[PATCH] align.c
Kumar Gala
kumar.gala at freescale.com
Fri Jul 16 00:15:23 EST 2004
Do you really see string ops and alignment exceptions? I was under the
impression they did byte accesses.
- kumar
On Jul 14, 2004, at 1:36 PM, Stef Simoens wrote:
> This is an (updated) diff to arch/ppc/kernel/align.c of the 2.6.8-rc1
> kernel.
> The patch adds support for the handling of alignment exceptions of
> multiple (lmw/stmw) and string (lswi/lswx/stswi/stswx) instructions.
> Stef
>
> diff -ur linux-2.6.8-rc1/arch/ppc/kernel/align.c
> linux-2.6.8-rc1-mq/arch/ppc/kernel/align.c
> --- linux-2.6.8-rc1/arch/ppc/kernel/align.c 2004-07-12
> 17:46:42.525695737 +0200
> +++ linux-2.6.8-rc1-mq/arch/ppc/kernel/align.c 2004-07-12
> 20:25:24.390989048 +0200
> @@ -17,8 +17,8 @@
> #include <asm/cache.h>
> struct aligninfo {
> - unsigned char len;
> - unsigned char flags;
> + unsigned int len;
> + unsigned int flags;
> };
> #if defined(CONFIG_4xx) || defined(CONFIG_POWER4) ||
> defined(CONFIG_BOOKE)
> @@ -30,14 +30,16 @@
> #define INVALID { 0, 0 }
> -#define LD 1 /* load */
> -#define ST 2 /* store */
> -#define SE 4 /* sign-extend value */
> -#define F 8 /* to/from fp regs */
> -#define U 0x10 /* update index register */
> -#define M 0x20 /* multiple load/store */
> -#define S 0x40 /* single-precision fp, or byte-swap value */
> -#define HARD 0x80 /* string, stwcx. */
> +#define LD 0x001 /* load */
> +#define ST 0x002 /* store */
> +#define SE 0x004 /* sign-extend value */
> +#define F 0x008 /* to/from fp regs */
> +#define U 0x010 /* update index register */
> +#define M 0x020 /* multiple load/store */
> +#define S 0x040 /* single-precision fp, or byte-swap value */
> +#define STR_OP 0x080 /* string, length stored in instruction */
> +#define STR_XER 0x100 /* string, length stored in XER[25-31] */
> +#define HARD 0x200 /* too hard: stwcx. */
> #define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
> @@ -88,10 +90,10 @@
> INVALID, /* 01 0 0101: lwax */
> INVALID, /* 01 0 0110 */
> INVALID, /* 01 0 0111 */
> - { 0, LD+HARD }, /* 01 0 1000: lswx */
> - { 0, LD+HARD }, /* 01 0 1001: lswi */
> - { 0, ST+HARD }, /* 01 0 1010: stswx */
> - { 0, ST+HARD }, /* 01 0 1011: stswi */
> + { 4, LD+STR_XER }, /* 01 0 1000: lswx */
> + { 4, LD+STR_OP }, /* 01 0 1001: lswi */
> + { 4, ST+STR_XER }, /* 01 0 1010: stswx */
> + { 4, ST+STR_OP }, /* 01 0 1011: stswi */
> INVALID, /* 01 0 1100 */
> INVALID, /* 01 0 1101 */
> INVALID, /* 01 0 1110 */
> @@ -183,11 +185,11 @@
> int
> fix_alignment(struct pt_regs *regs)
> {
> - int instr, nb, flags;
> + int instr, nb, mb, mr, flags;
> #if defined(CONFIG_4xx) || defined(CONFIG_POWER4) ||
> defined(CONFIG_BOOKE)
> int opcode, f1, f2, f3;
> #endif
> - int i, t;
> + int i, j, t;
> int reg, areg;
> unsigned char __user *addr;
> union {
> @@ -195,7 +197,7 @@
> float f;
> double d;
> unsigned char v[8];
> - } data;
> + } data[32];
> CHECK_FULL_REGS(regs);
> @@ -256,9 +259,34 @@
> addr = (unsigned char __user *)regs->dar;
> + /* Get mb (total number of bytes to load)
> + and mr (number of registers needed) if we're dealing with strings
> */
> + if (flags & M) {
> + mr = 32 - reg;
> + mb = nb * mr; /* nb = bytes per register */
> + } else if (flags & STR_OP) {
> + instr = *((unsigned int *)regs->nip);
> + mb = (instr >> 11) & 0x1f;
> + if (mb == 0)
> + mb = 32; /* mb = 32 if bits are 0 */
> + mr = mb / 4;
> + if ((mb % 4) > 0)
> + mr++;
> + } else if (flags & STR_XER) {
> + mb = regs->xer & 0x7f;
> + /* This shouldn't be 128 if XER[25-31] is 0,
> + in that case it's actually a no-op */
> + mr = mb / 4;
> + if ((mb % 4) > 0)
> + mr++;
> + } else {
> + mb = nb;
> + mr = 1;
> + }
> +
> /* Verify the address of the operand */
> if (user_mode(regs)) {
> - if (verify_area((flags & ST? VERIFY_WRITE: VERIFY_READ), addr, nb))
> + if (verify_area((flags & ST? VERIFY_WRITE: VERIFY_READ), addr, mb))
> return -EFAULT; /* bad address */
> }
> @@ -268,57 +296,69 @@
> giveup_fpu(current);
> preempt_enable();
> }
> - if (flags & M)
> - return 0; /* too hard for now */
> /* If we read the operand, copy it in */
> if (flags & LD) {
> - if (nb == 2) {
> - data.v[0] = data.v[1] = 0;
> - if (__get_user(data.v[2], addr)
> - || __get_user(data.v[3], addr+1))
> - return -EFAULT;
> - } else {
> - for (i = 0; i < nb; ++i)
> - if (__get_user(data.v[i], addr+i))
> + for (j = 0; j < mr; ++j) {
> + if (nb == 2) {
> + data[j].v[0] = data[j].v[1] = 0;
> + if (__get_user(data[j].v[2], addr)
> + || __get_user(data[j].v[3], addr+1))
> return -EFAULT;
> + } else {
> + for (i = 0; i < nb; ++i) {
> + if ((j*4)+i < mb) {
> + if (__get_user(data[j].v[i], addr+(j*4)+i))
> + return -EFAULT;
> + } else {
> + data[j].v[i] = 0;
> + }
> + }
> + }
> }
> }
> - switch (flags & ~U) {
> + /* We already did the main work for the multiple register cases
> + (M, STR_OP and STR_XER), so they get filtered out. As the only
> + possible combinations with multiples are with LD and ST, there
> + is only a loop there. data[0] is used when there is only one
> + register involved. */
> + switch (flags & ~(U|M|STR_OP|STR_XER)) {
> case LD+SE:
> - if (data.v[2] >= 0x80)
> - data.v[0] = data.v[1] = -1;
> + if (data[0].v[2] >= 0x80)
> + data[0].v[0] = data[0].v[1] = -1;
> /* fall through */
> case LD:
> - regs->gpr[reg] = data.l;
> + for (i = 0; i < mr; ++i)
> + regs->gpr[reg+i] = data[i].l;
> break;
> case LD+S:
> if (nb == 2) {
> - SWAP(data.v[2], data.v[3]);
> + SWAP(data[0].v[2], data[0].v[3]);
> } else {
> - SWAP(data.v[0], data.v[3]);
> - SWAP(data.v[1], data.v[2]);
> + SWAP(data[0].v[0], data[0].v[3]);
> + SWAP(data[0].v[1], data[0].v[2]);
> }
> - regs->gpr[reg] = data.l;
> + regs->gpr[reg] = data[0].l;
> break;
> case ST:
> - data.l = regs->gpr[reg];
> + for (i = 0; i < mr; ++i)
> + data[i].l = regs->gpr[reg+i];
> break;
> case ST+S:
> - data.l = regs->gpr[reg];
> + data[0].l = regs->gpr[reg];
> if (nb == 2) {
> - SWAP(data.v[2], data.v[3]);
> + SWAP(data[0].v[2], data[0].v[3]);
> } else {
> - SWAP(data.v[0], data.v[3]);
> - SWAP(data.v[1], data.v[2]);
> + SWAP(data[0].v[0], data[0].v[3]);
> + SWAP(data[0].v[1], data[0].v[2]);
> }
> break;
> case LD+F:
> - current->thread.fpr[reg] = data.d;
> + current->thread.fpr[reg] = data[0].d;
> break;
> case ST+F:
> - data.d = current->thread.fpr[reg];
> + data[0].d = current->thread.fpr[reg];
> break;
> /* these require some floating point conversions... */
> /* we'd like to use the assignment, but we have to compile
> @@ -327,15 +367,15 @@
> case LD+F+S:
> preempt_disable();
> enable_kernel_fp();
> - cvt_fd(&data.f, ¤t->thread.fpr[reg], ¤t->thread.fpscr);
> - /* current->thread.fpr[reg] = data.f; */
> + cvt_fd(&data[0].f, ¤t->thread.fpr[reg],
> ¤t->thread.fpscr);
> + /* current->thread.fpr[reg] = data[0].f; */
> preempt_enable();
> break;
> case ST+F+S:
> preempt_disable();
> enable_kernel_fp();
> - cvt_df(¤t->thread.fpr[reg], &data.f, ¤t->thread.fpscr);
> - /* data.f = current->thread.fpr[reg]; */
> + cvt_df(¤t->thread.fpr[reg], &data[0].f,
> ¤t->thread.fpscr);
> + /* data[0].f = current->thread.fpr[reg]; */
> preempt_enable();
> break;
> default:
> @@ -344,14 +384,16 @@
> }
> if (flags & ST) {
> - if (nb == 2) {
> - if (__put_user(data.v[2], addr)
> - || __put_user(data.v[3], addr+1))
> - return -EFAULT;
> - } else {
> - for (i = 0; i < nb; ++i)
> - if (__put_user(data.v[i], addr+i))
> + for (j = 0; j < mr; ++j) {
> + if (nb == 2) {
> + if (__put_user(data[j].v[2], addr)
> + || __put_user(data[j].v[3], addr+1))
> return -EFAULT;
> + } else {
> + for (i = 0; (i < nb) && (((j*4)+i) < mb); ++i)
> + if (__put_user(data[j].v[i], addr+(j*4)+i))
> + return -EFAULT;
> + }
> }
> }
** Sent via the linuxppc-dev mail list. See http://lists.linuxppc.org/
More information about the Linuxppc-dev
mailing list