+ unsigned ptxqtop_chnum:4;
+ unsigned ptxqtop_odd:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host Port Control and Status
+ * Register. Read the register into the d32 member then set/clear the bits using
+ * the bit elements. Write the d32 member to the hprt0 register.
+ */
+union hprt0_data {
+ u32 d32;
+ struct {
+ unsigned prtconnsts:1;
+ unsigned prtconndet:1;
+ unsigned prtena:1;
+ unsigned prtenchng:1;
+ unsigned prtovrcurract:1;
+ unsigned prtovrcurrchng:1;
+ unsigned prtres:1;
+ unsigned prtsusp:1;
+ unsigned prtrst:1;
+ unsigned reserved9:1;
+ unsigned prtlnsts:2;
+ unsigned prtpwr:1;
+ unsigned prttstctl:4;
+ unsigned prtspd:2;
+#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
+#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
+#define DWC_HPRT0_PRTSPD_LOW_SPEED 2
+ unsigned reserved19_31:13;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host All Interrupt Register.
+ */
+union haint_data {
+ u32 d32;
+ struct {
+ unsigned ch0:1;
+ unsigned ch1:1;
+ unsigned ch2:1;
+ unsigned ch3:1;
+ unsigned ch4:1;
+ unsigned ch5:1;
+ unsigned ch6:1;
+ unsigned ch7:1;
+ unsigned ch8:1;
+ unsigned ch9:1;
+ unsigned ch10:1;
+ unsigned ch11:1;
+ unsigned ch12:1;
+ unsigned ch13:1;
+ unsigned ch14:1;
+ unsigned ch15:1;
+ unsigned reserved:16;
+ } b;
+
+ struct {
+ unsigned chint:16;
+ unsigned reserved:16;
+ } b2;
+};
+
+/*
+ * This union represents the bit fields in the Host All Interrupt Register.
+ */
+union haintmsk_data {
+ u32 d32;
+ struct {
+ unsigned ch0:1;
+ unsigned ch1:1;
+ unsigned ch2:1;
+ unsigned ch3:1;
+ unsigned ch4:1;
+ unsigned ch5:1;
+ unsigned ch6:1;
+ unsigned ch7:1;
+ unsigned ch8:1;
+ unsigned ch9:1;
+ unsigned ch10:1;
+ unsigned ch11:1;
+ unsigned ch12:1;
+ unsigned ch13:1;
+ unsigned ch14:1;
+ unsigned ch15:1;
+ unsigned reserved:16;
+ } b;
+
+ struct {
+ unsigned chint:16;
+ unsigned reserved:16;
+ } b2;
+};
+
+/*
+ * Host Channel Specific Registers. 500h-5FCh
+ */
+struct dwc_hc_regs {
+ /*
+ * Host Channel 0 Characteristic Register.
+ * Offset: 500h + (chan_num * 20h) + 00h
+ */
+ u32 hcchar;
+ /*
+ * Host Channel 0 Split Control Register.
+ * Offset: 500h + (chan_num * 20h) + 04h
+ */
+ u32 hcsplt;
+ /*
+ * Host Channel 0 Interrupt Register.
+ * Offset: 500h + (chan_num * 20h) + 08h
+ */
+ u32 hcint;
+ /*
+ * Host Channel 0 Interrupt Mask Register.
+ * Offset: 500h + (chan_num * 20h) + 0Ch
+ */
+ u32 hcintmsk;
+ /*
+ * Host Channel 0 Transfer Size Register.
+ * Offset: 500h + (chan_num * 20h) + 10h
+ */
+ u32 hctsiz;
+ /*
+ * Host Channel 0 DMA Address Register.
+ * Offset: 500h + (chan_num * 20h) + 14h
+ */
+ u32 hcdma;
+ /* Reserved.
+ * Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch
+ */
+ u32 reserved[2];
+};
+
+/*
+ * This union represents the bit fields in the Host Channel Characteristics
+ * Register. Read the register into the d32 member then set/clear the bits using
+ * the bit elements. Write the d32 member to the hcchar register.
+ */
+union hcchar_data {
+ u32 d32;
+ struct {
+ /* Maximum packet size in bytes */
+ unsigned mps:11;
+ /* Endpoint number */
+ unsigned epnum:4;
+ /* 0: OUT, 1: IN */
+ unsigned epdir:1;
+ unsigned reserved:1;
+ /* 0: Full/high speed device, 1: Low speed device */
+ unsigned lspddev:1;
+ /* 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
+ unsigned eptype:2;
+ /* Packets per frame for periodic transfers. 0 is reserved. */
+ unsigned multicnt:2;
+ /* Device address */
+ unsigned devaddr:7;
+ /*
+ * Frame to transmit periodic transaction.
+ * 0: even, 1: odd
+ */
+ unsigned oddfrm:1;
+ /* Channel disable */
+ unsigned chdis:1;
+ /* Channel enable */
+ unsigned chen:1;
+ } b;
+};
+
+union hcsplt_data {
+ u32 d32;
+ struct {
+ /* Port Address */
+ unsigned prtaddr:7;
+ /* Hub Address */
+ unsigned hubaddr:7;
+ /* Transaction Position */
+ unsigned xactpos:2;
+#define DWC_HCSPLIT_XACTPOS_MID 0
+#define DWC_HCSPLIT_XACTPOS_END 1
+#define DWC_HCSPLIT_XACTPOS_BEGIN 2
+#define DWC_HCSPLIT_XACTPOS_ALL 3
+
+ /* Do Complete Split */
+ unsigned compsplt:1;
+ /* Reserved */
+ unsigned reserved:14;
+ /* Split Enble */
+ unsigned spltena:1;
+ } b;
+};
+
+
+/*
+ * This union represents the bit fields in the Host All Interrupt Register.
+ */
+union hcint_data {
+ u32 d32;
+ struct {
+ /* Transfer Complete */
+ unsigned xfercomp:1;
+ /* Channel Halted */
+ unsigned chhltd:1;
+ /* AHB Error */
+ unsigned ahberr:1;
+ /* STALL Response Received */
+ unsigned stall:1;
+ /* NAK Response Received */
+ unsigned nak:1;
+ /* ACK Response Received */
+ unsigned ack:1;
+ /* NYET Response Received */
+ unsigned nyet:1;
+ /* Transaction Err */
+ unsigned xacterr:1;
+ /* Babble Error */
+ unsigned bblerr:1;
+ /* Frame Overrun */
+ unsigned frmovrun:1;
+ /* Data Toggle Error */
+ unsigned datatglerr:1;
+ /* Reserved */
+ unsigned reserved:21;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host Channel Transfer Size
+ * Register. Read the register into the d32 member then set/clear the bits using
+ * the bit elements. Write the d32 member to the hcchar register.
+ */
+union hctsiz_data {
+ u32 d32;
+ struct {
+ /* Total transfer size in bytes */
+ unsigned xfersize:19;
+ /* Data packets to transfer */
+ unsigned pktcnt:10;
+ /*
+ * Packet ID for next data packet
+ * 0: DATA0
+ * 1: DATA2
+ * 2: DATA1
+ * 3: MDATA (non-Control), SETUP (Control)
+ */
+ unsigned pid:2;
+#define DWC_HCTSIZ_DATA0 0
+#define DWC_HCTSIZ_DATA1 2
+#define DWC_HCTSIZ_DATA2 1
+#define DWC_HCTSIZ_MDATA 3
+#define DWC_HCTSIZ_SETUP 3
+
+ /* Do PING protocol when 1 */
+ unsigned dopng:1;
+ } b;
+};
+
+/*
+ * This union represents the bit fields in the Host Channel Interrupt Mask
+ * Register. Read the register into the d32 member then set/clear the bits using
+ * the bit elements. Write the d32 member to the hcintmsk register.
+ */
+union hcintmsk_data {
+ u32 d32;
+ struct {
+ unsigned xfercompl:1;
+ unsigned chhltd:1;
+ unsigned ahberr:1;
+ unsigned stall:1;
+ unsigned nak:1;
+ unsigned ack:1;
+ unsigned nyet:1;
+ unsigned xacterr:1;
+ unsigned bblerr:1;
+ unsigned frmovrun:1;
+ unsigned datatglerr:1;
+ unsigned reserved:21;
+ } b;
+};
+
+/* OTG Host Interface Structure.
+ *
+ * The OTG Host Interface Structure structure contains information needed to
+ * manage the DWC_otg controller acting in host mode. It represents the
+ * programming view of the host-specific aspects of the controller.
+ */
+struct dwc_host_if {
+ /* Host Global Registers starting at offset 400h.*/
+ struct host_global_regs *host_global_regs;
+#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
+
+ /* Host Port 0 Control and Status Register */
+ u32 *hprt0;
+#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
+
+ /* Host Channel Specific Registers at offsets 500h-5FCh. */
+ struct dwc_hc_regs *hc_regs[MAX_EPS_CHANNELS];
+#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
+#define DWC_OTG_CHAN_REGS_OFFSET 0x20
+
+ /* Host configuration information */
+ /* Number of Host Channels (range: 1-16) */
+ u8 num_host_channels;
+ /* Periodic EPs supported (0: no, 1: yes) */
+ u8 perio_eps_supported;
+ /* Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
+ u16 perio_tx_fifo_size;
+};
+
+/*
+ * This union represents the bit fields in the Power and Clock Gating Control
+ * Register. Read the register into the d32 member then set/clear the bits using
+ * the bit elements.
+ */
+union pcgcctl_data {
+ u32 d32;
+ struct {
+ /* Stop Pclk */
+ unsigned stoppclk:1;
+ /* Gate Hclk */
+ unsigned gatehclk:1;
+ /* Power Clamp */
+ unsigned pwrclmp:1;
+ /* Reset Power Down Modules */
+ unsigned rstpdwnmodule:1;
+ /* PHY Suspended */
+ unsigned physuspended:1;
+ unsigned reserved:27;
+ } b;
+};
+#endif /* CONFIG_DWC_OTG_REG_LE */
+#endif
--
1.7.1
More information about the Linuxppc-dev
mailing list