
OpenBMC + MRW
The Machine Readable Workbook – For A Data Driven OpenBMC

Matt Spinler

spinler@us.ibm.com

8/25/16

Agenda

 History

 OpenBMC Design Goals

 Introducing ServerWiz2

 The API

 Customizing

 Patching

 Current Status

 Future Items

History

 IBM’s enterprise service processors required a huge amount of data

 Each code component was on their own:

 Dug up their own data for each system

 Figure out how to store it and present it

 Hopefully they’d hear if something changed in the hardware

 The solution? the Machine Readable Workbook

 (as opposed to a PDF system workbook)

 The chief engineer is responsible for the data

 Uses the ServerWiz GUI for data entry, mostly

 What is typed in can be read directly by code for use during build or runtime

 Almost everything went into a relational DB in flash

 Also HTML output for human consumption

Legacy Flow

Chief Engineer

+ ServerWiz

Firmware

Requirements

Schematics,

Thermal Analysis,

Policies, etc

MRW XML

Generates

Build Time

Processing

Database

Flash Image

Apps

CI: Standalone

MRW builds

HTML

Ideal Goals for OpenBMC

 Use ServerWiz2!

 All system data comes from 1 repository

 The system owner is responsible for the data

 Components have no data related code changes for new (similar) systems

 Components own their own processing scripts and data formats

 There is an easy method to patch the system data for quick fixes

Lowest Bar Goals for OpenBMC

 Data is moved out of the code, provided by Serverwiz2 or hard coded or

whatever

 Components have no data related code changes for new systems

OpenBMC Flow

Chief Engineer

+ ServerWiz

Firmware

Requirements

Schematics,

Thermal Analysis,

Policies, etc

MRW XML

Generates

.bin

.json

.xml

.yaml

etc

Flash Image

Apps

Build

.bin/etc Hardcoded

Data Files

Patches

Introducing ServerWiz2

 Hostboot uses today

 Platform Independent

 Open Source, and IBM supported

 Releases on Github

 Generates a single XML file

 Everything is a target

 Targets have attributes, connections

 XML metadata defines available target

types and attributes

 Provides a Perl module to traverse the

XML

https://github.com/open-power/serverwiz

 Serverwiz2 is a hierarchically based XML editor that is targeted for

representing a system topology.

 It has 3 primary concepts:

 Instances

 Node, card, connector, or chip

 Chips can have units that specify subcomponents of that chip such as cores and bus

interfaces

 Busses/Connections

 A connection between 2 units of Instances

 Connections are made at the level in the hierarchy where they exist in the real system

 Attributes

 Instances and Connections both have attributes

 Attributes are variables that Hostboot reads to control the behavior

https://github.com/open-power/serverwiz/blob/master/doc/Serverwiz2%20Overview.pdf

The Targets.pm Perl API

 Parses <system>.xml

 Target, bus, and attribute based

 See Hostboot’s

src/usr/targeting/common/processMrw.pl

Customizing the XML

 To add an attribute field for serverwiz:

1) Add the attribute definition to attribute_types_obmc.xml

2) Specify which target type needs the attribute in target_types_mrw.xml

3) Open ServerWiz, navigate to the instance, fill in the new value

4) To use: $targetObj->getAttribute($bmcTarget, “BMC_MODEL”)

MRW XML Patching

 For quick MRW XML fixes, or prototyping

 Fixes are also in XML, will get applied during do_patch()

 …/meta-palmetto/recipes-phosphor/mrw/mrw-native/palmetto.xml.patch.xml

Current Status

 Recipes out on gerrit:

 Pull in MRW XML and Targets.pm from github.com/open-power

 Coming soon:

 The Bitbake class to apply the XML patches

 Generate system inventory from the XML

Future Items

 Device Tree

 Fan Control Parameters

 IPMI SDR data

 Hotplug Rules

 etc

