
OpenBMC + MRW
The Machine Readable Workbook – For A Data Driven OpenBMC

Matt Spinler

spinler@us.ibm.com

8/25/16

Agenda

 History

 OpenBMC Design Goals

 Introducing ServerWiz2

 The API

 Customizing

 Patching

 Current Status

 Future Items

History

 IBM’s enterprise service processors required a huge amount of data

 Each code component was on their own:

 Dug up their own data for each system

 Figure out how to store it and present it

 Hopefully they’d hear if something changed in the hardware

 The solution? the Machine Readable Workbook

 (as opposed to a PDF system workbook)

 The chief engineer is responsible for the data

 Uses the ServerWiz GUI for data entry, mostly

 What is typed in can be read directly by code for use during build or runtime

 Almost everything went into a relational DB in flash

 Also HTML output for human consumption

Legacy Flow

Chief Engineer

+ ServerWiz

Firmware

Requirements

Schematics,

Thermal Analysis,

Policies, etc

MRW XML

Generates

Build Time

Processing

Database

Flash Image

Apps

CI: Standalone

MRW builds

HTML

Ideal Goals for OpenBMC

 Use ServerWiz2!

 All system data comes from 1 repository

 The system owner is responsible for the data

 Components have no data related code changes for new (similar) systems

 Components own their own processing scripts and data formats

 There is an easy method to patch the system data for quick fixes

Lowest Bar Goals for OpenBMC

 Data is moved out of the code, provided by Serverwiz2 or hard coded or

whatever

 Components have no data related code changes for new systems

OpenBMC Flow

Chief Engineer

+ ServerWiz

Firmware

Requirements

Schematics,

Thermal Analysis,

Policies, etc

MRW XML

Generates

.bin

.json

.xml

.yaml

etc

Flash Image

Apps

Build

.bin/etc Hardcoded

Data Files

Patches

Introducing ServerWiz2

 Hostboot uses today

 Platform Independent

 Open Source, and IBM supported

 Releases on Github

 Generates a single XML file

 Everything is a target

 Targets have attributes, connections

 XML metadata defines available target

types and attributes

 Provides a Perl module to traverse the

XML

https://github.com/open-power/serverwiz

 Serverwiz2 is a hierarchically based XML editor that is targeted for

representing a system topology.

 It has 3 primary concepts:

 Instances

 Node, card, connector, or chip

 Chips can have units that specify subcomponents of that chip such as cores and bus

interfaces

 Busses/Connections

 A connection between 2 units of Instances

 Connections are made at the level in the hierarchy where they exist in the real system

 Attributes

 Instances and Connections both have attributes

 Attributes are variables that Hostboot reads to control the behavior

https://github.com/open-power/serverwiz/blob/master/doc/Serverwiz2%20Overview.pdf

The Targets.pm Perl API

 Parses <system>.xml

 Target, bus, and attribute based

 See Hostboot’s

src/usr/targeting/common/processMrw.pl

Customizing the XML

 To add an attribute field for serverwiz:

1) Add the attribute definition to attribute_types_obmc.xml

2) Specify which target type needs the attribute in target_types_mrw.xml

3) Open ServerWiz, navigate to the instance, fill in the new value

4) To use: $targetObj->getAttribute($bmcTarget, “BMC_MODEL”)

MRW XML Patching

 For quick MRW XML fixes, or prototyping

 Fixes are also in XML, will get applied during do_patch()

 …/meta-palmetto/recipes-phosphor/mrw/mrw-native/palmetto.xml.patch.xml

Current Status

 Recipes out on gerrit:

 Pull in MRW XML and Targets.pm from github.com/open-power

 Coming soon:

 The Bitbake class to apply the XML patches

 Generate system inventory from the XML

Future Items

 Device Tree

 Fan Control Parameters

 IPMI SDR data

 Hotplug Rules

 etc

